Resultados de búsqueda: menor o igual que

855 resultados encontrados

  • Video

    Los Elementos de Euclides: Teorema 17 - [Detalles]

    En este video cubrimos el Teorema 17 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo la suma de dos cualesquiera de sus ángulos es menor que dos rectos (es decir, es menor a 180°).

  • Video

    Orden en los números enteros - [Detalles]

    Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales. 

  • Video

    Los Elementos de Euclides: Teorema 3 - [Detalles]

    En este video cubrimos el Teorema 3 de Los Elementos de Euclides. Dados dos segmentos desiguales, quitamos del mayor un segmento igual al menor.

  • Blog

    Combinaciones lineales - [Detalles]

    Definimos combinaciones lineales y espacio generado. Mostramos que el espacio generado por ciertos vectores es el menor subespacio que los contiene.

  • Blog

    Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]

    El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.

  • Video

    Los Elementos de Euclides: Teorema 32 - [Detalles]

    En este video cubrimos el Teorema 32 de Los Elementos de Euclides, el cual trata la propiedad que en todo triángulo la suma de los ángulos interiores es igual a 180° (es decir dos rectos); y la propiedad que en todo triángulo la medida de un ángulo exterior del triángulo es igual a la suma de los dos ángulos interiores no adyacentes a él.

  • Video

    Los Elementos de Euclides: Teorema 45 - [Detalles]

    En este video cubrimos el Teorema 45 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, que tenga un área igual al área de un cuadrilátero dado y con un ángulo igual a un ángulo dado.

  • Video

    Ejercicio Teorema del Valor Intermedio - [Detalles]

    Si $f$ valuada en $0$ es igual a $f$ valuada en $1$, entonces debe existir un valor $x$ tal que $f$ valuada en $x$ es igual a $f$ valuada en $x$ más $1/n$.

  • Video

    Los Elementos de Euclides: Teorema 44 - [Detalles]

    En este video cubrimos el Teorema 44 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo sobre una recta dada, con un ángulo igual a un ángulo dado, y cuya área sea igual al área de un triángulo dado.

  • Diapositivas

    Diapositivas sobre cardinalidad y los racionales - [Detalles]

    En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.

  • Diapositivas

    Diapositivas sobre familias de conjuntos - [Detalles]

    Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.

  • Blog

    Raíces de números complejos y raíces de la unidad - [Detalles]

    Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.

  • Blog

    Máximo común divisor de polinomios y algortimo de Euclides - [Detalles]

    Definimos lo que es un ideal en los polinomios, proporcionamos un ejemplo y una caracterización de los ideales en los polinomios, al igual que en entradas anteriores tomamos ideas principales de temas que se ocupaban en los enteros pero ahora los adaptamos a los polinomios como lo es el máximo común divisor, el algoritmo de Euclides y demostramos la identidad de Bézout.

  • Video

    La relación entre paridad y signo - [Detalles]

    Demostramos que una permutación es par si y sólo si su signo es iguala 1. Equivalentemente, vemos que una permutación es impar si y sólo si su signo es igual a -1. Esto muestra que la noción de paridad y la de signo son equivalentes.

  • Video

    Diseño y programación orientada a objetos; Modelo - [Detalles]

    1.2 Modelo orientado a objetos - ¿Qué es el modelo orientado a objetos? Presentación de las características de este modelo y su composición además de la definición de objeto que usaremos, cómo funciona, su rutina y mensaje además los tipos que existen. De igual forma se nos explica la definición de estado de objeto. y los tipos de métodos. También se nos habla de la programación orientada a objetos con clases, su definición y composición. Por último se presenta la definición de interfaz.

  • Video

    Composición de Funciones Biyectivas es Biyectiva - [Detalles]

    Al igual que los casos anteriores demostramos que: Si dos funciones son biyectivas, entonces su composición es biyectiva

  • Video

    Propiedades del combinatorio - [Detalles]

    Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.

  • Video

    Propiedades del módulo de un número complejo - [Detalles]

    Damos y demostramos varias propiedades sobre el módulo de los complejos. Veremos que el módulo de un complejo es siempre positivo o igual a cero, y que es cero si y solo si el complejo es cero. También mostramos algunas desigualdades importantes. 

  • Video

    Multiplicatividad del signo. Parte 1 - [Detalles]

    Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.

  • Blog

    Nota 18. El principio de inducción matemática. - [Detalles]

    En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.

  • Video

    Ejercicio Funciones invertibles por un lado - [Detalles]

    En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.

  • Video

    Ejercicio Teorema del Sandwich - [Detalles]

    ¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?

  • Capítulo del libro

    Monomios y polinomios - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.

  • Video

    Plano fase para sistemas lineales con cero como valor propio - [Detalles]

    Analizamos el plano fase para sistemas lineales tales que tienen al menos un valor propio igual a cero.

  • Video

    Plano fase para sistemas lineales con cero como valor propio (Ejemplos) - [Detalles]

    Resolvemos y dibujamos el plano fase para algunos sistemas que tienen al menos un valor propio igual a cero.

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Video

    Distancia entre dos rectas en el espacio - [Detalles]

    Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula. 

  • Video

    Limites laterales - [Detalles]

    En este video se explica la idea de los límites laterales, se hacen algunos ejemplos y se demuestra que cuando los límites laterales coinciden, el límite de la función existe y es igual al valor común de los límites laterales.

  • Blog

    La conjugación de números complejos - [Detalles]

    Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.

  • Video

    Los Elementos de Euclides: Teorema 2 - [Detalles]

    En este video cubrimos el Teorema 2 de Los Elementos de Euclides. Aquí se realiza la construcción de un segmento en un punto dado, igual a un segmento dado.

  • Video

    Los Elementos de Euclides: Teorema 23 - [Detalles]

    En este video cubrimos el Teorema 23 de Los Elementos de Euclides. Aquí se realiza la construcción sobre una recta dada y en un punto de ella, de un ángulo rectilíneo igual a un ángulo dado.

  • Video

    Introducción a la programación con Java. Elementos teóricos; Tipos de errores - [Detalles]

    1.6 Tipos de errores - Errores sintácticos, semánticos y lógicos. Cómo se ven y cómo resolverlos. De igual manera se presentan los conceptos de tiempo de compilación y tiempo de ejecución

  • Video

    Los Elementos de Euclides: Teorema 42 - [Detalles]

    En este video cubrimos el Teorema 42 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, en un ángulo dado y con un área igual al área de un triángulo dado.

  • Video

    Los Elementos de Euclides: Teorema 46 - [Detalles]

    En este video cubrimos el Teorema 46 de Los Elementos de Euclides. Aquí se realiza la construcción de un cuadrado cuyo lado es igual a un segmento dado.

  • Blog

    Álgebra Moderna I: Subgrupos - [Detalles]

    La proxima estructura que nos interesa estudiar es la de la subcoleccion H de un grupo G, por tanto necesitamos conocer que necesita H para que sea un grupo en si mismo. Así mismo, hay que estudiar propiedades que heredan estas subcolecciones y las caracterizaciones. Por ultimo siempre es bueno revisar que pasa cuando son finitos.

  • Diapositivas

    Diapositivas sobre espacios vectoriales - [Detalles]

    Definimos lo que es un espacio vectorial y los elementos que habitan en él (vectores), mostramos que para demostrar por definición que un espacio es vectorial debe de cumplir las 10 propiedades de éste. Se proporcionan ejemplos de espacios vectoriales y las demostraciones sobre estas 10 propiedades de la definición; se proporciona una aplicación de espacios vectoriales que es ver a la fuerza como una magnitud de dirección y magnitud, es decir, como un vector.

  • Cuestionario

    Cuestionario sobre espacios vectoriales - [Detalles]

    Ponemos en práctica el primer acercamiento que tenemos con lo que es un espacio vectorial, nos centramos en la comprensión de la definición y de las características que cumplen estos espacios, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre subespacios vectoriales - [Detalles]

    Damos una nueva definición que son los subespacios vectoriales que es un subconjunto de un espacio vectorial que heredan las propiedades de este último dando así un nuevo espacio vectorial, mostramos que por ser subespacios no es necesario corroborar todas las propiedades pero mostramos cuáles son las que sí se deben corroborar. Estas diapositivas están acompañadas de bastos ejemplos.

  • Video

    El cubriente universal - parte 2 - [Detalles]

    En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.

  • Capítulo del libro

    Conjuntos importantes - [Detalles]

    En este capitulo de Cimientos Matemáticos revisaremos los conjuntos de números más importantes y los más usuales con los que solemos trabajar, tal es el caso de los naturales y enteros que ya hemos visto en capítulos anteriores, pero ahora añadiendo a los números, racionales, irracionales, reales y hasta los números complejos, que de complejos únicamente es el nombre, ya que veremos que la manera de trabajar con este es muy sencilla.

  • Blog

    El teorema espectral real - [Detalles]

    En esta entrada enunciaremos y demostraremos el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

  • Video

    Presentación del curso de Calculo Diferencial e Integral I - [Detalles]

    En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.

  • Video

    Divisibilidad: el máximo común divisor - [Detalles]

    Definimos el máximo común divisor (MCD). Primero hacemos la observación de que cada entero tiene un numero finito de divisores, definimos el común divisor, y vemos que el conjunto de divisores de uno o más enteros siempre es finito y podemos obtener un máximo en común (que sea común divisor). Vemos algunos ejemplos y la notación que usaremos para el MCD 

  • Video

    Factorización en números primos - [Detalles]

    Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética. 

  • Video

    División sintética - [Detalles]

    Primero vemos un teorema que nos ayudara para entender la división de polinomios, ya que nos dice que dados los polinomios "a(x), b(x)", existen polinomios únicos tal que "a(x)=b(x)*q(x)+r(x)" (los detalles los vemos en el video). Después vemos el algoritmo de la división para polinomios, hacemos un ejemplo usando los pasos del algoritmo de la división y obtenemos los polinomios "q(x), r(x)". 

  • Diapositivas

    Diapositivas sobre composición de funciones y función inversa - [Detalles]

    Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.

  • Diapositivas

    Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]

    Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.

  • Diapositivas

    Diapositivas sobre funciones invertibles y biyectivas - [Detalles]

    En este tema se demuestra una de las propiedades más importantes de todo el tema de funciones que es que una función es inversa de otra si la composición por ambos lados da la función identidad y segundo que si está función es biyectiva su inversa cumple que la composición resulta la identidad.

  • Cuestionario

    Cuestionario sobre operaciones matriciales - [Detalles]

    Ponemos en práctica los nuevos conocimientos que tenemos de las matrces y sus operaciones que se realizan entre ellas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre ejemplos bases de espacios vectoriales - [Detalles]

    Ponemos en práctica los conocimientos adquiridos respecto a bases y lo que en ello respecta, se pone a prueba la comprensión de la teoría y otro poco la intuición sobre como demostrar que un conjunto cumple con ser base, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre producto punto - [Detalles]

    Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]

    Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.

  • Cuestionario

    Cuestionario sobre las ecuaciones canónicas de las cónicas - [Detalles]

    Ponemos en práctica las ecuaciones canónicas para cada una de nuestra cónicas mediante ejercicios muy simples que tratan sobre identificar dada la ecuación de qué tipo de cónica se trata o se trataría, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Interactivo

    Actividad Geogebra elipse - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la elipse; al mover la posición de los focos cambia la figura de la elpse así como su ecuación canónica, además que nos muestra la propiedad que cumplen los puntos que pertenecen con la propiedad de pertenecer a la elipse.

  • Diapositivas

    Diapositivas sobre simetría de las cónicas - [Detalles]

    Definimos lo que es una simetría y los tipos que hay de éstas, mostramos que las simetrías están presentes en las figuras que estamos estudiando, teniendo ya sea solo uno o ambas simetrías (axial y central).

  • Cuestionario

    Cuestionario sobre parametrización de cónicas - [Detalles]

    Ponemos en práctica las parametrizaciones logradas para las cónicas, en el cuestionario ocupamos que el alumno realice las parametrizaciones (y todavía) que sepa identificar las cónicas pero ahora dada la parametrización, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre cónicas - [Detalles]

    Ponemos en práctica todo el conocimiento nuevo que adquirimos en cuanto a todo lo que involucra el gran bloque de las figuras cónicas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Ejercicios Producto Triple - [Detalles]

    Realizamos varios ejercicios del producto triple, vemos en que caso el producto triple es cero, algunos ejercicios para obtener el volumen del paralelepípedo formado por los factores, y que significa que el producto triple sea cero, lo cual está relacionado a que los factores sean linealmente dependientes o independientes. 

  • Video

    Homología singular - escisión - [Detalles]

    En este video enunciaremos en teorema de escisión sin demostración. Este teorema es una de las propiedades fundamentales de la homología y nos dice que siempre que tomemos homología relativa, podemos ignorar lo que pasa adentro del subespacio con el que estamos relativizando.

  • Video

    Homología singular - campos vectoriales en la esfera - el teorema de la bola peluda - [Detalles]

    En este video demostramos que las únicas esferas que tienen campos vectoriales que no se hacen cero en ninguna parte son las de dimensión impar. Esto implica el teorema de la bola peluda, es decir, que todo campo vectorial sobre la esfera tienen un cero.

  • Blog

    Nota 26. Propiedades de $\mathbb{R}^n$ - [Detalles]

    En la siguiente nota veremos algunas propiedades de $\mathbb{R}^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb{R}$ por cualquier vector de $\mathbb{R}^n$ nos da el neutro aditivo del espacio vectorial, y que la multiplicación de cualquier escalar por el neutro aditivo de $\mathbb{R}^n$, es el mismo neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, denotado por $\tilde{v}$ es de hecho $(-1)v$.

  • Blog

    Nota 27. Subespacios vectoriales. - [Detalles]

    En esta nota exploramos el concepto de subespacio vectorial, que no es mas que un subconjunto de un espacio vectorial que se comporta como un espacio vectorial en si, en particular vemos los subespacios de $\mathbb{R}^n$ y probamos que la intersección de subespacios también es un subespacio.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Blog

    Equipotencia - [Detalles]

    En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.

  • Video

    Definición formal de gráfica conexa - [Detalles]

    Definimos formalmente lo que es una gráfica conexa y sus componentes. Probamos dos resultados que confirman dos intuiciones claras: (1) que si en una gráfica de orden n todos los vértices tienen grado "grande" entonces la gráfica es conexa; (2) que si una gráfica de orden n tiene "muchas" aristas entonces la gráfica es conexa. En ambos casos se determina de manera exacta el significado de "muchas", en función de n.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 1 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.

  • Blog

    Dualidad y representación de Riesz en espacios euclideanos - [Detalles]

    En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

  • Blog

    Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]

    En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

  • Blog

    El teorema de clasificación de transformaciones ortogonales - [Detalles]

    En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

  • Blog

    El teorema espectral y de descomposición polar complejos - [Detalles]

    En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.

  • Blog

    Cardinalidad de conjuntos finitos - [Detalles]

    Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]

  • Video

    Continuidad de funciones de números reales - [Detalles]

    En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.

  • Video

    ¿Qué es una demostración? - [Detalles]

    Platicamos sobre las demostraciones, en qué consisten y que herramientas nos pueden ayudar para hacer una demostración. Las matemáticas universales y para siempre.

  • Video

    Definición de función - [Detalles]

    Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.

  • Video

    Subespacios vectoriales - [Detalles]

    Definimos los subespacios vectoriales, los cuales son subconjuntos de un espacio vectorial que son por sí mismos espacios vectoriales. Mostramos que basta con comprobar las reglas 1, 3, 4 y 6 para ver que un subconjunto es subespacio vectorial.

  • Video

    El algoritmo de Euclides: enunciado y demostración. - [Detalles]

    Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor. 

  • Video

    Más propiedades de congruencias - [Detalles]

    Continuamos viendo propiedades sobre las congruencias. Vemos que si dos enteros expresados productos: "a*x", "a*y", son congruentes modulo "m", es equivalente a que los enteros "x", "y" sean congruentes modulo "m/MCD(a,m)", dándonos una relación entre el módulo y el máximo común divisor. Igualmente vemos algunas propiedades más que surgen de este teorema. 

  • Video

    Congruencias como relación de equivalencia - [Detalles]

    En este video vemos que la relación de congruencia es, justo como podríamos sospechar, una relación de equivalencia en los enteros. Mostramos que la congruencia cumple las tres propiedades para ser una relación de equivalencia: Reflexividad, Simetría, Transitividad. Hablamos sobre la partición que genera en los enteros y cuáles son las clases de equivalencia para cada entero. 

  • Video

    Los enteros módulo $m$ - [Detalles]

    Definimos los enteros modulo "m". Este conjunto consiste de las clases de equivalencia de la congruencia modulo "m". Definimos la operación suma y multiplicación en el conjunto de los enteros modulo "m" (recordemos que sus elementos son clases de equivalencia). Mostramos que las operaciones cumplen las propiedades necesarias para que los enteros modulo "m" sean un anillo. 

  • Video

    El grado de un polinomio - [Detalles]

    Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo. 

  • Video

    Teorema del Factor - [Detalles]

    Explicamos el Teorema del Residuo, el cual nos dice que: El residuo de dividir un polinomio "p(x)" entre "x-a" (con "a" un escalar), es "p(a)", es decir que existe "q(x)" tal que: "p(x)=(x-a)*q(x)+r", con el residuo "r=p(a)". Mostramos algunos ejemplos y demostramos el teorema. 

  • Video

    Teorema de la derivada y la multiplicidad. Demostración - [Detalles]

    Damos la demostración del teorema de la derivada y la multiplicidad, el cual vimos en el video anterior. La demostración es relativamente sencilla teniendo en cuenta que sí "a" es de multiplicidad "m" en un polinomio entonces el polinomio es de la forma "(x-a)^m*Q(x)", por lo que podemos obtener su derivada de forma explícita, y demostrar que "a" es raíz de multiplicidad "m-1". 

  • Video

    Criterio de Eisenstein para verificar que un Polinomio es irreducible - [Detalles]

    Presentamos el criterio de Eisenstein, el cual es un teorema que nos dice: Dado un polinomio con coeficientes en los enteros, si existe un numero primo que cumpla cierta propiedad (la cual detallamos en el video), entonces el polinomio es irreducible.  Usando este criterio podemos saber si un polinomio es reducible sobre los enteros. 

  • Video

    Circunferencias ortogonales (parte 1) - [Detalles]

    Demostramos que es posible trazar rectas tangentes a una circunferencia desde un punto exterior y que es posible trazar una circunferencia ortogonal a otra con un centro dado y que esté fuera de la circunferencia

  • Diapositivas

    Diapositivas sobre demostraciones con cuantificadores - [Detalles]

    Explicamos como se demuestran proposiciones matemáticas que cuentan con cuantificadores, cómo demostrar que son verdaderos o que son falsos, las diapositivas van acompañadas de ejemplos.

  • Diapositivas

    Diapositivas sobre combinatoria - [Detalles]

    Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Cuestionario

    Cuestionario sobre el plano y espacio cartesiano - [Detalles]

    Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.

  • Diapositivas

    Diapositivas sobre coordenadas polares - [Detalles]

    Mostramos lo que es el plano polar, para qué sirve este plano, cómo se utiliza, cuáles son las entradas de sus coordenadas, definimos lo que es un radián y cómo se utiliza este para utilizar el plano polar. Dejamos algunos ejemplos de funciones graficadas en este nuevo plano.

  • Cuestionario

    Cuestionario sobre funciones en el plano polar - [Detalles]

    Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre coordenadas en el espacio - [Detalles]

    Estudiamos el espacio pero con tres diferentes tipos de sistemas coordenados que son: las rectangulares (el espacio euclideano), esféricas y cilíndricas; estudiamos cada entrada de la terna ordenada, y que ocurre cuando cada una de ellas se deja libre. También estudiamos que es posible pasar de un espacio a otro con cambios de variables.

  • Diapositivas

    Diapositivas sobre espacios vectoriales - [Detalles]

    Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.

  • Cuestionario

    Cuestionario sobre matrices - [Detalles]

    Ponemos en práctica los primeros conocimientos de lo que es una matriz y sobre este nuevo espacio a estudiar, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre subespacios vectoriales - [Detalles]

    Ponemos en práctica el tema de lo que son los subespacios vectoriales, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre dependencia e independencia lineal - [Detalles]

    Ponemos en práctica las definiciones que se revisaron respecto a la independencia lineal son una serie de afirmaciones las cuáles nos muestran si la definición fue comprendida o no, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre determinantes - [Detalles]

    Ponemos en práctica la resolución de problemas que involucren el cálculo de determinantes de una matriz y especialmente en el método de Sarrus, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre producto cruz - [Detalles]

    Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.

  • Diapositivas

    Diapositivas sobre semiplanos - [Detalles]

    Definimos lo que es el segmento de una recta, como este se puede divividir en partes iguales; también definimos lo que son los semiplanos y cómo esta definición tiene que ver con rectas.

  • Cuestionario

    Cuestionario sobre semiplanos - [Detalles]

    Ponemos en práctica nuestro nuevo tema de semiplanos con dos ejercicios muy sencillos en donde solo hay que clasificar correctamente los semiplanos separados por una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]

    Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]

    Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).

  • Cuestionario

    Cuestionario sobre ecuaciones de planos en el espacio - [Detalles]

    Ponemos en práctica el tema de los planos en el espacio euclídeo y las ecuaciones de estos tanto de manera paramétrica, cuando conocemos 3 pu tos que forman parte del plano. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre rectas y planos - [Detalles]

    Ponemos en práctica todo el conocimiento nuevo que tenemos respecto a los temas de rectas y planos así como sus interacciones entre éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre cónicas - [Detalles]

    Ponemos en práctica las primeras definiciones que tenemos de cónicas y evaluar si el alumno aprendió a diferenciarlas viendo su ecuación general, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Interactivo

    Actividad Geogebra parábola - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la parábola, nos muestra como la parábola cambia al mover la recta directriz o el foco también como se modifica su ecuación, además de mostrarnos visualmente (y algebraicamente) que los puntos que forman a la parábola son efectivamente equidistantes de la directriz y del foco.

  • Cuestionario

    Cuestionario sobre traslación de ejes - [Detalles]

    Ponemos en práctica el tema de las cónicas fuera del origen, el alumno a estas alturas debe ser capaz de identificar la cónica que se está presentando, sus elementos y su construcción dados sus elementos. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre rotación de ejes - [Detalles]

    Ponemos en práctica las rotaciones que se les pueden hacer a las figuras cónicas y como esta rotación repercute en su ecuación, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre simetría de las cónicas - [Detalles]

    Ponemos en práctica las simetrías que se pueden presentar en las figuras cónicas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre discriminante y excentricidad - [Detalles]

    Ponemos en práctica estos dos criterios que nos ayudan a saber cuál es la cónica de la cuál se está tratando ocupando el criterio de discriminante o de excentricidad, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Simetría axial - [Detalles]

    Explicamos en que consiste la simetría axial, alrededor de un eje E. La cual describe que dado un punto Q, siempre existe otro punto P, tal que el eje E es la mediatriz del segmento PQ. Describimos esto de forma geométrica con imágenes en un plano. 

  • Video

    Qué es un radián. Tallercito feliz - [Detalles]

    En este taller nos dedicamos a explicar qué es un radián, durante el taller se realiza una actividad muy divertida que pueden hacer con Arilín desde su casa. Por otro lado, explicamos la relación entre radianes y grados, cómo hacer convenciones de radianes a grados y viceversa. 

  • Video

    Ángulos notables: ¿cuáles son? y ¿por qué son chidos? - [Detalles]

    En este video hablamos sobre algunos ángulos que son bastante relevantes, explicamos como están relacionados ciertos triángulos, y por qué esto los hace importantes. 

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo. 

  • Video

    Subespacios vectoriales - [Detalles]

    Definimos los subespacios vectoriales, los cuales son subconjuntos de un espacio vectorial que son por sí mismos espacios vectoriales. Mostramos que basta con comprobar las reglas 1, 3, 4 y 6 para ver que un subconjunto es subespacio vectorial. 

  • Video

    Producto cruz ( producto vectorial) - [Detalles]

    Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores. 

  • Video

    Ecuacion de la recta en $\mathbb{R}^n$ - [Detalles]

    Definimos la ecuación de la recta en el espacio tridimensional R^3 (lo que podemos generalizar para R^n). Vemos la forma paramétrica y también vemos que podemos escribir la ecuación de la recta conociendo dos puntos que pasen por ella.  

  • Video

    Distancia entre dos planos en el espacio - [Detalles]

    Similar al caso de la distancia entre dos rectas, deducimos la fórmula para calcular la distancia mínima entre dos planos (siempre que no se crucen). Vemos que los planos deben ser paralelos, ya que en caso contrario se cruzan y su distancia es cero. Para la formula hacemos uso de la fórmula para la distancia de un punto a un plano. 

  • Video

    Relaciones entre conjuntos - [Detalles]

    Definimos que es una relación entre conjuntos. Mediante ejemplos explicamos que es una relación entre conjuntos y sus propiedades. También definimos que es el Dominio, Codominio e Imagen, en una relación de conjuntos.

  • Video

    Homotopias entre funciones - [Detalles]

    En este video definimos homotopía entre funciones y homotopías que preservan el punto base. Luego demostramos que las homotopías que preservan el punto base inducen el mismo homomorfismo en grupos fundamentales.

  • Video

    Homotopias y homomorfismos inducidos - [Detalles]

    En este video demostramos un resultado que tiene que ver con cómo se comportan los homomorfismos inducidos respecto de homotopías que no preservan el punto base.

  • Video

    El grupo fundamental no detecta células de dimensió mayor que 2 - [Detalles]

    En este video demostraremos que el grupo fundamental queda inalterado si adjuntamos o pegamos una célula de dimensión mayor que dos a un espacio.

  • Video

    Homología singular - grupo fundamental vs primer grupo de homología: parte 1 - [Detalles]

    En este video demostramos algunos lemas preliminares que usaremos para demostrar que el abelianizado del grupo fundamental de X es isomorfo al primer grupo de homología de X, siempre que X sea arco-conexo.

  • Blog

    Congruencias y el anillo de enteros módulo n - [Detalles]

    Definimos lo que es una congruencia y lo que es un anillo de módulo n, demostramos que Z_{n}es un campo si y sólo si n es primo.

  • Blog

    Ecuaciones diofantinas - [Detalles]

    Definimos lo que son las ecuaciones diofantinas que son aquellas ecuaciones con soluciones enteras, asimismo profundizamos en saber que características toman este tipo de ecuaciones para logras saber si tienen solución entera o no.

  • Cuestionario

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    Ahora queremos repasar lo que significa que $\mathbb{C}$ sea un campo y que implica, así como reforzar unas cuantas fórmulas para expresar partes real e imaginaria de un número complejo.

  • Blog

    26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]

    Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.

  • Blog

    34. Integrales de contorno I - [Detalles]

    En esta entrada veremos, ahora sí, la definición de integral compleja, con todas las de la ley, solo que descubriremos que hay varios tipos de integral dependiendo de lo que queramos hacer.

  • Blog

    Nota 7. Relaciones y funciones - [Detalles]

    En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.

  • Blog

    Nota 11. Funciones inyectivas, suprayectivas y biyectivas. - [Detalles]

    En esta nota introducimos los conceptos de funcón inyectiva, función suprayectiva y función biyectiva, así como varios ejemplos de estas. También demostramos que es equivalente que una función sea biyectiva a que sea invertible.

  • Blog

    Nota 14. Familia de Conjuntos y particiones. - [Detalles]

    En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.

  • Blog

    Nota 17. El orden en los números naturales. - [Detalles]

    En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.

  • Blog

    Álgebra Moderna I: Grupo Cociente - [Detalles]

    La definición de subgrupos normales surgió de la necesidad de extender las propiedades de los enteros a grupos más generales. En los enteros, definimos una relación de equivalencia (módulo n) que nos permite obtener clases de equivalencia. Estas clases no solo generan una partición, sino que también constituyen un subgrupo de Z. La idea central es generalizar este concepto: buscamos definir una operación en ciertas clases de equivalencia para que también formen un grupo.

  • Video

    Lenguajes de programación; Paradigmas - [Detalles]

    2.1 Paradigmas - ¿Cuántos leguajes de programación existen? ¿En qué programa un computólogo? ¿Cómo le hace? ¿Qué es un paradigma y qué describe? Principales paradigmas en la programación.

  • Video

    Los Elementos de Euclides: Teorema 21 - [Detalles]

    En este video cubrimos el Teorema 21 de Los Elementos de Euclides. Aquí demostramos que si desde los extremos de uno de los lados de un triángulo se construyen dos rectas que se encuentren en el interior de él, las rectas construidas serán menores que los lados restantes del triángulo pero el ángulo comprendido por las rectas construidas será mayor.

  • Video

    Los Elementos de Euclides: Teorema 22 - [Detalles]

    En este video cubrimos el Teorema 22 de Los Elementos de Euclides. Aquí se estudia la construcción de un triángulo a partir de tres segmentos dados que cumplen la condición de que la suma de las longitudes de dos cualesquiera de los segmentos es mayor que la longitud del tercer lado.

  • Video

    Los Elementos de Euclides: Teorema 25 - [Detalles]

    En este video cubrimos el Teorema 25 de Los Elementos de Euclides. Aquí se demuestra que si dos triángulos tienen dos lados respectivamente iguales y en el primer triángulo el tercer lado es mayor que el tercer lado del segundo triángulo, entonces el ángulo comprendido por los lados iguales en el primer triángulo es mayor que el ángulo respectivo en el segundo triángulo.

  • Blog

    Álgebra Moderna I: Acciones - [Detalles]

    Para esta sección, necesitamos tomar el concepto de acción. Hemos estado usando el verbo actuar para referirnos a esta transformación que sucede al operar un a en G y otro elemento, sea del mismo G o de las clases laterales. La realidad es que ya usar actuar da una idea de lo que estamos queriendo decir. Estamos usando un elemento de un grupo para transformar un elemento de otro.

  • Video

    Introducción a la programación con Java; Elementos teóricos;Programa en Java - [Detalles]

    1.1. Programa en Java - Empezamos por definir qué es un programa y cómo es que implementan algoritmos. Cómo funciona un programa. ¿Qué es un lenguaje de máquina y un lenguaje de alto nivel.

  • Video

    Los elementos de Euclides: Teorema 36 - [Detalles]

    En este video cubrimos el Teorema 36 de Los Elementos de Euclides. Este teorema nos dice que los paralelogramos que tienen bases iguales y que además están entre las mismas paralelas, tienen áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 38 - [Detalles]

    En este video cubrimos el Teorema 38 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que tienen bases iguales y que están entre las mismas paralelas tienen áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 41 - [Detalles]

    En este video cubrimos el Teorema 41 de Los Elementos de Euclides. Aquí se demuestra que si un paralelogramo y un triángulo tienen la misma base y están entre las mismas paralelas, determinadas por la base del triángulo y la paralela que pasa por el vértice opuesto a la base, entonces el área del paralelogramo es el doble que el área del triángulo.

  • Blog

    Funciones inyectivas - [Detalles]

    En esta sección abordaremos el concepto de función inyectiva, notaremos que la función inyectiva será aquella que mande elementos distintos a elementos distintos bajo una función. Veremos varios ejemplos así como equivalencias a ser inyectiva, por ultimo veremos que pasa con la composición de funciones y la inyectividad.

  • Blog

    Relaciones de equivalencia - [Detalles]

    En esta entrada hablaremos acerca de un tipo de relaciones a las que llamaremos relaciones de equivalencia. Trataremos ejemplos que son relaciones de equivalencia así como ejemplos que no lo son.

  • Blog

    Órdenes parciales y órdenes estrictos - [Detalles]

    En esta sección comenzaremos definiendo a los órdenes parciales y a los órdenes parciales estrictos, que no son mas que un tipo especial de relación que cumplen ciertas propiedades.

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Video

    Ejercicio Optimización (Escalera) - [Detalles]

    ¿Alguna vez te has preguntado cuál es la escalera más larga que puedes pasar entre dos pasillos que se cruzan? En este problema, usaremos técnicas de máximos y mínimos para determinar la longitud máxima de una escalera que puede maniobrarse a través de estos pasillos.

  • Capítulo del libro

    Funciones circulares - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos todo lo relacionado con las funciones circulares, como se comportan en cada caso especifico, cuales son los valores que llegan a tomar dependiendo del cuadrando donde se encuentren, para después abordar lo que son las identidades trigonométrica, los diferentes tipos que hay y para podemos utilizarlos.

  • Blog

    Matrices de formas sesquilineales - [Detalles]

    En esta entrada daremos una relación entre formas sesquilineales, formas cuadráticas hermitianas y matrices. Daremos la definición y veremos sus propiedades. Gran parte de la relación que había para el caso real se mantiene al pasar a los complejos. Las demostraciones en la mayoría de los casos son análogas, sin embargo, haremos énfasis en las partes que hacen que el caso real y el complejo sean distintos.

  • Blog

    Tipos de enunciados matemáticos - [Detalles]

    Introducción En esta entrada platicamos de varios tipos de enunciados con los que te vas a encontrar frecuentemente en trayectoria matemática a nivel universitario. Para entender correctamente las definiciones siguientes, es muy importante que ya estés familiarizado con el concepto de proposición matemática que tratamos con anterioridad. Axiomas En las matemáticas, los axiomas son enunciados […]

  • Blog

    Principio de inducción en los números naturales - [Detalles]

    Introducción En esta entrada vamos a hablar de el principio de inducción que se deriva del quinto axioma de Peano. Veremos cómo es que nos ayudará a un nuevo tipo de demostraciones, lo que significa en términos simples y algunos ejemplos de su uso. El efecto dominó Pensemos un poco en cómo funciona la inducción […]

  • Video

    Valores, referencias y ocultamento, Valores y referencias - [Detalles]

    Valores y referencias – A qué hacen referencia los métodos en JAVA, qué tipo de valores se utilizan dependiendo el contexto ¿qué se manda a llamar? Y cómo se accede a los objetos.

  • Video

    Vecindades de números reales - [Detalles]

    En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.

  • Video

    Tipos genéricos, Lo que no se puede (parte 1) - [Detalles]

    Lo que no se puede (parte 1) - Las 7 reglas que se deben seguir al usar genéricos. así como ejemplos

  • Video

    Tipos genéricos, Lo que no se puede (parte 2) - [Detalles]

    Lo que no se puede (parte 2) - Las 7 reglas que se deben seguir al usar genéricos.

  • Video

    Tipos genéricos, Lo que no se puede (parte 3) - [Detalles]

    Lo que no se puede (parte 3) - Las 7 reglas que se deben seguir al usar genéricos, así como ejemplos.

  • Blog

    Matrices como transformaciones lineales - [Detalles]

    Definimos qué es una transformación lineal. Vemos que a cualquier matriz se le puede asociar una transformación lineal, y viceversa.

  • Blog

    Subespacios vectoriales - [Detalles]

    Definimos qué son los subespacios vectoriales. Damos consecuencias aplicables de la definición. Vemos ejemplos de subconjuntos que son y no son subespacios.

  • Blog

    Determinantes de vectores e independencia lineal - [Detalles]

    Definimos determinantes de vectores con respecto a una base. Vemos que los determinantes son las únicas formas n-lineales alternantes y que detectan bases.

  • Blog

    Propiedades de determinantes - [Detalles]

    Enunciamos y demostramos propiedades de determinantes. Vemos que el determinante es homogeneo, multiplicativo y que no cambia al transponer.

  • Video

    Qué es una proposición matemática - [Detalles]

    Definimos las proposiciones lógicas, dando ejemplos de proposiciones lógicas que podemos entender con el lenguaje cotidiano.

  • Video

    Demostrar que una proposición es falsa - [Detalles]

    Explicamos como demostrar que una proposición o enunciado es falso, damos un ejemplo usando los números enteros.

  • Video

    Demostración de un cuantificador - [Detalles]

    Explicamos cómo demostrar una proposición o enunciado que involucre cuantificadores. Veremos las estrategias principales y ejemplos que usen los cuantificadores existe, para todo y existe un único.

  • Video

    Demostración de que hay infinitos primos - [Detalles]

    Explicamos cómo demostrar que hay una cantidad infinita de números primos. Para tal fin suponemos ciertos el teorema fundamentar de la aritmética.

  • Video

    Qué es un conjunto y otras cuestiones - [Detalles]

    Damos la definición de conjunto, y algunos ejemplos de conjuntos importantes. También explicamos la notación que se utiliza para conjuntos.

  • Video

    Cardinalidad - los racionales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los racionales, y demostramos que este conjunto tiene la misma cardinalidad que los naturales.

  • Video

    Cardinalidad - los números reales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los reales, y demostramos que este conjunto NO tiene la misma cardinalidad que los naturales.

  • Video

    Sumatoria - [Detalles]

    Hablamos un poco sobre la notación que se suele emplear para las sumas o series, así como de a que se refiere la sumatoria.

  • Video

    Combinatoria, que fórmula usar - [Detalles]

    Definimos fórmulas de conteo, para saber cuántas combinaciones de k elementos de n elementos disponibles, podemos tener. Estas fórmulas de conteo dependen de si importa el orden o no, o si importa que haya repetidos o no.

  • Video

    Operaciones elementales renglón - [Detalles]

    Se definen sistemas de ecuaciones lineales equivalentes, y se da un teorema que demuestra que aplicar operaciones elementales a un sistema, resulta en un sistema equivalente. Finalmente explicamos como al usar operaciones elementales se puede resolver un sistema de ecuaciones lineales.

  • Video

    Determinante de una matriz de $4 imes 4$ y moraleja final - [Detalles]

    Vemos como calcular el determinante de la matriz de 4x4 mediante el método por cofactores (damos tips para reducir el número de operaciones). También explicamos lo que significa que el determinante de una matriz sea cero.

  • Video

    Subespacio vectorial (ejemplo 1) - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.

  • Video

    El anillo de los números enteros - [Detalles]

    Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior. 

  • Video

    Definición de anillo - [Detalles]

    Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero. 

  • Video

    El principio del buen orden implica el principio de inducción matemática - [Detalles]

    Siguiendo con lo visto anteriormente, demostramos que: El principio del buen orden (PBO) es equivalente al Principio de inducción matemática (PIM). En este video demostramos que PBO implica PIM. 

  • Video

    El principio de inducción implica el principio del buen orden - [Detalles]

    Siguiendo con lo visto anteriormente, demostramos que: El principio del buen orden (PBO) es equivalente al Principio de inducción matemática (PIM). En este video demostramos que PIM implica PBO. 

  • Video

    Divisibilidad: definición y primeros ejemplos - [Detalles]

    Definimos que significa que un entero "b" sea divisible por "a" (donde "a" es distinto de cero). Damos la notación para simbolizar cuando pasa esto, y cuando no pasa (cuando "b" no es divisible por "a"). Mostramos algunos ejemplos y definimos cuando "a" es divisor de "b". 

  • Video

    El maximo común divisor como combinación lineal entera - [Detalles]

    Demostramos un teorema que nos afirma que el máximo común divisor se puede escribir como una combinación lineal de sus dividendos. Hacemos uso de las propiedades de divisibilidad anteriormente vistas y después generalizamos el teorema para el máximo común divisor de un numero arbitrario de enteros. 

  • Video

    El mínimo común múltiplo y el máximo común divisor - [Detalles]

    Demostramos un teorema que relaciona el máximo común divisor (MCD) y el mínimo común múltiplo (MCM) de dos enteros "a", "b". El teorema nos dice que MCD(a,b)*MCM(a,b)=|a*b| 

  • Video

    Cuáles son todas las soluciones enteras de una ecuación diofántica - [Detalles]

    Demostramos que todas las soluciones de una ecuación lineal Diofántica tienen una forma en particular (expresada en términos de una solución particular y del MCD). Por lo que basta con conocer una solución particular para dar todas las posibles soluciones. 

  • Video

    Números primos - [Detalles]

    Damos la definición formal de un numero primo. Un entero "p>1" se dice que es primo si sus únicos divisores positivos son 1 y el mismo (1 y "p"). Definimos que es un numero compuesto y hablamos sobre algunas curiosidades sobre los números primos. 

  • Video

    El teorema fundamental de la aritmética - [Detalles]

    Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única! 

  • Video

    Definición de congruencia - [Detalles]

    Definimos la relación de congruencia modulo "m" entre dos enteros "a", "b", cuando "m" divide a "a-b". Damos la notación para representar la relación de congruencia y mostramos que dos enteros que son congruentes modulo "m", tienen el mismo residuo de dividir entre "m". 

  • Video

    Propiedades básicas de congruencias - [Detalles]

    Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".  

  • Video

    Ecuaciones lineales y congruencias - primeros ejemplos - [Detalles]

    Repasamos brevemente que es una ecuación lineal y definimos las ecuaciones lineales modulo "m" de una variable. Vemos cuales son los posibles valores que pueden solucionar nuestra ecuación lineal y algunos ejemplos de cuáles serían las soluciones a algunas ecuaciones lineales. 

  • Video

    Cuando tiene solucion una congruencia lineal - [Detalles]

    Vemos un ejemplo de una ecuación lineal modulo 4 que no puede tener soluciones enteras (mostramos que si tuviera solución llegamos a una contradicción), esto nos lleva a dar una proposición para saber cuándo una ecuación lineal tiene una solución y una segunda proposición, con la cual podemos saber cuándo una ecuación lineal tiene o no solución.   

  • Video

    Cuantas soluciones tiene una congruencia lineal - [Detalles]

    Usando un ejemplo vemos cuantas soluciones llega a tener una ecuación lineal modulo "m", esto nos lleva a buscar un método para conocer el número de soluciones de una ecuación lineal. Haciendo uso de un teorema que demostramos durante el video, llegamos a un corolario el cual nos dice que una ecuación lineal modulo "m", tiene MCD(a,m) soluciones. 

  • Video

    i, el número imaginario - [Detalles]

    Presentamos el numero imaginario "i", el cual nos permite definir la raíz cuadrada de un numero negativo. Hablamos brevemente de sus propiedades, y lo más importante, que se cumple que el cuadrado del número imaginario es menos uno: "i^2=-1". 

  • Video

    Operaciones con el número $i$ - [Detalles]

    Definimos la suma de los términos que tienen al número i. Igualmente vemos cómo multiplicar números reales por términos que tengan el número i y por último vemos las potencias del número i. 

  • Video

    Teorema para buscar las Raíces enteras y racionales de un polinomio - [Detalles]

    Demostramos un teorema que nos ayuda a encontrar las raíces racionales o enteras de un polinomio cuyos coeficientes son enteros. El teorema nos indica que basta con buscar en los divisores del término independiente ("a_0") y del coeficiente líder del polinomio ("a_n"). 

  • Lección

    Otros puntos y rectas notables del triángulo - [Detalles]

    Demostramos que la suma de los tres ángulos internos de un triángulo suman dos ángulos rectos y que las bisectrices de dos ángulos exteriores de un triángulo y la del ángulo interior no adyacente son concurrentes por tercias

  • Video

    Ángulos interiores - [Detalles]

    Definimos los conceptos de ángulo inscrito, ángulo semi-inscrito y ángulo interior en una circunferencia y demostramos que el ángulo semi-inscrito mide la mitad del ángulo central que subtiende el mismo arco

  • Lección

    Razón en que un punto divide a un segmento - [Detalles]

    Definimos la razón en la que un punto divide a un segmento y demostramos algunos resultados al respecto

  • Video

    Teorema de existencia y unicidad. Iteraciones de Picard - [Detalles]

    Construimos las iteraciones de Picard que nos ayudarán a encontrar una solución al problema de condición inicial, bajo ciertas hipótesis que analizamos antes de demostrar la parte de la existencia del Teorema de Picard

  • Video

    Ecuaciones lineales homogéneas de segundo orden. Conjunto fundamental de soluciones y el Wronskiano - [Detalles]

    Definimos al conjunto fundamental de soluciones de una ecuación, y al Wronskiano de dos soluciones. Vemos la relación que guardan estos dos conceptos, y demostramos algunas propiedades que cumplen estos.

  • Video

    Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]

    Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero

  • Video

    Ecuación de Legendre - [Detalles]

    Resolvemos la ecuación de Legendre alrededor del punto ordinario t=0, y hacemos mención de la relación que guarda esta ecuación con los polinomios que llevan el mismo nombre.

  • Blog

    Triángulo medial y recta de Euler - [Detalles]

    Estudiamos propiedades del triángulo medial que nos permitirán deducir que el ortocentro, el centroide y el circuncentro son colineales.

  • Blog

    Probabilidad condicional - [Detalles]

    Desarrollamos la probabilidad condicional, una herramienta nueva que permite describir la asociación que existe entre eventos

  • Video

    El péndulo con fricción - [Detalles]

    Revisamos el sistema de ecuaciones que modela el movimiento de un péndulo con fricción y estudiamos las diferencias que existen con el péndulo simple. Además esbozamos el plano fase del el sistema.

  • Video

    Sistemas gradiente - [Detalles]

    Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.

  • Blog

    Transformaciones de variables aleatorias - [Detalles]

    Establecemos las bases para hacer transformaciones de variables aleatorias así como las hipótesis que deben cumplir como una composición de funciones, además demostramos que las funciones continuas son Borel-medibles y la composición de una función Borel-medible con una variable aleatoria es una variable aleatoria.

  • Diapositivas

    Diapositivas sobre proposiciones condicionales - [Detalles]

    Enunciamos otro tipo de proposiciones en matemáticas que son las condicionales o implicaciones que nos dan la relación de causa-efecto dentro del enunciaso, el material es acompañado de una lista de ejemplos.

  • Cuestionario

    Cuestionario Unidad 1 Álgebra Superior - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a lógica proposicional, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.

  • Guía de estudio

    Ejemplos sobre lógica proposicional - [Detalles]

    Se deja una lista de ejemplos respecto a los temas de lógica proposicional con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.

  • Diapositivas

    Diapositivas sobre producto cartesiano - [Detalles]

    Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Cuestionario

    Cuestionario sobre conjuntos - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.

  • Guía de estudio

    Ejemplos sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejemplos respecto a los temas de conjuntos y relaciones con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.

  • Diapositivas

    Diapositivas sobre cardinalidad y conjuntos - [Detalles]

    Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.

  • Cuestionario

    Cuestionario sobre funciones - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a funciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.

  • Ilustración

    Ejemplos sobre composición de funciones - [Detalles]

    El ejercicio pide exhibir 2 funciones, la primera pide que si una es inyectiva y otra no lo es; la segunda pide que una sea inyectiva y otra sea suprayectiva y la composición de estas no sea ni inyectiva ni suprayectiva.

  • Ilustración

    Ejemplos de cardinalidad de conjuntos - [Detalles]

    Se exponen dos conjuntos con características distintas y el ejercicio pide que se demuestre que estos conjuntos tienen la misma cardinalidad.

  • Cuestionario

    Cuestionario sobre inducción matemática y cálculo combinatorio - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a inducción matemática y cálculo combinatorio. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.

  • Guía de estudio

    Ejemplos de resolución de problemas de inducción matemática y cálculo combinatorio - [Detalles]

    Se deja una lista de ejemplos respecto a los temas de inducción matemática y combinatoria con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.

  • Diapositivas

    Diapositivas sobre matrices y operaciones - [Detalles]

    Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.

  • Cuestionario

    Cuestionario sobre sistemas de ecuaciones lineales y espacios vectoriales - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a matrices (operaciones y determinantes) y para solucionar sistemas de ecuaciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.

  • Cuestionario

    Cuestionario de plano cartesiano y espacios geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de subconjuntos del plano y espacio cartesiano - [Detalles]

    Ponemos en práctica los temas de lugares geométricos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de distancia - [Detalles]

    Ponemos en práctica el tema de distancia entre 2 puntos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de simetrías - [Detalles]

    Ponemos en práctica el tema de simetrías de figuras ya sea respecto a un punto, axial por uno de los ejes o por la recta identidad, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de gráfica de funciones - [Detalles]

    Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Guía de estudio

    Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.

  • Evaluación

    Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]

    Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.

  • Cuestionario

    Cuestionario sobre razones trigonométricas - [Detalles]

    Ponemos en práctica el tema de razones trigonométricas de un triángulo, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre radianes - [Detalles]

    Ponemos en práctica el tema de radianes y su relación con los ángulos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre resolución de triángulos rectos - [Detalles]

    Ponemos en práctica el tema resolución de un triángulo recto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre ángulos notables - [Detalles]

    Ponemos en práctica el tema de ángulos notables y la equivalencia de éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre ley de senos, ley de cosenos y resolución de triángulos - [Detalles]

    Ponemos en práctica el tema de las leyes de los senos y cosenos pra ser aplicadas en la resolución de triángulos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de coordenadas polares - [Detalles]

    Ponemos en práctica el tema del sistema de coordenadas polares y como se grafica sobre este nuevo plano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar

  • Interactivo

    Actividad 3 Geogebra coordenadas polares - [Detalles]

    En este nuevo intercativo presentamos al plano polar, el cual hace lo mismo que en las a nteriores: mover el grado de inclinación y poder dar una longitud de radio pero nos muestra que hay coordenadas polares con valor de longitud de radio negativo el cual es una simetría respecto al origen.

  • Cuestionario

    Cuestionario sobre coordenadas en el espacio - [Detalles]

    Ponemos en práctica el tema de diferentes tipos de espacios; rectangulares, cilíndrico y esférico y como pasar de uno a otro, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre trigonometría y más sistemas de coordenadas - [Detalles]

    Ponemos en práctica el módulo de trigonometría para una mejor preparación al presentar un examen parcial de etse tema. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Evaluación

    Guía de autoevaluación sobre trigonometría y más sistemas de coordenadas - [Detalles]

    Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.

  • Diapositivas

    Diapositivas sobre operaciones matriciales - [Detalles]

    Continuamos construyendo la definición de una matriz pero ahora definimos sus operaciones básicas somo la suma y multiplicación de dos matrices también su multiplicación por escalar, también hablamos que una matriz de nx1 o también llamado vector columna es un vector con n entradas que se ocupa para hablar de un elemento de Rn.

  • Diapositivas

    Diapositivas sobre dependencia e independencia lineal - [Detalles]

    Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Diapositivas

    Diapositivas sobre producto punto - [Detalles]

    Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.

  • Cuestionario

    Cuestionario sobre producto cruz - [Detalles]

    Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre producto triple de vectores - [Detalles]

    Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre espacios vectoriales - [Detalles]

    Ponemos en práctica todo lo revisado durante el estudio a los espacios vectoriales tales como ejemplos, subespacios, bases y algunas operaciones, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre ecuaciones de la recta en el plano - [Detalles]

    Damos inicio a un nuevo tema que será de utilidad para toda la carrera que es el tema de ecuaciones de rectas como la paramétrica, la general, la de punto pendiente, entre otras.

  • Cuestionario

    Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]

    Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]

    Ponemos en práctica esta extensión respecto a las ecuaciones de las rectas en R^n, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre planos y distancias en el espacio - [Detalles]

    Ponemos en práctica el cálculo de estas dos nuevas métricas en R^3 y también practicamos la identificación de los semiespacios divididos por un plano sobre el mismo espacio, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre cónicas - [Detalles]

    Damos inicio a un nuevo tema que es el tema de las cónicas, estas surgen a partir de cortar un cono en diferentes ángulos, las cónicas son: circunferencia, parábola, elipse e hipérbola, damos los elementos que distinguen una de la otra tanto en su forma geométrica pero también con su ecuación general es posible diferenciarlas.

  • Diapositivas

    Diapositivas sobre lugar geométricos de las cónicas - [Detalles]

    Formalizamos el concepto de las cónicas definiédolas como lugares geométricos, por lo cual se surge una definición respecto a los puntos que generan a nuestras figuras cónicas siendo una definición más formas y que más adelante nos ayudará a generar las ecuacioens canónicas de cada una de las cónicas, también hablamos sobre los elementos más importante de cada una de ellas.

  • Cuestionario

    Cuestionario sobre lugar geométricos de las cónicas - [Detalles]

    Ponemos en práctica las definiciones de cada una de las cónicas como lugares geométricos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre discriminante y excentricidad - [Detalles]

    Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.

  • Cuestionario

    Cuestionario sobre parametrización de curvas - [Detalles]

    Ponemos en práctica la parametrización de curvas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Coordenadas en el plano cartesiano - [Detalles]

    Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas. 

  • Video

    Distancia - [Detalles]

    Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta. 

  • Video

    Simetría central - [Detalles]

    Explicamos en que consiste la simetría central, alrededor de un punto O. La cual describe que dado un punto siempre existe otro punto con el cual, al formar un segmento de recta, el punto central O siempre está en el medio.  

  • Video

    Simetría en el plano cartesiano - [Detalles]

    Extendemos la noción de simetría central y axial. Ahora definimos la simetría central y axial para un subconjunto F de puntos en el plano cartesiano, es decir, describimos lo que significa que un subconjunto del plano cartesiano tenga simetría central o axial. 

  • Video

    Cambio de coordenadas. La superficie del cono en coordenadas esféricas cilíndricas y cartesianas - [Detalles]

    Damos la representación para la superficie de un cono en los tres sistemas de coordenadas que hemos estudiado: cartesianas, cilíndricas y esféricas. Vemos que en algunos sistemas de coordenadas es más facil o sencillo representar la superficie del cono. 

  • Video

    Ejemplo 3 espacio vectorial - [Detalles]

    Demostramos que el conjunto de funciones numéricas cumple con las diez reglas de los espacios vectoriales, y vemos que es un espacio vectorial. 

  • Video

    Ejemplo 1 subespacio Vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta vertical), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial. 

  • Video

    Ejemplo 2 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial. 

  • Video

    Ejemplo 3 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que el subconjunto de funciones constantes, que es subconjunto del conjunto de funciones, es un subespacio vectorial.  

  • Video

    Producto triple - [Detalles]

    Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores. 

  • Video

    Lugar Geométrico De Las Cónicas - [Detalles]

    Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.  

  • Video

    Parametrización - [Detalles]

    Vemos en que consiste la parametrización de una curva. Vemos algunos ejemplos y como una parametrización representa una curva, además de que una misma curva puede tener más de una parametrización. 

  • Video

    ¿Qué estudiamos en topología algebraica? - [Detalles]

    En este video se explica de manera muy general, amplia y no muy concreta, de qué trata la topología algebraica

  • Video

    Unicidad del levantamiento de funciones - [Detalles]

    En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).

  • Video

    El teorema de clasificación de cubrientes - parte 1 - [Detalles]

    En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un cubriente tal que su grupo fundamental es isomorfo a H.

  • Video

    El teorema de clasificación de cubrientes - parte 2 - [Detalles]

    En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un único cubriente tal que su grupo fundamental es isomorfo a H.

  • Video

    Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]

    En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.

  • Video

    Homología singular - invarianza homotópica - [Detalles]

    En este video demostraremos una de las propiedades fundamentales de la homología, es decir, que funciones homotópicas inducen funciones iguales en homología. La demostración es un poco larga e involucra cuentas que están relacionadas con la combinatoria del n-simplejo estándar.

  • Video

    Homología singular - la homología de una cuña - [Detalles]

    En este video demostraremos que la homología de una cuña es isomorfa a la suma directa de las homologías de los espacios con los que estamos haciendo cuña.

  • Video

    Homología singular - invarianza de la dimensión - [Detalles]

    En este video demostraremos que si dos abiertos de ciertos espacios euclideanos son homeomorfos, entonces los espacios tienen la misma dimensión. Este teorema es muy bonito porque es intuitivo el enunciado, la demostración no es nada trivial, pero con toda la herramienta que hemos desarrollado es posible demostrarlo en términos simples.

  • Video

    Complejos CW - definición - [Detalles]

    En este video definiremos complejo CW, un tipo muy particular de espacio que se estudian en topología algebraica. Muchos de los espacios que nos son familiares son complejos CW, por ejemplo, las esferas, los espacios proyectivos y las superficies.

  • Video

    Complejos CW - funciones características y subcomplejos - [Detalles]

    En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.

  • Blog

    La construcción de las naturales - [Detalles]

    Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.

  • Blog

    Conjuntos transitivos - [Detalles]

    Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.

  • Blog

    La relación de orden en $\mathbb{N}$ - [Detalles]

    Definimos el orden en los números naturales y se demuestra primero que es parcial y después que éste es total.

  • Blog

    El orden de los enteros - [Detalles]

    Definimos el orden en los números enteros y se demuestra primero que es parcial y después que éste es total.

  • Blog

    Problemas de congruencias y $Z_n$ - [Detalles]

    Resolvemos ejercicios que ocupan las definiciones de congruencia, anillo de módulo n para encontras sus unidades e inversos multiplicativos en caso de que los haya.

  • Blog

    Esbozo de construcción de racionales y reales - [Detalles]

    Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.

  • Blog

    Ecuaciones cuadráticas complejas - [Detalles]

    Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.

  • Blog

    Multiplicación en forma polar y fórmula de De Moivre - [Detalles]

    Mostramos la interpretación geométrica de lo que reprenta la multiplicación de dos números complejos en su forma polar; también enunciamos la fórmula de De Moivre para ayudarnos a dar solución a problemas en los que se requiere calcular potencias de números complejos.

  • Blog

    El anillo de polinomios con coeficientes reales - [Detalles]

    Construimos a los polinomios con coeficientes reales, demostramos que esta construcción cumple con que es un anillo y un dominio entero luego.

  • Blog

    Continuidad y diferenciabilidad de polinomios reales - [Detalles]

    Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.

  • Video

    Permutaciones disjuntas - [Detalles]

    Definimos el concepto de permutaciones disjuntas. Luego enunciamos el resultado que dice que permutaciones disjuntas conmutan y decimos la estrategia para demostrarlo.

  • Video

    Factorización completa y unicidad de la factorización - [Detalles]

    Definimos lo que es una factorización completa y demostramos que la factorización completa de una permutación es única salvo el orden de los factores.

  • Video

    Factorización en transposiciones - [Detalles]

    Definimos lo que es una transposición y demostramos que toda permutación se puede factorizar como producto de transposiciones.

  • Video

    Grupos - "Casi grupos" - [Detalles]

    Se dan ejemplos de conjuntos con operaciones que "casi" son grupos y se explican las propiedades de grupo que fallan.

  • Video

    Hay tantas clases laterales izquierdas como derechas - [Detalles]

    Se demuestra que hay el mismo número de clases laterales derechas que izquierdas.

  • Video

    Grupos cíclicos - parte 1 - [Detalles]

    Se da la definición de grupo cíclico y se exploran algunas de sus propiedades, se demuestra que todos los subgrupos de un grupo cíclico son cíclicos y que hay subgrupos para cada divisor del orden de un grupo cíclico.

  • Video

    Grupo cociente - [Detalles]

    Se define el concepto de grupo cociente, se demuestra que es en efecto un grupo y se muestra que la función cociente es un homomorfismo con kernel el subgrupo en cuestión.

  • Video

    Producto directo de grupos - parte 3 - [Detalles]

    Se demuestra que el producto de subgrupos normales es subgrupo normal del producto y que el cociente es isomorfo a un producto de cocientes.

  • Video

    Grupos simétricos (1) - [Detalles]

    Se presentan más propiedades de los grupos simétricos, se estudian permutaciones con la misma estructura cíclica y se concluye que las permutaciones conjugadas son precisamente aquellas que tienen la misma estructura cíclica.

  • Video

    Grupos simétricos (2) - [Detalles]

    Continúa el estudio de la estructura cíclica de permutaciones, se demuestra que los subgrupos normales de Sn son precisamente aquellos que "cerrados" bajo estructura cíclica.

  • Video

    Lema de Burnside: demostración alternativa - [Detalles]

    Se enuncia y demuestra el Lema de Burnside (una demostración alternativa de otra que se dio en otro video que no aparece en el sitio).

  • Blog

    9. Continuidad en un espacio métrico - [Detalles]

    Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.

  • Blog

    12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]

    Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.

  • Blog

    13. Funciones multivaluadas - [Detalles]

    Ya que comenzamos nuestro estudio de las funciones de variable compleja, debemos introducir unas funciones llamadas "funciones multivaluadas" que no necesariamente cumplen con la definición usual de función, pero son de vital importancia cuando se habla de complejos.

  • Blog

    15. Continuidad en $\mathbb{C}$ - [Detalles]

    Abordaremos formalmente el concepto de continuidad en sentido complejo, debemos estar advertidos de que, a pesar de que la definición no diferirá mucho de la de variable real, el comportamiento en los complejos puede cambiar de formas extrañas, analizaremos propiedades y caracterizaciones de funciones complejas continuas.

  • Blog

    19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]

    En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.

  • Blog

    29. Series de potencias. Introducción y criterios de convergencia. - [Detalles]

    En esta entrada definimos lo que es una serie de potencias, un tipo muy particular de series, utilizando las dos entradas anteriores veamos que tanto podemos estudiar acerca de ellas.

  • Blog

    40. Funciones conjugadas armónicas y funciones conformes - [Detalles]

    En esta entrada definiremos lo que significa que dos funciones sean conjugadas y armónicas conjugadas, esto luego nos permitirá caracterizar con aún más precisión a las funciones analíticas por medio de sus partes real e imaginaria.

  • Blog

    42. Series de Taylor y series de Laurent - [Detalles]

    En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.

  • Blog

    43. Clasificación de ceros y singularidades de una función analítica - [Detalles]

    En esta entrada vamos a definir lo que es una singularidad aislada de una función analítica y caracterizar los diferentes tipos que hay.

  • Video

    ¿Qué es una gráfica? - [Detalles]

    En este video se presenta la definición formal de gráfica. Se explica cómo las representaciones visuales (o dibujos) nos sirven para entender la combinatoria de estos objetos. Se reconoce la necesidad de identificar gráficas que, aunque no son iguales formalmente, son esencialmente la misma (gráficas isomorfas), y se define isomorfismo entre gráficas.

  • Video

    Introducción: ¿Qué son las ciencias de la computación?, Computación - [Detalles]

    1.1 Computación - Breve introducción a la materia y presentación de algunos conceptos clave que serán utilizados a lo largo del curso como computadora, computación y programa.

  • Video

    ¿Qué son las demostraciones en matemáticas? - [Detalles]

    En este video explicamos con una analogia que es una demostración en matemáticas

  • Video

    La Inducción matemática - [Detalles]

    La inducción matemática es una herramienta fundamental para poder demostrar proposiciones que tienen que ver con los números naturales. En este video discutimos cuál es su estructura y como se implementa.

  • Blog

    Nota 4. Unión e intersección de Conjuntos. - [Detalles]

    En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.

  • Blog

    Nota 8. Imagen directa e inversa de una función. - [Detalles]

    En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.

  • Blog

    Nota 9. Composición de funciones. - [Detalles]

    En esta nota vemos una operación entre funciones llamada composición, así como la prueba de que es una operación asociativa; también vemos varios ejemplos de composiciones y recursos interactivos que nos ayudan a entender mejor el tema, por ultimo introducimos una función muy importante: la función identidad.

  • Video

    Ejercicio Inducción (Gauss) - [Detalles]

    En este video, no sólo descubriremos la belleza detrás de esta ecuación que suma números consecutivos, sino que también nos embarcaremos en un viaje didáctico para demostrar su validez utilizando el principio de inducción matemática.

  • Blog

    Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]

    En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.

  • Blog

    Nota 25. Espacios vectoriales - [Detalles]

    Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.

  • Blog

    Nota 28. Combinaciones lineales - [Detalles]

    En esta nota definimos lo que es una cambinación lineal de elementos de $\mathbb{R}^n$, veremos que si tomamos un subconjunto no vacio de $\mathbb{R}^n$ y consideramos el conjunto de todas las combinaciones lineales de ese suconjunto entonces obtendremos un subespacio vectorial.

  • Blog

    Nota 30. Dependencia e independencia lineal - [Detalles]

    En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.

  • Blog

    Álgebra Moderna I: Permutaciones y Grupo Simétrico - [Detalles]

    En primera instancia tenemos que definir lo que es una permutación de un conjunto X. Posteriormente podremos construir el concepto de Grupo Simétrico y la definición de un r-ciclo.

  • Blog

    Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]

    Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.

  • Video

    Introducción: ¿Qué son las Ciencias de la Computación?, Algoritmos y funciones - [Detalles]

    1.2 Algoritmos y funciones - Continuación de los conceptos clave de la materia, qué son los algoritmos y funciones además de sus diferencias y semejanzas.

  • Video

    Introducción: ¿Qué son las Ciencias de la Computación?, Modelos Teóricos - [Detalles]

    1.4 Modelos teóricos - Uso de modelos teóricos para estudiar los problemas que se van a resolver y sus soluciones. Se aborda el análisis de algoritmos y teoría de la computación.

  • Video

    Introducción: ¿Qué son las Ciencias de la Computación?, Disciplinas semejantes - [Detalles]

    1.5 Disciplinas semejantes - Presentación de la familia de disciplinas altamente relacionadas a ciencias de la computación tales como programación, ingeniería de la computación, cibernética, informática, tecnologías de la información y ciencia de datos además de por qué no son lo mismo.

  • Video

    Los Elementos de Euclides: Teorema 13 - [Detalles]

    En este video cubrimos el Teorema 13 de Los Elementos de Euclides. Aquí se demuestra que al levantarse una recta sobre otra se forman ángulos tales que cada uno de ellos es de 90° (es decir, cada uno de ellos es recto) o bien son suplementarios (es decir, suman 180°, suman dos rectos)

  • Video

    Los Elementos de Euclides: Teorema 16 - [Detalles]

    En este video cubrimos el Teorema 16 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, un ángulo externo es mayor que cada uno de los internos y opuestos a él.

  • Video

    Los Elementos de Euclides: Teorema 19 - [Detalles]

    En este video cubrimos el Teorema 19 de Los Elementos de Euclides. Aquí se realiza la demostración de la propiedad de los triángulos que afirma que a mayor ángulo se opone mayor lado.

  • Video

    Los Elementos de Euclides: Teorema 20 - [Detalles]

    En este video cubrimos el Teorema 20 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, la suma de las longitudes de dos cualesquiera de sus lados es mayor que la longitud del tercer lado.

  • Video

    Los Elementos de Euclides: Teorema 33 - [Detalles]

    En este video cubrimos el Teorema 33 de Los Elementos de Euclides. Aquí se demuestra que las rectas que unen por los extremos y en el mismo lado, rectas iguales y paralelas, son también iguales y paralelas.

  • Video

    Los Elementos de Euclides: Teorema 34 - [Detalles]

    En este video cubrimos el Teorema 34 de Los Elementos de Euclides. Aquí se demuestra que en todo paralelogramo, los lados opuestos son iguales, los ángulos opuestos son iguales; y además que cualquier diagonal divide al paralelogramo en dos triángulos iguales.

  • Blog

    Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]

    Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.

  • Video

    Arquitectura de Von Neumman y el ciclo de acarreo; - [Detalles]

    2.1 Arquitectura de Von Neumman y el ciclo de acarreo - ¿Qué es la arquitectura de Von Neumman? ¿Para qué sirve? y ¿Cómo funciona? Breve presentación de quién fue Neumann y sus contribuciones a la Ciencia y a las Ciencias de la Computación.

  • Video

    Los elementos de Euclides: Teorema 35 - [Detalles]

    En este video cubrimos el Teorema 35 de Los Elementos de Euclides. Este teorema demuestra que los paralelogramos que están sobre la misma base y entre las mismas paralelas tienen áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 37 - [Detalles]

    En este video cubrimos el Teorema 37 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que están sobre la misma base y entre las mismas paralelas tienen también áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 40 - [Detalles]

    En este video cubrimos el Teorema 40 de Los Elementos de Euclides. Aquí se demuestra que triángulos iguales, que están sobre bases iguales y en el mismo lado, también están entre las mismas paralelas.

  • Video

    Los Elementos de Euclides: Presentación - [Detalles]

    En este video encontrarás todo lo que puedes aprender con esta serie de videos relativos al libro I de Los Elementos de Euclides. Te explicamos como puedes aprovechar al máximo el material que compartimos en los cuadernillos.

  • Blog

    Funciones suprayectivas y biyectivas - [Detalles]

    En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.

  • Blog

    Suma en los naturales - [Detalles]

    En esta nueva entrada presentaremos la definición formal de la suma, veremos que, gracias al teorema de recursión, es única y demostraremos algunas de las propiedades que satisface usando el principio de inducción.

  • Blog

    Producto en los naturales - [Detalles]

    Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.

  • Blog

    Conjuntos infinitos - [Detalles]

    En esta sección comenzaremos definiendo que es un conjunto infinito para posteriormente probar resultados acerca de la cantidad de elementos que estos poseen, es decir, la cardinalidad de dichos conjuntos.

  • Blog

    Conjuntos numerables - [Detalles]

    En esa entrada seguiremos trabajando con conjuntos infinitos, en especial aquellos que tienen la misma cantidad de elementos que los numeros naturales .

  • Blog

    Axioma de elección - [Detalles]

    En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.

  • Blog

    El lema de Zorn - [Detalles]

    En esta nueva sección veremos algunas otras equivalencias del axioma de elección, pero éstas en particular no son tan evidentes e incluso resultan sorprendentes. En muchas ramas de las matemáticas se apela a las formas equivalentes del axioma de elección que veremos en esta sección, es por ello que es importante tratarlas.

  • Blog

    Bases para cualquier espacio vectorial - [Detalles]

    Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en Álgebra lineal, específicamente, el hecho de que todo espacio vectorial tiene una base

  • Video

    Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]

    ¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.

  • Video

    Ejercicio Límite de función acotada y otra con valor $0$ - [Detalles]

    Si $g(x)$ tiende a $0$ y $h(x)$ es una función acotada, ¿qué ocurre con el producto $g(x)h(x)$? En este video, exploramos y demostramos por qué este producto también tiende a $0$.

  • Video

    Gráficas regulares y secuencias de grado q - [Detalles]

    Aquí damos respuesta a las siguientes preguntas ¿Para qué valores de n y r existe una gráfica r-regular de orden n? ¿Qué secuencias de n números enteros no negativos son la secuencia de grados de una gráfica?

  • Capítulo del libro

    Los números reales - [Detalles]

    En este capitulo de Cimientos Matemáticos exploraremos las propiedades de los números reales, como son estas reglas fundamentales que rigen su manipulación en operaciones matemáticas, mientras que el concepto de valor absoluto añade una capa de comprensión al medir la distancia de un número al cero en la línea numérica.

  • Capítulo del libro

    Funciones - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.

  • Capítulo del libro

    Funciones algebraicas - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos las funciones algebraicas que son fundamentales en matemáticas, abarcando desde las simples funciones lineales, que dibujan rectas, hasta las cuadráticas con sus parábolas características, pasando por las polinomiales, hasta las racionales.

  • Video

    Contando caminos con la matriz de adyacencia - [Detalles]

    Definimos la matriz de adyacencia de una gráfica G, y probamos que la k'esima potencia de esta matriz cuenta el número de caminos de longitud k que existen de un vértice a otro en G.

  • Video

    Paseos Eulerianos y el origen de la Teoría de Gráficas - [Detalles]

    Es este video definimos multigráfica, paseo Euleriano y multigráfica Euleriana. También hablamos de la historia de los siete puentes de Köninsberg, que se reconoce como el origen dela Teoría de Gráficas y probamos un resultado de Euler, de 1736, que nos da un criterio para determinar si una multigráfica es o no es Euleriana.

  • Sitio web

    MiniCOMAL: Cimientos Matemáticos - [Detalles]

    Cimientos Matemáticos es un texto escrito de matemáticas pre-universitarias hecho por el Dr. Eric Pauli Pérez Contreras. Cubre varios temas importantes que se deben conocer y manejar apropiadamente para facilitar el estudio de las matemáticas a nivel universitario. En este curso podrás consultar el material elaborado en archivos PDF, así como una multitud de mini-cuestionarios para evaluar tus conocimientos sobre los temas que se tratan en cada capítulo.

  • Blog

    Introducción al curso - [Detalles]

    Introducción al curso de álgebra lineal II, vemos un repaso general de lo que se vio en el curso anterior así como varios resultados importantes a tener en cuenta, damos una idea general de los temas y resultados que se verán en este nuevo curso.

  • Blog

    Propiedades de eigenvectores y eigenvalores - [Detalles]

    En esta entrada profundizaremos en el estudio de los vectores y valores propios, exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

  • Blog

    Formas sesquilineales - [Detalles]

    En esta entrada veremos los conceptos de formas sesquilineales y formas hermitianas, ambos conceptos extienden (en algunos sentidos) lo que hemos visto sobre formas bilineales a espacios vectoriales sobre los complejos. Los resultados son casi análogos a los del caso real. Sin embargo, hay algunas diferencias importantes en las que haremos énfasis.

  • Blog

    Matrices positivas y congruencia de matrices - [Detalles]

    En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).

  • Blog

    Teorema de Sylvester - [Detalles]

    En esta entrada introduciremos la noción de la signatura de una matriz. A grandes rasgos, esta noción nos dice «qué tan positiva» es una matriz simétrica. Para definir esta noción, lo haremos primero para las matrices diagonales. Luego lo definiremos para todas las matrices simétricas a través del teorema que demostramos la entrada anterior.

  • Blog

    Introducción a forma canónica de Jordan - [Detalles]

    En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.

  • Blog

    Existencia de la forma canónica de Jordan - [Detalles]

    Lo que haremos ahora es mostrar una versión análoga de la forma canónica de Jordan para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración.

  • Blog

    Conjuntos y elementos - [Detalles]

    Estudiamos las primeras nociones de teoría de conjuntos. Vemos qué significa que un elemento pertenezca a otro y cómo describir conjuntos.

  • Blog

    Funciones invertibles - [Detalles]

    Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]

  • Blog

    Traza de matrices y propiedades - [Detalles]

    Definimos qué es la traza de matrices. Vemos que la traza abre sumas y saca escalares. Resolvemos dos problemas ejemplo.

  • Video

    Ingeniería de software, Paradigmas procedimental y orientado a objetos - [Detalles]

    Paradigmas procedimental y orientado a objetos – Qué es la programación procedimental y orientada a objetos; y qué lenguajes la usan así como cualidades de estas y los pioneros.

  • Video

    Enumeraciones - [Detalles]

    • Enumeraciones – Qué es un enum en JAVA y para qué sirve.

  • Video

    Números enteros y racionales - [Detalles]

    En este video presentamos el anillo de los números enteros y el campo de los números racionales. Vemos que a pesar de que éstos últimos forman un campo, todavía no se ajustan al modelo de la recta geométrica.

  • Video

    Funciones definidas por casos - [Detalles]

    En este video se comenta sobre las funciones de variable real que se definen por casos, en especial, las que se definen por tramos.

  • Video

    Funciones inyectivas, crecientes y decrecientes - [Detalles]

    En este video definimos el concepto de inyectividad, que es un criterio por el que una función puede tener una función inversa, y se discute la relación entre inyectividad y crecimiento-decrecimiento de funciones.

  • Video

    Ejemplos demostración de limites - [Detalles]

    En este video se ejemplifica cómo demostrar (épsilon-delta) que el límite cuando x tiende a 2 de f(x)=x^4 es 16, y que el límite cuando x tiende a un número positivo a, de f(x)=1/x es 1/a.

  • Video

    Continuidad en intervalos cerrados 2 - [Detalles]

    En este video demostramos que las funciones continuas en intevalos cerrados son acotadas, y después, demostramos que alcanzan sus valores máximo y mínimo.

  • Video

    Ejemplos: determinar el dominio de una función - [Detalles]

    En este video hacemos un par de ejemplos en los que se determina el dominio de una función, es decir, el dominio máximo de números reales, que es posible para una regla de correspondencia dada.

  • Sitio web

    COMAL: Inteligencia Artificial - [Detalles]

    Este curso revisa las principales áreas de la Inteligencia Artificial desde un enfoque teórico y práctico, que permita el diseño y la implementación de sistemas inteligentes para problemas específicos. Se busca abarcar una perspectiva general del área. El enfoque está basado en agentes racionales. Los temas que se abordan son algoritmos de búsqueda, métodos probabilísticos y modelos basados en aprendizaje estadístico. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.

  • Video

    Elementos del paradigma estructurado - [Detalles]

    Elementos del paradigma estructurado – Qué es la programación estructurada, características, elementos y antecedentes. Qué son las estructuras de control y cómo organizarlas.

  • Video

    Implementación con bits, Bits, la memoria en la computadora - [Detalles]

    Bits, la memoria en la computadora – Representación de los datos en la computadora, qué son los bits, qué representan y cómo se interpretan.

  • Video

    Funciones, sobrecarga de funciones - [Detalles]

    Sobrecarga de funciones - Qué es y para qué sirve una sobrecarga de funciones. Sintaxis y ejemplo.

  • Video

    Complejidad - [Detalles]

    Complejidad - Qué es la complejidad algorítmica; características que impactarán en el desempeño de un algoritmo entre otros conceptos de complejidad.

  • Video

    Tipos genéricos, Introducción, uso y declaración de clases genéricas - [Detalles]

    Introducción, uso y declaración de clases genéricas - Qué son, cómo se pueden utilizar y para qué nos pueden servir. Cómo se declaran. Incluye ejemplo de uso y declaración así como las convenciones generales.

  • Video

    La suma en pi_n no depende de la coordenada - [Detalles]

    Vemos que hay otra manera de definir la suma en los grupos de homotopía y es equivalente a la operación que ya habíamos visto

  • Video

    Los grupos de homotopía superiores son abelianos - [Detalles]

    Probamos que cuando n es mayor a 1 tenemos que pi_n es un grupo abeliano

  • Video

    Equivalencia homotópica implica equivalencia homotópica debil - [Detalles]

    Un mapeo entre espacios se dice que es una equivalencia homotópica débil si induce isomorfismos en todos los grupos de homotopía. En este video probamos que todas las equivalencias homotópicas son equivalencias homotópicas débiles.

  • Video

    Grupos de homotopía de un espacio H - [Detalles]

    En este video vemos que si X es un espacio H entonces la operación en pi_n es la misma que la operación en X visto como espacio H

  • Blog

    Matrices de bloques - [Detalles]

    Definimos el concepto de matrices de bloques. Damos ejemplos y vemos que sus operaciones son compatibles con las de matrices.

  • Blog

    Sistemas de ecuaciones lineales y sistemas homogéneos asociados - [Detalles]

    Definimos sistemas de ecuaciones lineales y homogéneos. Vemos que se pueden expresar en términos matriciales. Probamos el principio de superposición.

  • Blog

    Forma escalonada reducida - [Detalles]

    Definimos que una matriz esté en forma escalonada reducida. Vemos cómo resolver su sistema lineal asociado. Hablamos de operaciones y matrices elementales.

  • Blog

    Teorema de reducción gaussiana - [Detalles]

    Demostarmos el teorema de reducción gaussiana, mostrando algoritmicamente que toda matriz puede ser llevada a una equivalente en forma escalonada reducida.

  • Blog

    Más ejemplos de reducción gaussiana - [Detalles]

    Resolvemos más problemas que usan el algoritmo de reducción gaussiana. Vemos ejemplos concretos y uno cuyas dimensiones dependen de una variable entera.

  • Blog

    Espacios vectoriales - [Detalles]

    Definimos qué son los espacios vectoriales. Damos muchos ejemplos, entre ellos, espacios de matrices, espacios de funciones y espacios de polinomios.

  • Blog

    Conjuntos generadores e independencia lineal - [Detalles]

    Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.

  • Blog

    Bases y dimensión de espacios vectoriales - [Detalles]

    Definimos espacios vectoriales de dimensión finita. Vemos que es correcto definir dim V como el tamaño de un conjunto generador linealmente independiente.

  • Blog

    Problemas de bases y dimensión de espacios vectoriales - [Detalles]

    Problemas resueltos de dimensión de espacios vectoriales. Recordamos y aplicamos repetidamente un truco para mostrar que un conjunto de vectores es base.

  • Blog

    Transformaciones lineales y vectores independientes - [Detalles]

    Estudiamos el efecto que tienen las transformaciones lineales en bases, en conjuntos generadores y en linealmente independientes.

  • Blog

    Forma matricial de una transformación lineal - [Detalles]

    Definimos la forma matricial de transformaciones lineales. Vemos que la composición de transformaciones corresponde al producto de sus formas matriciales.

  • Blog

    Bases duales, recetas y una matriz invertible - [Detalles]

    Probamos que las formas coordenadas de una base son base del espacio dual. Vemos problemas prácticos de bases duales y una relación con matrices invertibles

  • Blog

    Ortogonalidad, ecuaciones e hiperplanos - [Detalles]

    Definimos hiperplanos en espacios vectoriales arbitrarios. Vemos que en espacios de dimensión finita todo subespacio es intersección de hiperplanos.

  • Blog

    Ortogonalidad y transformación transpuesta - [Detalles]

    Definimos la noción de transformación transpuesta. Vemos propiedades básicas, su kernel, su imagen y que su matriz es la transpuesta de la original.

  • Blog

    Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz

  • Blog

    Proceso de Gram-Schmidt - [Detalles]

    Mostramos el teorema de Gram-Schmidt, que cambia un conjunto de vectores linealmente independientes a uno ortonormal. Vemos ejemplos de su aplicación.

  • Blog

    Transformaciones multilineales antisimétricas y alternantes - [Detalles]

    Definimos transformaciones n-lineales antisimétricas y alternantes. Vemos que las familias coinciden casi siempre. Comenzamos a hablar de determinantes.

  • Blog

    Técnicas básicas de cálculo de determinantes - [Detalles]

    Vemos varias técnicas para el cálculo de determinantes. Entre ellas empezamos con determinantes de 2x2, 3x3 y qué hacen las operaciones elementales.

  • Blog

    Eigenvectores y eigenvalores de transformaciones y matrices - [Detalles]

    Definimos eigenvectores y eigenvalores de matrices. Vemos que los últimos son raíces de cierto polinomio. Probamos propiedades básicas y vemos ejemplos.

  • Blog

    Propiedades del polinomio característico - [Detalles]

    Retomamos la definición de polinomio característico y vemos sus propiedades principales. Enunciamos dos teoremas fundamentales de matrices que lo usan.

  • Blog

    Matrices simétricas reales y sus eigenvalores - [Detalles]

    Enunciamos el teorema espectral para matrices simétricas reales. Mostramos que estas matrices tienen eigenvalores reales y otros dos resultados auxiliares.

  • Video

    Negaciones - [Detalles]

    Usamos las tablas de verdad para definir la negación lógica de una proposición, damos ejemplos de la negación para proposiciones lógicas que podemos entender con el lenguaje cotidiano.

  • Video

    Logica proposicional - Proposiciones condicionales - [Detalles]

    Se estudia el conector condicional. Definimos la implicación contrapositiva y la conversa. Se finaliza con un teorema que demuestra algunas equivalencias entre formas proposicionales.

  • Video

    Reglas para escribir una demostración - [Detalles]

    Platicamos en que consiste una demostración, y además damos cuatro reglas a seguir para conseguir una demostración coherente y exitosa. Una demostración es una justificación de la veracidad de un teorema.

  • Video

    Demostración por casos - [Detalles]

    Explicamos como realizar una demostración por casos y las reglas que se deben seguir, damos ejemplos con números enteros.

  • Video

    Subconjuntos (ejemplo y 3 propiedades básicas) - [Detalles]

    Continuamos con un ejemplo, que los enteros son subconjunto de los racionales. También vemos propiedades Importantes: todo conjunto contiene al vacío, todo conjunto se contiene a sí mismo y transitividad.

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Video

    Familias de conjuntos - [Detalles]

    Damos la definición de familia de conjuntos, unión e intersección de familias de conjuntos., mediante ejemplos platicamos que es una familia de conjuntos y sus propiedades.

  • Video

    Composición de relaciones entre conjuntos - [Detalles]

    Definimos que es la composición de relaciones entre conjuntos, usamos ejemplos para dar composiciones sencillas

  • Video

    Particiones, relaciones y clases de equivalencia - [Detalles]

    Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia

  • Video

    Ejemplo de partición, clases y relación de equivalencia - [Detalles]

    Continuamos con la discusión sobre las relaciones de equivalencia, damos un ejemplo y demostramos que es una relación de equivalencia, usamos el ejemplo para ilustrar sus clases de equivalencia y la partición.

  • Video

    Ejemplo de demostración de relación de equivalencia - [Detalles]

    Damos un ejemplo de relación de equivalencia con elementos del plano cartesiano y demostramos que es una relación de equivalencia, es decir, cumple las 3 propiedades

  • Video

    Función inversa - [Detalles]

    Explicamos y definimos la inversa de una función, lo cual, dada una función "f(x)", definimos una nueva función la cual llamamos su función inversa, y damos las propiedades que debe cumplir.

  • Video

    Unicidad de la función inversa - [Detalles]

    Continuamos con la explicación de la función inversa, y demostramos que la función inversa de una función "f(x)" es única.

  • Video

    Inyectividad - [Detalles]

    Establecemos la regla para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de Inyectividad, damos una característica que todas las gráficas de una función inyectiva deben cumplir.

  • Video

    Biyectividad - [Detalles]

    Usando los conceptos de función inyectiva y suprayectiva, definimos cuando una función es biyectiva, hablamos de algunos ejemplos para ilustrar funciones biyectivas y demostramos que la función identidad es biyectiva.

  • Video

    Equivalencia entre funciones biyectivas e invertibles - [Detalles]

    Definimos la inversa de una función, demostramos principalmente que: Una función tiene inversa si y sólo si, es biyectiva. Además de esto demostramos otro par de Teoremas relacionados a la inversa de una función.

  • Video

    Cómo verificar que dos funciones son inversas - [Detalles]

    Haciendo uso de un ejemplo, mostramos como verificar cuando dos funciones son inversas una de otra.

  • Video

    Cardinalidad - conjuntos infinitos - los naturales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.

  • Video

    Principio de inducción - [Detalles]

    Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.

  • Video

    Ejemplo principio de inducción - [Detalles]

    Usamos de principio de inducción matemática para memostrar una proposicion P_n. Demostramos primero el caso base (demostrando que P_1 es cierta), y despues el paso inductivo (si P_n es cierto entonces P_n+1 es cierta).

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.

  • Video

    Factorial y combinatorio - [Detalles]

    Comenzamos dando la definición de la factorial de un número natural, así como la notación que se emplea para expresarlo. Damos la notación necesaria para entender la combinatoria, y también la fórmula del combinatorio n en k.

  • Video

    Permutaciones - [Detalles]

    Definimos que es una permutación, y hablamos de sus usos y características. También damos una fórmula de conteo para saber cuántas permutaciones tenemos en un conjunto de n elementos, ya sea permutaciones con o sin repeticiones.

  • Video

    Combinatoria: el ejemplo del poker - [Detalles]

    Analizamos el póker como un ejemplo de combinatoria. Usando combinatoria damos un ranking para las diez manos del póker, las cuale son combinaciones de cartas que podemos hacer para ganar. Las manos son: escalera real, escalera de color, poker, full, color, escalera, trio, doble pareja, pareja y carta alta.

  • Video

    Teorema del binomio - [Detalles]

    Explicamos y demostramos el Teorema del Binomio. La cual es una fórmula que proporciona el desarrollo de la n-ésima potencia de un binomio, hacemos el ejemplo para n=2.

  • Video

    Teorema del binomio ejemplo 1 - [Detalles]

    Vemos un ejemplo usando el teorema del binomio. También damos consejos para calcular coeficientes en los términos que aparecen en la expansión de (a+b).

  • Video

    Teorema del binomio ejemplo 2 - [Detalles]

    Usamos el Teorema del Binomio para demostrar, de forma muy sencilla y directa, que cierta serie es siempre cero.

  • Video

    Forma escalonada - [Detalles]

    Se define la forma escalonada de una matriz NxM (también se define la forma escalonada reducida), y se dan varios ejemplos de matrices escalonadas, así como ejemplo de matrices que no están en su forma escalonada.

  • Video

    Analisis cualitativo de sistemas de ecuaciones lineales - [Detalles]

    Discutimos una serie de observaciones con las cuales podemos describir un sistema lineal sin resolverlo directamente. También se demuestra que un sistema lineal tiene una única solución, infinitas soluciones, o ninguna solución.

  • Video

    Matrices: que son y notación - [Detalles]

    Explicamos la definición de matrices, y sus características, como numero de renglones y columnas. También se discute la notación de matrices.

  • Video

    Principio de inducción - [Detalles]

    Introducimos el principio de inducción matemática, el cual es un método de demostración para alguna propiedad o proposición P(n), es decir que la propiedad o proposición está relacionada a un número natural. Damos un ejemplo de cómo demostrar usando el principio de inducción, demostrando el caso base y luego el paso inductivo. 

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción. 

  • Video

    El Principio del Buen Orden y el Principio de Inducción Matemática - [Detalles]

    Enunciamos que: El principio del buen orden es equivalente al Principio de inducción matemática. Indicamos la idea de cómo demostrar este enunciado, el cual se demostrará en los dos videos siguientes. 

  • Video

    Propiedades del máximo común divisor - [Detalles]

    Demostramos algunas propiedades sobre el máximo común divisor, vemos que puede sacar enteros, y varias propiedades más, las cuales demostramos haciendo uso del teorema de combinación lineal anteriormente visto. 

  • Video

    El mínimo común múltiplo - [Detalles]

    Definimos el mínimo común múltiplo de "n" enteros. Primero damos la definición de común múltiplo y el más pequeño es aquel que tomamos como mínimo común múltiplo. Definimos la notación para expresar el mínimo común múltiplo y demostración un teorema sobre el mismo. 

  • Video

    Ecuación diofántica lineal en dos variables - [Detalles]

    Definimos la ecuación Diofánticas, como ecuaciones algebraicas para las cuales que buscan soluciones enteras. Nos concentramos en las ecuaciones de la forma "a*x+b*y=n", con a,b,n enteros. Mostramos cuando la ecuación tiene solución entera y cuantas soluciones tiene. 

  • Video

    Hay una cantidad infinita de números primos - [Detalles]

    Para terminar esta sección demostramos un teorema de bastante relevancia, el cual nos dice que existe una cantidad infinita de numero primos. La demostración es sencilla y hacemos uso del teorema fundamental de la aritmética.  

  • Video

    Sistemas de residuos módulo $m$ - [Detalles]

    Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler. 

  • Video

    Números complejos - [Detalles]

    Definimos los números complejos: "a+b*i" ("a", "b" son números reales e "i" es el numero imaginario). Damos la notación que vamos a utilizar para los numero complejo (parte real y parte imaginaria) y definimos el conjunto de los números complejos.  

  • Video

    Cómo calcular las raíces enésimas de un número - [Detalles]

    Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo. 

  • Video

    División de polinomios - [Detalles]

    Definimos la división entre polinomios, dados dos polinomios "a(x), b(x)", decimos que "b(x)" divide a "a(x)" si y solo si "a(x)=b(x)*q(x)" para algún polinomio "q(x)". Vemos algunos ejemplos y también propiedades sobre la divisibilidad. 

  • Video

    Raíces de polinomios - [Detalles]

    Explicamos en que consiste la división sintética, la cual nos ayuda a dividir polinomios entre polinomios de la forma "x-a". Damos el procedimiento de la división sintética y hacemos dos ejemplos. 

  • Video

    Multiplicidad de una raíz - [Detalles]

    Definimos la multiplicidad de una raíz. La cual es el numero "m" tal que es el mayor entero para el cual "(x-a)^m" divide al polinomio. Damos algunos ejemplos para saber cómo identificar la multiplicidad de alguna raíz. 

  • Video

    Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]

    Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo. 

  • Video

    Factorización de polinomios, polinomios reducibles y polinomios irreducibles. definición y ejemplos - [Detalles]

    Hablamos sobre la factorización de polinomios, mostramos que los binomios lineales (de la forma "x-a") son polinomios irreducibles y vemos varios ejemplos de polinomios reducibles e irreducibles.  

  • Video

    ¿Qué es la matemática? - [Detalles]

    Damos varias definiciones de matemáticas y cómo podemos hacer más sencilla su comprensión

  • Interactivo

    Concurrencia de medianas - [Detalles]

    Demostramos que las medianas de un triángulo son concurrentes .

  • Lección

    Caracterización de cuadriláteros cíclicos y teorema de Ptolomeo - [Detalles]

    Demostramos que por tres puntos no colineales pasa una única circunferencia, demostramos algunas propiedades de los cuadriláteros convexos, el teorema de Ptolomeo y su recíproco

  • Lección

    Potencia en términos de distancia al centro y radio - [Detalles]

    Demostramos algunos resultados que involucran la potencia de un punto respecto a una circunferencia

  • Lección

    Problemas de puntos armónicos - [Detalles]

    Demostramos algunos resultados que involucran a los puntos armónicos

  • Lección

    Más de puntos armónicos y circunferencias ortogonales - [Detalles]

    Definimos el conjugado armónico del punto medio de un segmento, el ángulo de intersección de dos circunferencias y cuándo dos circunferencias son ortogonales y demostramos algunos resultados que involucran estos conceptos

  • Lección

    Rectas armónicas - [Detalles]

    Demostramos el teorema de la bisectriz generalizada, definimos cuándo dos rectas son armónicas conjugadas y demostramos algunos resultados que involucran este concepto

  • Video

    Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros (Ejemplos) - [Detalles]

    Resolvemos dos ecuaciones por el método de variación de parámetros, una de ellas la resolvimos por el método de factor integrante en un video anterior, esto para comprobar que los dos métodos llevan a la misma solución.

  • Video

    Ecuaciones diferenciales exactas - [Detalles]

    Comenzamos el estudio de las ecuaciones exactas, y demostramos un teorema que nos dice cuándo una ecuación es exacta y tiene solución

  • Video

    Ecuaciones diferenciales no exactas. Método del factor integrante - [Detalles]

    Resolvemos el problema que surge cuando una ecuación no cumple con la definición de ser exacta.

  • Video

    Ecuación diferencial de Bernoulli - [Detalles]

    Resolvemos la ecuación diferencial de Bernoulli mediante un cambio de variable que hace lineal a la ecuación

  • Video

    Ecuación diferencial de Riccati - [Detalles]

    Resolvemos la ecuación diferencial de Riccati mediante un cambio de variable que hace lineal a la ecuación

  • Video

    Teorema de existencia y unicidad. Ecuación integral asociada - [Detalles]

    Damos los primeros detalles para la demostración del Teorema de existencia y unicidad de Picard. Encontramos una manera equivalente de resolver un problema de condición inicial, que es resolviendo una ecuación integral asociada.

  • Video

    Teorema de existencia y unicidad. Demostración de la unicidad - [Detalles]

    Demostramos la parte de unicidad del Teorema de Existencia y Unicidad de Picard, y previamente probamos dos lemas que nos ayudan a la demostración

  • Video

    Teorema de existencia y unicidad. Demostración de la existencia - [Detalles]

    Demostramos la parte de existencia del Teorema de Existencia y Unicidad de Picard, en un intervalo que construimos previamente mediante un lema

  • Video

    Introducción a las bifurcaciones. Diagrama de bifurcaciones - [Detalles]

    Dibujamos un diagrama que contiene la información de todas las soluciones a una familia uniparamétrica de ecuaciones autónomas, así como los valores de bifurcación, y la naturaleza de las soluciones de equilibrio

  • Video

    Introducción a las bifurcaciones. Determinación de los valores de bifurcación - [Detalles]

    Determinamos los valores de bifurcación con ayuda de las gráficas y las primeras derivadas de las funciones que determinan a la familia uniparamétrica de ecuaciones autónomas

  • Video

    Ecuaciones lineales no homogéneas de segundo orden y sus soluciones - [Detalles]

    Demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.

  • Video

    Ecuación diferencial de Euler - [Detalles]

    Resolvemos de manera general la ecuación diferencial de Euler para cualquier intervalo que no contenga al punto singular t=0

  • Video

    Soluciones por series cerca de un punto singular regular (Parte 3) - [Detalles]

    Finalizamos el estudio al método de Frobenius revisando el caso cuando la ecuación indicial tiene dos raíces que difieren por un entero

  • Video

    Transformada de Laplace y sus propiedades - [Detalles]

    Definimos la transformada de Laplace de una función y demostramos algunas propiedades que nos servirán para resolver problemas de condición inicial.

  • Video

    Método de la transformada de Laplace. Problemas que involucran funciones continuas por pedazos - [Detalles]

    Aplicamos el método de la transformada de Laplace para resolver problemas de condición inicial cuya ecuación diferencial involucra funciones continuas por pedazos, y resolvemos un ejemplo particular.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]

    Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 2) - [Detalles]

    Definimos el Wronskiano de un subconjunto de soluciones a un sistema lineal homogéneo. Además definimos cuándo este subconjunto de soluciones es linealmente dependiente o independiente. Finalmente demostramos un teorema que relaciona estos dos conceptos.

  • Video

    Solución general al sistema lineal no homogéneo. - [Detalles]

    Enunciamos y probamos un teorema que nos dice cómo encontrar la solución general a un sistema lineal no homogéneo con la ayuda del sistema homogéneo asociado.

  • Video

    Sistemas de ecuaciones lineales con coeficientes constantes. Eliminación de variables (Ejemplos) - [Detalles]

    Empleamos el método de eliminación de variables que desarrollamos en el video anterior para resolver un par de ejemplos de sistemas lineales con coeficientes constantes.

  • Video

    Propiedades de la exponencial de una matriz - [Detalles]

    Analizamos las principales propiedades que cumple la exponencial de una matriz cuadrada con coeficientes constantes, además de relacionarla con los problemas de condición inicial para sistemas lineales de primer orden.

  • Video

    La exponencial de una matriz y la matriz fundamental de soluciones - [Detalles]

    Relacionamos la exponencial de una matriz A de coeficientes constantes con la matriz fundamental de soluciones al sistema lineal homogéneo que tiene a A como matriz asociada.

  • Blog

    Introducción. Repaso Teoría de Conjuntos (Parte 1) - [Detalles]

    Presentación de los problemas que fundamentan el cálculo. Conceptos básicos de teoría de conjuntos.

  • Blog

    Postulados de Euclides - [Detalles]

    Exponemos los postulados y las nociones comunes que Euclides enunció y las consecuencias del quinto postulado.

  • Blog

    Desigualdad del triángulo y lugar geométrico - [Detalles]

    Mostramos la desigualdad del triángulo y su reciproco y que la bisectriz de un ángulo y la mediatriz de un segmento son lugares geométricos.

  • Blog

    Puntos notables del triángulo - [Detalles]

    Demostramos que las medianas, las mediatrices, las bisectrices tanto internas como externas y las alturas de un triángulo son concurrentes.

  • Blog

    Ángulos en la circunferencia - [Detalles]

    Demostramos algunos resultados que nos permiten medir ángulos respecto a una circunferencia y vemos algunas aplicaciones.

  • Blog

    Ecuaciones diferenciales como modelos matemáticos - [Detalles]

    Estudio de problemas reales donde las ecuación diferenciales son el modelo matemático que describe y resuleve al problema

  • Blog

    Ecuaciones diferenciales autónomas - [Detalles]

    Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden en las que no aparece explícitamente la variable independiente, mejor conocidas como ecuaciones autónomas

  • Blog

    Ecuaciones lineales no homogéneas de segundo orden – Método de coeficientes indeterminados - [Detalles]

    Al estudiar el caso no homogeneo de las ecuaciones diferenciales de segundo orden se presenta un primer método que propone soluciones en forma de series similares a la función g

  • Video

    Plano fase para sistemas lineales con valores propios repetdos (Ejemplos) - [Detalles]

    Resolvemos y dibujamos el plano fase para algunos sistemas que tienen un único valor propio.

  • Blog

    Exponencial de una matriz y matriz fundamental de soluciones - [Detalles]

    Se define el concepto de exponencial de una matriz y se ve su utilidad en los sistema lineales además de probar que es una matriz fundamental de soluciones a estos sistemas lineales

  • Blog

    Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos - [Detalles]

    Se estudia el primer caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema lineal son todos reales y distintos

  • Blog

    Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos - [Detalles]

    Se continua con el segundo caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema son complejos

  • Blog

    Sistemas lineales homogéneos con coeficientes constantes – Valores propios repetidos - [Detalles]

    Se finaliza el método de valores y vectores propios con el caso en el que los valores propios de la matriz del sistema son algunos repetidos y se presenta el teorema de Cayley-Hamilton

  • Blog

    Teorema de existencia y unicidad para sistemas lineales - [Detalles]

    Se demuestra el teorema de existencia y unicidad para los casos particulares en los que los sistemas de ecuaciones diferenciales son lineales con coeficientes constantes tanto homogéneos como no homogéneos

  • Blog

    Homotecia - [Detalles]

    Estudiamos la homotecia entre polígonos y circunferencias, una herramienta que usaremos en demostraciones futuras.

  • Blog

    Circunferencias homoteticas - [Detalles]

    Mostramos que la homotecia de una circunferencia es una circunferencia, dos circunferencias siempre son homotéticas y algunos ejercicios.

  • Blog

    Triángulo ortico - [Detalles]

    Veremos que los ángulos del triangulo órtico son bisecados por los lados y las alturas de su triángulo de referencia y el problema de Fagnano

  • Blog

    Recta de Simson - [Detalles]

    Veremos una condición necesaria y suficiente para que el triángulo pedal de un punto degenere en una recta, conocida como recta de Simson.

  • Blog

    Puntos de Fermat y triángulos de Napoleón - [Detalles]

    Demostramos el teorema de Napoleón y mostramos la relación que hay entre los triángulos de Napoleón y los puntos de Fermat.

  • Blog

    Punto simediano - [Detalles]

    Veremos que las simedianas de un triángulo son concurrentes y algunos resultados sobre este punto de concurrencia, el punto simediano.

  • Blog

    Puntos de Brocard - [Detalles]

    Estudiamos algunas de las propiedades del primer y segundo punto de Brocard que son otro par de puntos conjugados isogonales del triangulo.

  • Blog

    Cuadrilátero ortodiagonal - [Detalles]

    Estudiaremos caracterizaciones y propiedades del cuadrilátero ortodiagonal y que pasa cuando este es cíclico.

  • Blog

    Introducción al curso, espacio muestral y σ-álgebras - [Detalles]

    Presentamos los conceptos e ideas más fundamentales de la teoría de la probabilidad que desarrollaremos en el curso.

  • Blog

    Medida de probabilidad - [Detalles]

    Presentamos el concepto de medida de probabilidad y sus propiedades básicas. Mostramos algunos ejemplos de funciones que son medidas de probabilidad.

  • Blog

    Propiedades de una medida de probabilidad - [Detalles]

    Desarrollamos la propiedad de complementación y el principio de inclusión-exclusión que cumple una medida de probabilidad.

  • Blog

    La probabilidad geométrica - [Detalles]

    Presentamos la probabilidad geométrica, que es un enfoque de la probabilidad con cierta relevancia histórica. Brindamos una construcción con cierta formalidad, pero muy vaga, de la noción de área en R2. Desarrollamos el ejemplo de la aguja de Buffon.

  • Blog

    El enfoque frecuentista de la probabilidad - [Detalles]

    Presentamos el enfoque frecuentista, que corresponde a pensar de la probabilidad de un evento como el límite de su frecuencia relativa.

  • Blog

    La probabilidad clásica - [Detalles]

    Presentamos el enfoque clásico de la probabilidad, que fue uno de los primeros en desarrollarse históricamente.

  • Blog

    Independencia de eventos - [Detalles]

    Presentamos el concepto de independencia de eventos, que se relaciona cercanamente con la medida de probabilidad condicional.

  • Blog

    Teorema de probabilidad total - [Detalles]

    Demostramos el teorema de probabilidad total, que es una herramienta muy útil a la hora de calcular probabilidades.

  • Blog

    Teorema de Bayes - [Detalles]

    Demostramos el teorema de Bayes, el cual relaciona distintas probabilidades condicionales y permite el cálculo de probabilidades de eventos que no son tan inmediatas.

  • Blog

    Teorema de continuidad de la probabilidad - [Detalles]

    Demostramos la propiedad de continuidad de la probabilidad, un resultado teórico que será útil en otras demostraciones.

  • Blog

    Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]

    Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales

  • Blog

    Teoría cualitativa de los sistemas lineales homogéneos – Valores propios reales y distintos - [Detalles]

    Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son reales y distintos

  • Blog

    Teoría cualitativa de los sistemas lineales homogéneos – Valores propios complejos - [Detalles]

    Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son complejos

  • Blog

    Teoría cualitativa de los sistemas lineales homogéneos – Valores propios repetidos - [Detalles]

    Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son repetidos

  • Blog

    Teoría cualitativa de los sistemas lineales homogéneos – Valores propios nulos - [Detalles]

    Se concluye el estudio de la teoría cualitativa de los sistemas lineales con el caso en el que los valores propios son nulos

  • Video

    El péndulo simple - [Detalles]

    Obtenemos una ecuación de segundo orden que modela el movimiento de un péndulo. Posteriormente estudiamos el sistema de ecuaciones asociado y su plano fase.

  • Video

    Las nulclinas y el plano fase - [Detalles]

    Definimos las nulclinas de un sistema de ecuaciones de primer orden, y estudiamos los aspectos más importantes que nos ayudarán a esbozar el plano fase de un sistema.

  • Video

    Bifurcaciones en sistemas no lineales (Ejemplos) - [Detalles]

    Estudiamos un par de ejemplos de bifurcaciones que ocurren en sistemas no lineales: la bifurcación de punto silla y la bifurcación de Hopf.

  • Blog

    Variables aleatorias - [Detalles]

    Desarrollamos el concepto de variable aleatoria así como definiciones equivalentes a la primer propuesta, asimismo se presentan unos ejemplos básicos de lo que representa una variable aleatoria.

  • Blog

    Funciones de distribución de probabilidad - [Detalles]

    Definimos la función de distribución probabilística de una variable aleatoria, también demostramos que la función de distribución probabilística es efectivamente una distribución de probabilidad así como mostramos ejemplos de estas funciones.

  • Blog

    Variables aleatorias discretas - [Detalles]

    Presentamos el primer tipo de variables aleatorias que son las discretas tomando un soporte finito o infinito numerable, también se muestra la relación entre la función de masa de probabilidad y la función de distribución.

  • Blog

    Variables aleatorias continuas - [Detalles]

    Presentamos el segundo tipo de variables aleatorias que son las continuas tomando un soporte infinito no numerable así como mostramos la relación de la función de masa con la función de distribución relacionado con el teorema fundamental del cálculo.

  • Cuestionario

    Mini-cuestionario: Forma escalonada reducida - [Detalles]

    Mini-cuestionario para verificar el entendimiento de la noción de que una matriz esté en forma escalonada reducida, y cómo se relaciona con la solución del sistema asociado.

  • Diapositivas

    Diapositivas sobre proposiciones - [Detalles]

    Definimos lo que es una proposición y la negación de una proposición acompañado de varios ejemplos para fijas los conceptos básicos de las diapositivas presentadas.

  • Diapositivas

    Dispositivas de conectores: conjunción y disyunción - [Detalles]

    Definimos la conjunción y la disyunción sobre una proposición, también mostramos que este tipo de proposiciones están formadas por 2 proposiciones (así formando una gracias a estos conectores) se muestra sobre como este tipo de proposiciones son verdaderas o falsas.

  • Diapositivas

    Diapositivas sobre los tipos de enunciados en matemáticas - [Detalles]

    Mostramos la diferencia entre los diferentes enunciados más recurridos en matemáticas, planteamos algunos ejemplos y la relación que entablan unos tipos de enunciados con otros.

  • Diapositivas

    Dispositivas sobre las propiedades de la negación, conjunción y disyunción - [Detalles]

    Tomando las definicones pasadas de conjunción y disyunción ahora enunciamos una serie de propiedades que tienen, estas propiedades son demostradas desde el punto de vista de equivalencias de formas proposicionales.

  • Diapositivas

    Diapositivas sobre proposiciones bicondicionales - [Detalles]

    Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.

  • Diapositivas

    Diapositivas sobre traducciones entre proposiciones - [Detalles]

    Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.

  • Diapositivas

    Diapositivas sobre demostraciones por contrapositiva - [Detalles]

    Mostramos la importancia para hacer demostración por contrapositia, lo que se requiere para hacer válida este tipo de demostración matemática, la explicación va acompañada de un ejemplo.

  • Diapositivas

    Diapositivas sobre demostraciones por contradicción - [Detalles]

    Mostramos la importancia para hacer demostración por contradicción, lo que se requiere para hacer válida este tipo de demostración matemática, explicando la lógica acompañada. La explicación va acompañada de un par de ejemplos.

  • Diapositivas

    Diapositivas sobre demostraciones de bicondicionales - [Detalles]

    Mostramos las opciones por las cuales podemos demostrar una proposición bicondicional y la explicación lógica del por qué es posible hacerlo, la explicación se acompaña de 2 ejemplos cada uno respecto a las maneras de demostrar una proposición bicondicional.

  • Diapositivas

    Diapositivas sobre operaciones de conjuntos - [Detalles]

    Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.

  • Diapositivas

    Diapostivas sobre relaciones de equivalencia - [Detalles]

    Partimos de una definición de las diapositivas anteriores y de las definiicones de relaciones reflexivas, simétricas y transitivas, la relación que cumpla con estas 3 se llama una relación de equivalencia y de esta nueva definición se desprende las definiciones de clase de equivalencia y particiones, estas ideas se ilustran con más ejemplos.

  • Guía de estudio

    Guía de estudio sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Diapositivas

    Diapositivas sobre funciones - [Detalles]

    Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.

  • Diapositivas

    Diapositivas sobre conjuntos infinitos - [Detalles]

    Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.

  • Guía de estudio

    Guía de estudio sobre funciones y cardinalidad - [Detalles]

    Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Ilustración

    Ejemplo de funciones inyectivas, suprayectivas y biyectivas - [Detalles]

    Se deja un ejemplo para demostrar que una función es inyectiva, suprayectiva y biyectiva; y otro en donde no lo es para mayor comprensión del tema para el alumno.

  • Ilustración

    Ejemplo de la unión de funciones - [Detalles]

    Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.

  • Ilustración

    Ejemplos de funciones invertibles - [Detalles]

    Se muestran 2 ejemplos en donde se expresan 2 funciones y buscamos su función inversa en caso de que esta exista.

  • Diapositivas

    Diapositivas de inducción matemática (videos alternativos) - [Detalles]

    Damos continuidad al tema pasado, definimos lo que es un subconjunto inductivo, enunciamos el principio de inducción matemática y el principio de inducción generalizado y se presentan más ejemplos sobre inducción matemática.

  • Diapositivas

    Diapositivas sobre ejemplos de combinatoria y propiedades del cálculo combinatorio - [Detalles]

    Hacemos un ejercicio básico sobre el cálculo combinatorio que son ejercicios sobre un mazo de póker y realizamos unas cálculos con etse material, asimismo demostramos 2 propiedades sobre números combinatorios y se dejan 2 ejercicios para el lector.

  • Guía de estudio

    Guía de estudio sobre inducción matemática y cálculo combinatorio - [Detalles]

    Se deja una lista de ejercicios respecto a los temas combinatia e inducción matemática. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Diapositivas

    Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]

    Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.

  • Diapositivas

    Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]

    Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.

  • Guía de estudio

    Guía de estudio sobre sistemas de ecuaciones lineales, matrices y determinantes - [Detalles]

    Se deja una lista de ejercicios respecto a los temas de matrices y solución a sistemas de ecuaciones lineales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Guía de estudio

    Guía de estudio sobre espacios vectoriales - [Detalles]

    Se deja una lista de ejercicios respecto a los tema de espacios vectoriales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Diapositivas

    Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]

    Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.

  • Diapositivas

    Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.

  • Diapositivas

    Diapositivas de distancia entre 2 puntos - [Detalles]

    Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.

  • Interactivo

    Actividad 1 Geogebra coordenadas polares - [Detalles]

    En esta primera actividad de geogebra interactiva nos muestra como en el plano polar se cambian las coordenadas a raíz de su longitud de radio y del grado al que estén puestos.

  • Interactivo

    Actividad 2 Geogebra coordenadas polares - [Detalles]

    En esta nueva actividad de geogebra interactiva seguimos planteando como se mueve sobre el plano polar una coordenada pero ahora también lo que se está implementando es el cálculo del punto medio, la intersección con los ejes polares y más propiedades.

  • Interactivo

    Actividad Geogebra funciones en el plano polar - [Detalles]

    En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.

  • Guía de estudio

    Guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.

  • Diapositivas

    Diapositivas sobre matrices - [Detalles]

    Definimos lo que es una matriz y definimos el espacio de matrices de "n" renglones por "m" columnas y algunas matrices cuadradas especiales de este espacio.

  • Diapositivas

    Diapositivas sobre producto triple de vectores - [Detalles]

    Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.

  • Examen

    Ejercicios sobre espacios vectoriales - [Detalles]

    Resolvemos un examen que contiene los temas ya vistos para espacios vectoriales.

  • Guía de estudio

    Guía de estudio sobre espacios vectoriales - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.

  • Diapositivas

    Diapositivas sobre planos y distancias en el espacio - [Detalles]

    Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.

  • Guía de estudio

    Guía de estudio sobre rectas y planos - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de este tercer módulo de estudios que es todo lo relacionado a rectas, planos, perpendicularidad, vector normal, y más. Hay ejercicios teóricos tanto ejercicios prácticos.

  • Interactivo

    Actividad Geogebra circunferencia - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la circunferencia, vemos como la ecuación de esta cónica cambia si movemos el centro de posición o al cambiar su radio.

  • Interactivo

    Actividad Geogebra hipérbola - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la hipérbola, nos muestra como al cambiar de posición alguno de sus focos, asimismo nos muestra como cambia su ecuación y nos muestra de forma visual como éstos cumplen con la propiedad de la hipérbola.

  • Diapositivas

    Diapositivas sobre traslación de ejes - [Detalles]

    Continuando con el tema de canónicas y ya sabiendo diferenciar cada una de éstas ahora aumentamos un poco la dificultad haciendo una traslación de los ejes, es decir, con cónicas fuera del origen ya teniendo éstas fuera del origen veremos que es muy sencillo calcular sus elementos báscios como el centro, focos y demás.

  • Diapositivas

    Diapositivas sobre parametrización de cónicas - [Detalles]

    Ya teniendo nociones sobre la parametrización de curvas ahora nos interesará parametrizar estas figuras que estamos estudiando, estas parametrizaciones solo son posibles con ayuda de nuestro módulo 2 "trigonometría", con ayuda en estas identidades y razones es posible hacer las parametrización de las cónicas.

  • Guía de estudio

    Guía de estudio sobre cónicas - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de este cuarto y último módulo de estudios que es todo lo relacionado a cónicas; ecuación general, ecuación canónica, excentricidad, traslación y rotación de ejes, simetría y parametrización. Hay ejercicios teóricos tanto ejercicios prácticos.

  • Video

    Lugar geométrico en el plano cartesiano - [Detalles]

    Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas. 

  • Video

    Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]

    Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos. 

  • Video

    Gráfica de una función - [Detalles]

    Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales. 

  • Video

    Graficar funciones de dos variables - [Detalles]

    Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano. 

  • Video

    Resolución de triángulos - [Detalles]

    Hacemos uso de las Leyes de senos y cosenos para la resolución de triángulos. Es decir, mostramos que, sabiendo algunos datos de un triángulo cualquiera, podemos saber cuándo miden los lados y ángulos restantes por medio de las leyes de senos y cosenos 

  • Video

    Coordenadas polares - [Detalles]

    Explicamos en que consiste el plano polar y las coordenadas polares. Damos la representación geométrica del radio y del ángulo en el plano polar. 

  • Video

    Lugares Geométricos en el plano polar - [Detalles]

    Damos una explicación sobre los lugares geométricos en el plano polar. Vemos que las condiciones para representar algunos lugares geométricos son diferentes en el plano polar.  

  • Video

    ¿Un punto con muchas coordenadas? - [Detalles]

    Hablamos sobre algunas peculiaridades de las coordenadas polares, en concreto, sobre que un mismo punto puede tener varias coordenadas polares diferentes, pero todas representan al mismo punto.  

  • Video

    Coordenadas cilíndricas - [Detalles]

    Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas. 

  • Video

    Matrices: que son y notación - [Detalles]

    Explicamos la definición de matrices, y sus características, como numero de renglones y columnas. También se discute la notación de matrices. 

  • Video

    Suma y resta de matrices - [Detalles]

    Damos la definición y explicación de la suma de matrices (también sobre la resta). Hacemos algunos ejemplos ilustrativos y vemos en qué casos no es posible restar o sumar matrices.  

  • Video

    Multiplicación escalar por matriz - [Detalles]

    Definimos y explicamos la multiplicación de un escalar por una matriz. Damos algunos ejemplos y los errores comunes que se pueden cometer. 

  • Video

    Ejercicio 1 dependencia o independencia lineal - [Detalles]

    Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente. 

  • Video

    Ejercicios Producto Punto - [Detalles]

    Hacemos varios ejercicios para calcular el producto punto entre dos vectores. También calculamos el ángulo entre dos vectores y demostramos, usando el producto punto, que el ángulo entre un vector consigo mismo es cero. 

  • Video

    Ecuaciones de la recta - [Detalles]

    Vemos las diferentes formas de representar la ecuación de la recta. Las formas de la ecuación de la recta que vemos son: Punto pendiente, ecuación segmentaria o canónica, ecuación general y paramétrica. También mencionamos algunas partes importantes de la ecuación de la recta, como la pendiente y la ordenada al origen. 

  • Video

    Distancia punto recta - [Detalles]

    Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta. 

  • Video

    Ecuaciones del plano - [Detalles]

    Vemos la ecuación para un plano en el espacio tridimensional, vemos la forma de la ecuación paramétrica y de la ecuación general del plano. También vemos como dar la ecuación del plano a partir de tres puntos que pasen por el plano y como obtener el vector normal al plano. 

  • Video

    Semiespacios - [Detalles]

    Damos una breve definición de los semiespacio, los cuales son regiones del espacio separadas por un plano. Los semiespacios están caracterizados por una desigualdad relacionada a la ecuación del plano que los separa. 

  • Video

    Cónicas - [Detalles]

    Damos una introducción a las secciones cónicas, las cuales son lugares geométricos descritos por la circunferencia, elipse, parábola, hipérbola. También mencionamos algunos elementos importantes como la generatriz, vértice y el eje. Damos la ecuación que define a las secciones cónicas y como diferenciarlas a partir de su ecuación general. 

  • Video

    Simetría de las cónicas - [Detalles]

    Retomamos las simetrías en el plano: central y axial, para ver qué tipo de simetrías poseen las secciones cónicas. Cuando las secciones cónicas tienen simetría central, indicamos cual es el punto al cual se tiene esta simetría, para la simetría axial indicamos el eje en el cual se tiene simetría axial. 

  • Video

    Discriminante De Cónicas - [Detalles]

    Retomamos la ecuación general de las cónicas (la cual es una ecuación de segundo grado de dos variables). Definimos el Discriminante para las cónicas, el cual nos ayuda a saber el tipo de cónica que representa una ecuación general para las cónicas. 

  • Video

    Excentricidad de las cónicas - [Detalles]

    Definimos la excentricidad de las cónicas, el cual es un parámetro con el cual podemos clasificas las cónicas, es decir, conociendo la excentricidad de la cónica podemos saber de qué tipo de sección cónica se trata. 

  • Video

    Multiplicación de números complejos en su forma polar - [Detalles]

    Usando la forma polar de los números complejos, damos una formula muy sencilla para multiplicar complejos (en su forma polar). Vemos que tiene una representación geométrica muy parecida a una rotación, o una suma de vectores en el plano complejo. 

  • Video

    La homotopía de caminos rel 0,1 es una relación de equivalencia - [Detalles]

    En este video se continua preparando el camino para definir el grupo fundamental de un espacio topológico. El objetivo del video es mostrar que la relación de homotopía de caminos rel 0,1 es una relación de equivalencia.

  • Video

    Definición del grupo fundamental - [Detalles]

    En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.

  • Video

    El grupo fundamental es, en efecto, un grupo - [Detalles]

    En este video demostramos que el grupo fundamental es un grupo con la operación dada por concatenar lazos.

  • Video

    El grupo fundamental del círculo - parte 2 - [Detalles]

    En este video terminamos el estudio del grupo fundamental del círculo. Concretamente, demostramos que el grupo fundamental del círculo es cíclico infinito.

  • Video

    Demostración del teorema fundamental del álgebra usando el grupo fundamental del círculo - [Detalles]

    En este video damos una demostración hermosa del teorema fundamental del álgebra usando e hecho de que el grupo fundamental del círculo es cíclico infinito.

  • Video

    El grupo fundamental de un producto - [Detalles]

    En este video demostramos que el grupo fundamental de un producto de espacios topológicos es el producto de los grupos fundamentales de los factores, es decir, el grupo fundamental abre productos.

  • Video

    Homomorfismos inducidos - [Detalles]

    En este video demostramos que cualquier función entre espacios topológicos induce una homomorfismo entre grupos fundamentales (con puntos bases adecuados).

  • Video

    El grupo fundamental de la n-esfera - [Detalles]

    En este video demostramos que el grupo fundamental de las esferas de dimensión al menos 2 es trivial. Este cálculo nos sigue dando herramientas para desarrollar intuición acerca del grupo fundamental.

  • Video

    R^2 no es homeomorfo a R^n si n es diferente de 2 - [Detalles]

    En este video demostramos que R^2 no es homeomorfo a R^n si n es diferente de 2. Para demostrar esto usamos el cálculo de los grupos fundamentales de las esferas. Este resultado es otro ejemplo de cómo usar nuestros invariantes algebraicos (el grupo fundamental) para resolver problemas en topología.

  • Video

    Grupos libres - [Detalles]

    En este video comenzamos un pequeño detour por la teoría de grupos. Definiremos lo que es un grupo libre y enunciaremos su propiedad universal.

  • Video

    El enunciado del teorema de van Kampen - [Detalles]

    En este video damos una breve motivación para el enunciado del teorema de van Kampen. El video lo terminamos con el enunciado formal de dicho teorema. En un video posterior daremos la demostración. Espero que lo disfruten.

  • Video

    Presentaciones de grupos - [Detalles]

    En este video definimos lo que es una presentación de un grupo y damos algunos ejemplos.

  • Video

    Todo grupo es el grupo fundamental de algún espacio - [Detalles]

    En este video demostraremos que todo grupos es el grupo fundamental de algún espacio. Las herramientas principales para demostrar este teorema es la existencia de una presentación y una aplicación muy directa del teorema de van Kampen.

  • Video

    El homomorfismo inducido por un cubriente - [Detalles]

    En este video demostramos que el homomorfismo inducido en grupos fundamentales por una proyección cubriente es inyectivo. Este resultado es una consecuencia del teorema de levantamiento de homotopías.

  • Video

    El número de hojas de un cubriente y su grupo fundamental - [Detalles]

    En este video demostramos que el número de hojas de un cubriente (con espacio base y espacio cubriente arco-conexos) está en correspondencia con el número de clases laterales de la imagen del grupo fundamental del espacio cubriente, en el grupo fundamental del espacio base.

  • Video

    Un criterio de levantamiento de funciones - [Detalles]

    En este video demostramos un criterio que nos dice exactamente cuándo existe un levantamiento de una función con dominio arbitrario.

  • Video

    El cubriente universal - parte 1 - [Detalles]

    En este video definimos una condición necesaria para que un espacio tenga cubriente universal: la noción de ser semi-localmente simplemente conexo.

  • Video

    Transformaciones de cubierta - parte 2 - [Detalles]

    En este video demostramos el teorema que relaciona el grupo de transformaciones de cubierta de un cubriente con el grupo fundamental del espacio base.

  • Video

    Álgebra homológica - homotopías - [Detalles]

    En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.

  • Video

    Álgebra homológica - sucesiones exactas - [Detalles]

    En este video definimos sucesiones exactas. Este video introduce notación que será muy usada en videos posteriores.

  • Video

    Homología singular - simplejos - [Detalles]

    En este video comenzaremos a preparar el camino para definir la homología singular de un espacio. Definiremos lo que es un n-simplejo, el n-simplejo estándar y hablaremos un poco de su estructura combinatorica.

  • Video

    Homología singular - definición de homología singular - [Detalles]

    En este video por fin definiremos la homología singular de un grupo X. Estos objetos (grupos abelianos o R-módulos) serán nuestro principal objeto de estudio en lo que resta de esta lista de reproducción.

  • Video

    Homología singular - el 0-ésimo grupo de homología - [Detalles]

    En este video veremos que el 0-ésimo grupo de homología singular es la suma de copias de los coeficientes, una por cada componente arco-conexa del espacio.

  • Video

    Homología singular - la homología de un punto - [Detalles]

    En este video haremos nuestro primer cálculo explícito de los grupos de homología de un espacio. El espacio en cuestión es el espacio que consiste de un solo punto.

  • Video

    Homología singular - homología reducida - [Detalles]

    En este video definiremos una ligera variante de la homología singular, lo que se conoce como homología reducida. Esta homología reducida es, en ocasiones, más conveniente a la hora de hacer cuentas.

  • Video

    Homología singular - funtorialidad - [Detalles]

    En este video mostraremos que funciones continuas entre espacios topológicos inducen funciones de complejos de cadenas singulares y, por lo tanto, funciones entre grupos de homología.

  • Video

    Homología singular - más acerca de la homología de la pareja - [Detalles]

    En este video veremos que la invarianza homotópica también es cierta para homología de parejas.

  • Video

    Homología singular - la sucesión exacta de la tercia - [Detalles]

    En este video deducimos una sucesión exacta larga que involucra grupos de homología relativas de tres espacios Z contenido en Y y Y contenido en X. Esta sucesión es muy parecida a la sucesión exacta larga de la pareja y se deduce usando el teorema fundamental del álgebra homológica.

  • Video

    Homología singular - la homología de un cociente - [Detalles]

    En este video demostraremos que la homología de la (buena) pareja (X,A) es isomorfa a la homología reducida del cociente X/A. La demostración hace uso del teorema de escisión.

  • Video

    Homología singular - la homología de una esfera - [Detalles]

    En este video calcularemos la homología de una esfera. Este cálculo hará uso de la sucesión exacta del cociente, la cual, a su vez es consecuencia de muchos de los teoremas que ya hemos visto.

  • Video

    Homología singular - el teorema del punto fijo de Brouwer - [Detalles]

    Como aplicación del cálculo de la homología de una esfera demostraremos el teorema del punto fijo de Brouwer en dimensiones arbitrarias. La estrategia es idéntica a la que ya usamos para demostrar el teorema de Brouwer en dimensión 2 con el grupo fundamental.

  • Video

    Homología singular - acciones libres en la esfera - [Detalles]

    En este video demostramos el único grupo que puede actuar libremente en una esfera de dimensión par es el grupo cíclico con dos elementos.

  • Video

    Complejos CW - cono y suspensión - [Detalles]

    En este video definimos el cono y la suspensión de un espacio. Luego mostramos que si el espacio es un complejo CW, entonces su cono y su suspensión también lo son.

  • Video

    Homología celular - definición y equivalencia con homología singular - [Detalles]

    En este video definimos la homología celular y vemos que es isomorfa a los grupos de homología singular.

  • Video

    Homología celular - consecuencias de la definición - [Detalles]

    En este video vemos algunas consecuencias de la definición de la homología celular. Estas consecuencias nos sirven para ver algunas ventajas que tiene la homología celular sobre la singular.

  • Video

    Homología celular - característica de Euler - [Detalles]

    En este video definimos la característica de Euler de un complejo CW finito. Luego, demostramos que la característica de Euler es un invariante homotópico.

  • Proyecto

    Proyecto: Hoyos de gráficas, espacios cociente y homología - [Detalles]

    En este proyecto introducimos las nociones de espacio vectorial cociente, espacio vectorial libre y vemos cómo nos ayudan a definir lo que es la homología.

  • Cuestionario

    Mini-cuestionario: Introducción a forma matricial de transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.

  • Cuestionario

    Mini-cuestionario: Más sobre formas matriciales de transformaciones lineales - [Detalles]

    Otro mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.

  • Cuestionario

    Mini-cuestionario: Cambios de base de transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo realizar cambios a las matrices que representan una transformación lineal al cambiar de base.

  • Cuestionario

    Mini-cuestionario: Bases duales, recetas y una matriz invertible - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué es una base dual y cómo realizar varias operaciones relacionadas con bases duales.

  • Cuestionario

    Mini-cuestionario: Ortogonalidad y transformación transpuesta - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo se define la transformación transpuesta en términos del espacio dual y qué matriz la representa.

  • Cuestionario

    Mini-cuestionario: Ángulos, norma, distancia y desigualdad de Minkowski - [Detalles]

    Mini-cuestionario para verificar el entendimiento de varias nociones geométricas que salen a partir del producto interior.

  • Cuestionario

    Mini-cuestionario: Proceso de Gram-Schmidt - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué es y cómo se hace el proceso de Gram-Schmidt.

  • Cuestionario

    Mini-cuestionario: Transformaciones multilineales antisimétricas y alternantes - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué son las formas multilineales antisimétricas y alternantes.

  • Cuestionario

    Mini-cuestionario: Determinantes de vectores e independencia lineal - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué sucede en términos del determinante y la dependencia lineal.

  • Cuestionario

    Mini-cuestionario: Teorema espectral para matrices simétricas reales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de lo que dice el teorema espectral para matrices simétricas reales.

  • Cuestionario

    Mini-cuestionario: Aplicaciones del teorema espectral - [Detalles]

    Mini-cuestionario para verificar el entendimiento de algunas aplicaciones que tiene el teorema espectral.

  • Blog

    El tamaño de $N$ y de cada natural - [Detalles]

    Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.

  • Blog

    Introducción a estructuras algebraicas - [Detalles]

    Definimos una serie de estructuras algebraicas así como una lista de propiedades que deben cumplir estas estructuras.

  • Blog

    El producto en los enteros - [Detalles]

    Definimos la operación producto y demostramos algunas propiedades básicas de esta operación en los enteros, también demostramos la propiedad distributiva para la suma y el producto, también vemos que en los enteros no tiene divisores de cero.

  • Blog

    La inmersión de los naturales en los enteros - [Detalles]

    Estudiamos a los números enteros pero ahora trabajamos para etiquetarlos como los conocemos comunmente sin perder de vista la construcción y formalidad matemática que se ha trabajado en este tema.

  • Blog

    Máximo Común Divisor - [Detalles]

    Introducimos el concepto de máximo común divisor a través de ideales. Vemos que es combinación lineal entera y hablamos de primos relativos.

  • Blog

    Números primos y sus propiedades - [Detalles]

    Damos la definición de que un entero sea primo. Vemos dos equivalencias y propiedades para preparar el teorema fundamental de la aritmética.

  • Blog

    Teorema fundamental de la aritmética e infinidad de números primos - [Detalles]

    Enunciamos y demostramos el teorema fundamental de la aritmética. Luego, lo usamos para ver que el conjunto de primos es infinito.

  • Blog

    Problemas de divisibilidad y algortimo de Euclides - [Detalles]

    Resolvemos ejercicios que ocupan el algortimo de la división de Euclides.

  • Blog

    Problemas que usan teoremas de Fermat y Wilson - [Detalles]

    Resolvemos un ejercicio de congruencias, un ejercicio ocupando el teorema de Wilson y otro para aplicar el teorama de Fermat.

  • Blog

    Ecuaciones en congruencias - [Detalles]

    Demostramos una serie de resultados que nos ayudan a saber si una ecuación de congruencias tiene solución única o si al menos tiene solución.

  • Blog

    Racionales y sus expansiones decimales - [Detalles]

    Damos una serie de ejemplos que nos muestran la relación entre los números racionales y sus expresiones decimales.

  • Blog

    Construcción de números complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Inmersión de los reales en los complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    La norma en los complejos - [Detalles]

    Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.

  • Blog

    Sistemas de ecuaciones lineales complejos - [Detalles]

    Motivamos el estudio de la solución de sistemas de ecuaciones lineales pero ahora con números complejos, nuestra inspiración fueron algunos métodos que ya conocemos por el estudio en los reales tales como el determinante, substitución o igualando coeficientes.

  • Blog

    Cambio de coordenadas y forma polar de un complejo - [Detalles]

    Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.

  • Blog

    Problemas de fórmula de De Moivre y raíces n-ésimas - [Detalles]

    Resolvemos problemas que ocupan el teorema de De Moivre para potencias de un número complejo y el cálculo de la raíz de un número complejo.

  • Blog

    Algortimo de la división, teorema del factor y del residuo - [Detalles]

    Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.

  • Blog

    Problemas de MCD, algortimo de Euclides e irreducibilidad en R[x] - [Detalles]

    Resolvemos problemas propuestos que involucran los temas del máximo compun divisor en los polinomios mediante el algortimo de Euclides y la factorización de polinomios ocupando el teorema del factor.

  • Blog

    Desigualdades de polinomios - [Detalles]

    Desarrollamos herramientas para poder resolver problemas del orden en el anillo de los polinomios y para que valores se cumplen estas relaciones de orden asimismo se da el teorema de la factorización de polinomios reales.

  • Blog

    Problemas de desigualdades de polinomios - [Detalles]

    Resolvemos problemas que ocupan el material de las desigualdades polinomiales y damos los pasos para poder resolver estos tipos de problemas.

  • Blog

    El teorema de derivadas y multiplicidad - [Detalles]

    Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.

  • Blog

    El criterio de la raíz racional - [Detalles]

    Estudiamos el criterio de la raíz racional el cual nos permite determinar las únicas raíces racionales que puede tener un polinomio de coeficiente enteros, asimismo mostramos una aplicación directa, una indirecta y una con un polinomio de coeficientes racionales.

  • Blog

    Ejemplos de solución de ecuaciones de grados 3, 4 y más - [Detalles]

    Resolvemos ejercicios en los cuales se pide que encontremos las raíces de un polinomio de grado 3 con el método de Cradano, de grado 4 con el método de Ferrari y de grados mayores.

  • Video

    Permutaciones - un primer ejemplo - [Detalles]

    Pequeña motivación del concepto de permutación que definiremos formalmente en el siguiente video.

  • Video

    El soporte de una permutación - [Detalles]

    Definimos el concepto de fijar y mover elementos para una permutación. También definimos el soporte de una permutación. Finalmente damos algunos ejemplos que ilustran las definiciones.

  • Video

    Factorización en ciclos disjuntos - [Detalles]

    Demostramos que toda permutación de un conjunto finito es una composición de ciclos disjuntos. Además damos un ejemplo para ilustrar la demostración.

  • Video

    Multiplicatividad del signo. Parte 2 - [Detalles]

    Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.

  • Video

    Qué es un grupo. Definición explicada - [Detalles]

    Se definen los conceptos básicos para dar con la noción de grupo.

  • Video

    Unicidad del elemento neutro y de inversos - [Detalles]

    Se demuestra que en un grupo, el elemento neutro es único, y para cada elemento, su inverso también es único.

  • Video

    Propiedades de los homomorfismos - [Detalles]

    Se ven tres propiedades que cumplen todos los homomorfismos.

  • Video

    Qué es un subgrupo - [Detalles]

    Se da la definición y ejemplos de subgrupos.

  • Video

    Demostrando propiedades de subgrupos - [Detalles]

    Se presentan algunas propiedades que cumplen los subgrupos de un grupo: todo grupo es subgrupo de sí mismo, el unitario del neutro es subgrupo, todo subgrupo es un grupo.

  • Video

    Subgrupo generado por un subconjunto - parte 1 - [Detalles]

    Se define el concepto de subgrupo generado por un subconjunto de un grupo partiendo de que la intersección de subgrupos es un subgrupo.

  • Video

    Cuando dos clases laterales son iguales - [Detalles]

    Se presenta un criterio para determinar cuándo dos clases laterales son iguales, también se demuestra que clases laterales son iguales o disjuntas.

  • Video

    Kerneles y subgrupos normales - [Detalles]

    Se define el kernel de un homomorfismo y se define el concepto de subgrupo normal, se muestra que en grupos abelianos todos los subgrupos son normales.

  • Video

    Subgrupo conmutador - [Detalles]

    Se define el conmutador de dos elementos y se define el subgrupo conmutador, se demuestra que el cociente módulo el conmutador es abeliano y es mínimo con esa propiedad.

  • Video

    G-conjuntos - [Detalles]

    Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.

  • Video

    Consecuencias de los teoremas de Sylow - [Detalles]

    Se presentan algunas aplicaciones y consecuencias de los teoremas de Sylow que involucran a los p-subgrupos de Sylow.

  • Sitio web

    Ejemplos de funciones de varias variables - [Detalles]

    Se presentan varios ejemplos de funciones de varias variables que cumplen con distintas condiciones sobre ser C_1, tener derivadas parciales, ser continuas, ser derivables, etc.

  • Sitio web

    Coordenadas polares - [Detalles]

    Se introducen las coordenadas polares y disintos tipos de objetos matemáticos que pueden ser descritos a través de ellas.

  • Cuestionario

    1. Introducción a los números complejos - [Detalles]

    Repasaremos unos breves antecedentes históricos y unas de las primeras motivaciones que nos llevaron a la concepción, y posteriormente creación, de los números complejos.

  • Cuestionario

    9. Continuidad en un espacio métrico - [Detalles]

    Le echaremos un vistazo a modo de repaso a un par de nociones acerca de la continuidad en espacios métricos abstractos y uno que otro ejemplo.

  • Blog

    1. Introducción a los números complejos - [Detalles]

    En esta entrada de blog se presentan problemas que motivan la necesidad del sistema de números complejos, en particular los problemas de solucionar ecuaciones de segundo, tercer y cuarto grado.

  • Blog

    8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]

    Estudiaremos las sucesiones de números complejos, el cual resulta un objeto fundamental para el estudio del concepto de las aproximaciones, utilizando los conceptos de distancia que definimos en la entrada anterior e introducimos el "límite de una sucesión" y cuando puede o no existir.

  • Blog

    10. Conexidad y compacidad en un espacio métrico - [Detalles]

    Introducimos las nociones de conexidad y compacidad, que nos permitirán dar caracterizaciones de subconjuntos de $\mathbb{C}$, además veremos su relación con las funciones continuas y estudiaremos sus propiedades topológicas.

  • Blog

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.

  • Blog

    11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]

    Finalizando la unidad, vamos a estudiar el concepto del $\infty$, la manera será construyendo lo que llamaremos el "Plano Complejo Extendido" y analizando sus propiedades.

  • Cuestionario

    13. Funciones multivaluadas - [Detalles]

    Ahora queremos estudiar estas funciones llamadas multivaluadas, que no son exactamente como las funciones cotidianas, ver ejemplos y alguna propiedad.

  • Cuestionario

    19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]

    Repasaremos un par de propiedades que se derivan de las ecuaciones de C-R.

  • Blog

    17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]

    En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.

  • Blog

    18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]

    Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.

  • Blog

    20. Exponencial compleja - [Detalles]

    Ahora vamos a definir unas cuantas de las funciones complejas mas importantes, empezando por la exponencial compleja. y que son mas ricas en propiedades y por lo tanto más interesantes para estudiar.

  • Blog

    21. Logaritmo complejo y potencias complejas - [Detalles]

    Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".

  • Blog

    25. Transformaciones lineales y transformaciones de Möbius - [Detalles]

    En la entrada anterior ya vimos transformaciones y varios tipos, ahora vamos a concentrarnos en dos tipos muy especiales de transformaciones: las lineales y las de Möbius, las últimas en particular esconden bajo su mano un montón de propiedades interesantes que veremos con detalle.

  • Blog

    30. Series de potencias y funciones - [Detalles]

    Una vez vistas las series de potencias, metámonos a ver como se relacionan con las funciones complejas y que puede pasar si una función está descrita por una serie de potencias.

  • Blog

    32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]

    Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.

  • Blog

    39. Teoremas de Weierstrass - [Detalles]

    Vamos a ver unos cuantos resultados importantes para ver cómo se relacionan las series de funciones, derivadas e integrales de estas y veremos bajo qué condiciones se puede derivar e integrar término a término.

  • Cuestionario

    28. Sucesiones y series de funciones - [Detalles]

    Ya que vimos sucesiones y series de números complejos, ahora toca ver los mismos conceptos pero para funciones de variable compleja. Veamos un par de preguntas para ver si se entendió bien.

  • Cuestionario

    29. Series de potencias. Introducción y criterios de convergencia. - [Detalles]

    Repasemos un poco criterios que nos permiten afirmar si un nuevo tipo de serie, llamado serie de potencias, converge o no.

  • Cuestionario

    34. Integrales de contorno I - [Detalles]

    Ya definimos que son contornos, e integrales de funciones híbridas, pasemos ahora a las integrales, ahora sí, de funciones complejas de $\mathbb{C} \longrightarrow \mathbb{C}$.

  • Blog

    Nota 1. Noción de Conjunto - [Detalles]

    En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.

  • Video

    Axiomas de Campo en los números reales - [Detalles]

    La lista de axiomas de campo son las reglas que rigen a los números con una estructura adecuada. En particular el conjunto de números reales satisface esta lista y en este video discutimos cada uno.

  • Cuestionario

    23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas. - [Detalles]

    Ya repasamos las funciones trigonométricas, repasemos un poco cómo se ven sus funciones inversas, ya que estas también son muy importantes.

  • Cuestionario

    25. Transformaciones lineales y transformaciones de Möbius - [Detalles]

    Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.

  • Cuestionario

    25. Transformaciones lineales y transformaciones de Möbius - [Detalles]

    Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.

  • Blog

    Nota 2. Subconjuntos - [Detalles]

    En esta nota se presenta la idea de subconjunto así como varias propiedades que derivan de ella, se ven un par de demostraciones básicas de conjuntos y subconjuntos y se dan un par de axiomas.

  • Blog

    Nota 3. El complemento de un conjunto. - [Detalles]

    En esta nota se presentan las ideas de conjunto universo y conjunto complemento, así como varias propiedades y ejemplos referentes a estos conceptos. También hay un recurso interactivo de Geogebra que ilustra el concepto de complemento de un conjunto.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Nota 10. Función inversa - [Detalles]

    En esta nota explicamos el concepto de función inversa, partiendo de los conceptos de función inversa derecha y función inversa izquierda, vemos varios ejemplos relacionados y demostramos que si una función tiene tanto inversa derecha como izquierda entonces esta es la función inversa y además es única.

  • Video

    Ejercicio de Conjuntos (De Morgan) - [Detalles]

    En este video, emprenderemos un viaje meticuloso para demostrar la validez de las Leyes de De Morgan, dos principios fundamentales que conectan la lógica con las operaciones de conjuntos.

  • Video

    Ejercicio Inducción (Suma de impares) - [Detalles]

    En este video, utilizaremos el poderoso principio de inducción matemática para desvelar la verdad detrás de esta intrigante serie. Paso a paso, te guiaremos a través del razonamiento y la lógica necesarios, permitiéndote entender no sólo el resultado final, sino también el proceso que lleva a él.

  • Video

    Ejemplo Desigualdad del Triángulo - [Detalles]

    En este video, nos sumergimos en el corazón de una demostración que explora la relación entre $\vert xy - x_0y_0\vert$ y un valor $\varepsilon$ determinado, todo ello haciendo uso de la poderosa Desigualdad del Triángulo.

  • Video

    Ejercicio Desigualdad Medias - [Detalles]

    En este video, desglosaremos y demostraremos la famosa desigualdad que relaciona estas dos medias, una herramienta esencial para muchos campos de las matemáticas y la ciencia.

  • Blog

    Nota 13. Relación de equivalencia. - [Detalles]

    En esta nota introducimos el concepto de relación de equivalencia, un tipo de relación muy útil que cumple tres propiedades: reflexividad, simetría y transitividad. También vemos el concepto de clase de equivalencia el cual deriva de este tipo de relación.

  • Blog

    Nota 15. Relaciones de equivalencia y particiones. - [Detalles]

    En esta nota veremos cómo las relaciones de equivalencia generan particiones, y concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia. Con esta nota concluimos la primera unidad del curso.

  • Blog

    Algebra Moderna I: Operación binaria - [Detalles]

    El objetivo de esta nota es definir el concepto de "operación binaria" dentro del Algebra Moderna. Así mismo, dejar definida la notación del concepto que se adoptará a lo largo de las notas del curso. Y por ultimo se ejemplifican algunas formas de construir este tipo de operaciones.

  • Blog

    Álgebra Moderna I: Operación binaria asociativa y conmutativa - [Detalles]

    A continuación se manejan dos tipos de operaciones especificas: las operaciones binarias asociativas y las operaciones conmutativas. Dentro de estos conceptos se espera que el lector pueda reconocer cuando una operación binaria recae dentro de alguno de estos dos tipos mencionados o no. En las notas, se da ejemplo de como reconocer la conmutatividad dentro de un arreglo de Tabla.

  • Blog

    Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]

    En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.

  • Blog

    Álgebra Moderna I: Definición de Grupos - [Detalles]

    Dentro de lo que se abordará como tema principal a continuación, es la definición de grupo y se facilitara la compresión de este nuevo concepto a través de varios ejemplos. Un concepto más es el de Grupo abeliano.

  • Blog

    Nota 21. Conteo, ordenaciones con repetición. - [Detalles]

    En esta nota comenzaremos a ver las técnicas de conteo, las cuales son una aplicación de los números naturales; analizaremos la situación conocida como ordenaciones con repetición, que nos dan todas las posibilidades de formar una secuencia ordenada de m posiciones, llenadas con los n objetos de un determinado conjunto.

  • Blog

    Nota 23. Combinaciones. - [Detalles]

    En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.

  • Blog

    Nota 29. Subespacio generado - [Detalles]

    En esta nota continuaremos con los subespacios vectoriales, definiremos lo que es el subespacio generado por un conjunto y veremos varías propiedades de este así como diversos ejemplos.

  • Blog

    Álgebra Moderna I: Orden de un elemento y Grupo cíclico - [Detalles]

    ¿Cualquier subconjunto X de un grupo G es un subgrupo? Esta premisa es abordada principalmente, necesitamos ver condiciones necesarias que pedirle a a X. Requiriendo la definición de orden de un elemento hasta llegar al concepto de subgrupo cíclico.

  • Blog

    Álgebra Moderna I: Palabras. - [Detalles]

    Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.

  • Blog

    Álgebra Moderna I: Factorización Completa - [Detalles]

    Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.

  • Blog

    Álgebra Moderna I: Paridad de una permutación - [Detalles]

    A partir de la entrada anterior, se puede definir el signo de una permutación. Lo cual guía a introducir la función signo y probar que es multiplicativa. Posteriormente se descubre al Grupo alternante.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Blog

    Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de H en G - [Detalles]

    En esta entrada definiremos una relación de equivalencia en un grupo. Nos referimos al grupo de los enteros con la suma (Z,+) en el cual es posible establecer una relación de equivalencia que induce a una partición con exactamente n conjuntos.

  • Cuestionario

    36. Teorema Integral de Cauchy - [Detalles]

    Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.

  • Cuestionario

    37. Consecuencias del Teorema Integral de Cauchy - [Detalles]

    Veamos unos ejercicios sencillos para asentar bases de los teoremas importantes que se siguen del Teorema Integral de Cauchy

  • Cuestionario

    39. Teoremas de Weierstrass - [Detalles]

    Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.

  • Blog

    Álgebra Moderna I: Teorema de Lagrange - [Detalles]

    A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H

  • Blog

    Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]

    En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.

  • Blog

    Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]

    En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Video

    Introducción: ¿Qué son las Ciencias de la Computación?, Complejidad - [Detalles]

    1.3 Complejidad - Continuación de los conceptos clave de la materia, significado de la complejidad y sus características (tiempo, espacio, tamaño y dificultad) para su ejecución.

  • Video

    Los Elementos de Euclides: Teorema 5 - [Detalles]

    En este video cubrimos el Teorema 5 de Los Elementos de Euclides. Aquí se prueba que en todo triángulo isósceles, los ángulos en la base son iguales entre sí, y además si prolongamos los lados iguales, los ángulos situados bajo la base también son iguales entre sí.

  • Video

    Los Elementos de Euclides: Teorema 6 - [Detalles]

    En este video cubrimos el Teorema 6 de Los Elementos de Euclides. Aquí se demuestra que si en un triángulo dos de sus ángulos son iguales, entonces los lados opuestos a dichos ángulos son iguales entre sí.

  • Video

    Los Elementos de Euclides. Teorema 7 - [Detalles]

    En este video cubrimos el Teorema 7 de Los Elementos de Euclides. Aquí se demuestra que no se pueden levantar sobre una misma recta otras dos rectas iguales respectivamente a dos rectas dadas.

  • Blog

    Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo - [Detalles]

    En esta sección se analizara un tipo de correspondencia que se puede presentar entre dos grupos, lo cual nos llevara a definir el concepto de Homomorfismo. Por tanto, es necesario analizar sus propiedades y comportamientos bajo composición.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Blog

    Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]

    El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.

  • Blog

    Álgebra Moderna I: Tercer Teorema de Isomorfía - [Detalles]

    "Alguna vez te haz preguntado: ¿Qué ocurre con un cociente de cocientes?" Después de una breve introducción al tercer teorema de isomorfía, comenzaremos enunciándolo y probándolo a partir del primer teorema.

  • Video

    Los Elementos de Euclides: Teorema 14 - [Detalles]

    En este video cubrimos el Teorema 14 de Los Elementos de Euclides. Aquí demostramos que si dos segmentos de recta forman con una recta y en un punto de ella, ángulos adyacentes iguales a dos rectos, y no están del mismo lado de dicha recta, entonces los segmentos forman parte de una misma recta.

  • Video

    Los Elementos de Euclides: Teorema 15 - [Detalles]

    En este video cubrimos el Teorema 15 de Los Elementos de Euclides. Aquí se demuestra que los ángulos opuestos por el vértice son iguales.

  • Video

    Los Elementos de Euclides: Teorema 18 - [Detalles]

    En este video cubrimos el Teorema 18 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, a mayor lado se opone mayor ángulo.

  • Video

    Los Elementos de Euclides: Teorema 24 - [Detalles]

    En este video cubrimos el Teorema 24 de Los Elementos de Euclides. Este teorema prueba que si dos triángulos tienen dos lados respectivamente iguales pero el ángulo comprendido por estos lados es mayor en el primer triángulo respecto del segundo, entonces el tercer lado del primer triángulo es mayor respecto del tercer lado del segundo triángulo.

  • Video

    Los Elementos de Euclides: Teorema 27 - [Detalles]

    En este video cubrimos el Teorema 27 de Los Elementos de Euclides. Este teorema prueba que si al incidir una recta sobre otras dos, hace los ángulos alternos iguales entre sí, entonces las dos últimas rectas son paralelas.

  • Video

    Los Elementos de Euclides: Teorema 28 - [Detalles]

    En este video cubrimos el Teorema 28 de Los Elementos de Euclides. Aquí se demuestra que si al incidir una recta sobre otras dos hace los ángulos correspondientes iguales, o los ángulos conjugados internos suplementarios, entonces las dos últimas rectas son paralelas.

  • Video

    Los Elementos de Euclides: Teorema 29 - [Detalles]

    En este video cubrimos el Teorema 29 de Los Elementos de Euclides. Aquí se demuestra la congruencia de los ángulos alternos internos y de los ángulos correspondientes. Además, que los ángulos conjugados internos son suplementarios.

  • Video

    Los Elementos de Euclides: Teorema 30 - [Detalles]

    En este video cubrimos el Teorema 30 de Los Elementos de Euclides, aquí se demuestra que si las paralelas a una misma recta son paralelas entre sí. (También se conoce como la propiedad transitiva del paralelismo de rectas)

  • Video

    Arquitectura de Von Neumman y el ciclo de acarreo; Lenguaje de máquina, ensamblador y diagramas de flujo - [Detalles]

    2.2 Lenguaje de máquina, ensamblador y diagramas de flujo - Continuación de la arquitectura además de conceptos como lenguaje de máquina, lenguaje ensamblador y diagramas de flujo, que serán útiles toda la carrera.

  • Video

    Algoritmos - [Detalles]

    3. Algoritmos - Qué es un algoritmo, cómo funciona, su estructura y características así como un ejemplo muy ilustrativo (triángulo de sierpinski)

  • Video

    Diseño y programación orientada a objetos; Diseño - [Detalles]

    1.3 Diseño: tarjetas de responsabilidad y UML - Diseño de una solución orientada a objetos. Cómo se hace una tarjeta de responsabilidad. ¿Qué es la notación UML? y cómo hacer un diagrama de clases. Se da el primer acercamiento al concepto de herencia o generalización, implementación o realización y contención (agregación y composición). Por último se habla de dependencia y asociación.

  • Video

    Introducción a la programación con Java. Elementos teóricos; Compiladores - [Detalles]

    1.2 Compiladores - Esta lección comienza por definir lo que es un traductor; en específico se estudiarán en esta lección a los compiladores en contraposición con los intérpretes.

  • Video

    Introducción a la programación con Java. Elementos teóricos; Análisis de código - [Detalles]

    1.5 Análisis de código - Qué significan las fases del análisis de código (léxico, sintáctico y semántico) y pasos a seguir.

  • Video

    Los Elementos de Euclides: Teorema 39 - [Detalles]

    En este video cubrimos el Teorema 39 de Los Elementos de Euclides. Aquí se demuestra que si triángulos iguales están sobre la misma base y en el mismo lado, entonces también están entre las mismas paralelas.

  • Blog

    El complemento de un conjunto - [Detalles]

    En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

  • Blog

    Álgebra de conjuntos - [Detalles]

    En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.

  • Blog

    Propiedades del producto cartesiano (parte II) - [Detalles]

    En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

  • Blog

    Composición de relaciones - [Detalles]

    En esta sección definiremos una nueva relación a partir de dos relaciones con ciertas características y una operación a la que llamaremos composición. Veremos si la operación composición tiene propiedades como la conmutatividad o la asociatividad.

  • Blog

    Funciones - [Detalles]

    Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. En esta entrada abordaremos la definición de función, algunas de sus propiedades y ejemplos.

  • Blog

    Clases de equivalencia y particiones - [Detalles]

    Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.

  • Blog

    Conjunto cociente - [Detalles]

    En esta entrada definiremos al conjunto cociente, dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.

  • Blog

    Mínimos, máximos, minimales y maximales - [Detalles]

    En esta sección hablaremos de los elementos de un conjunto ordenado que tienen caracteristicas especiales, según sean éstas los llamaremos mínimos, máximos, minimales o maximales.

  • Blog

    Buenos órdenes - [Detalles]

    En esta entrada veremos el concepto de conjunto bien ordenado, en dicho conjunto toma mucha importancia el concepto de minimo. También veremos como se relaciona este nuevo concepto con los conceptos de orden que se han visto anteriormente

  • Blog

    Isomorfismos de orden - [Detalles]

    En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.

  • Blog

    Construcción de los números naturales - [Detalles]

    En esta sección comenzaremos con la construcción rigurosa de los números naturales, es decir, desde la teoría de conjuntos, sin dejar de lado la noción intuitiva que ya tenemos, para ello veremos el concepto de conjunto transitivo.

  • Blog

    Principio de inducción - [Detalles]

    En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

  • Blog

    Buen orden en los naturales - [Detalles]

    En esta entrada demostraremos que el conjunto de los números naturales es un conjunto bien ordenado.

  • Blog

    Conjuntos finitos - [Detalles]

    En esta sección veremos a los conjuntos finitos, los cuales podremos contar según el número natural al que sean equipotentes. Además, veremos resultados acerca de la cardinalidad de la unión de dos conjuntos.

  • Blog

    Conjuntos finitos (parte II) - [Detalles]

    En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.

  • Video

    Ejercicio Desigualdad en los Reales - [Detalles]

    En este video, nos lanzamos a la tarea de demostrar que la expresión $x^2 +xy + y^2$ siempre es positiva.

  • Video

    Ejercicio Sucesión monótona acotada - [Detalles]

    En este video exploramos el misterioso comportamiento de la sucesión infinita de raíces: $\sqrt{2\sqrt{2\sqrt{2\cdots}}}$ ¿Cómo es posible que esta enigmática estructura nos conduzca al sencillo número 2?

  • Video

    Ejercicio Límite al infinito - [Detalles]

    Aprende a realizar tus primeras demostraciones usando el método de epsilon-delta con un ejemplo sencillo: entender por qué $1/x$ tiende a $0$ cuando tiendes a $\infty$.

  • Video

    Ejercicio Discontinuidad y continuidad con valor absoluto - [Detalles]

    En este video estudiamos una función \(f\) que es discontinua en todas partes, pero su valor absoluto resulta ser continuo en todo el dominio real.

  • Video

    Ejercicio Polinomios de grado par - [Detalles]

    En este video, abordaremos paso a paso el razonamiento detrás de por qué todo polinomio de grado par alcanza su máximo en el conjunto de los números reales.

  • Video

    Ejercicio todo número positivo tiene raíz cuadrada - [Detalles]

    En este video demostraremos que todo número positivo tiene una raíz cuadrada. ¿Cómo lo hacemos? ¡Con la ayuda del poderoso Teorema del Valor Intermedio!

  • Video

    Ejercicio Estimación con Teorema del Valor Medio - [Detalles]

    En este video, no solo desentrañaremos el significado y la intuición detrás del teorema del Valor Medio, sino que también lo utilizaremos como herramienta clave para demostrar una desigualdad intrigante.

  • Video

    Ejercicio Teorema de la Función Inversa - [Detalles]

    En este video, aplicaremos el teorema de la función Inversa para demostrar que, si una función $f$ posee una primitiva, entonces su función inversa también la tiene.

  • Video

    El grado de un vértice - [Detalles]

    En este video se definen la vecindad, el grado de un vértice y el grado promedio de una gráfica. Se prueba el primer teorema en Teoría de Gráficas, a saber, que la suma de todos los grados en una gráfica es el doble del número de aristas. Se definen y estudian también las gráficas regulares y la secuencia de grados de una gráfica.

  • Capítulo del libro

    Los números naturales - [Detalles]

    En este capítulo de Cimientos matemáticos, nos embarcaremos en lo que es la aritmética, explorando los números primos, así como algunas de sus propiedades más importantes. Comenzaremos revisando algunos conceptos básicos, como los números naturales, los múltiplos, el mínimo común múltiplo (MCM) y el máximo común divisor (MCD). Luego, profundizaremos en la noción de divisibilidad, factorización y la clasificación de los números en primos y compuestos.

  • Capítulo del libro

    Conjuntos y Lógica - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.

  • Capítulo del libro

    Funciones trascendentes - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos las funciones trascendentes que modelan fenómenos complejos de nuestro mundo, la circunferencia unitaria simplifica la trigonometría, y las funciones exponenciales y logarítmicas describen crecimientos y decaimientos.

  • Video

    Caminos, paseos y trayectorias - [Detalles]

    Definimos camino, paseo y trayectoria, así como camino cerrado, circuito y ciclo. Probamos que todo u-v camino contiene una u-v trayectoria.

  • Video

    La distancia entre dos vértices - [Detalles]

    Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.

  • Video

    Bosques y árboles - [Detalles]

    Definimos y exploramos los conceptos de bosque, árbol y hoja. Demostramos que todo árbol de orden n tiene n-1 aristas.

  • Video

    Formas alternativas para definir un árbol - [Detalles]

    Exploramos y probamos varias de las distintas identidades que puede tener un árbol. Es decir, estudiamos propiedades equivalentes a la de ser una gráfica sin ciclos y conexa.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 2 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 4, 5 y 6 del curso. Los conceptos que requieres saber son: Secuencia de grados. Algunas familias especiales: gráfica r-regular; gráfica de lineas; gráfica bipartita. Conceptos no totalmente formales: Operaciones: unión disjunta; suma de Zykov; producto cartesiano de G_1 □ G_2; producto directo de G_1 x G_2.

  • Cuestionario

    Cuestionario de ecuaciones y problemas - [Detalles]

    Este es un cuestionario para repasar el Módulo 5 del texto "Cimientos Matemáticos" donde se abarcan temas como: problemas que dan lugar a ecuaciones, solución de ecuaciones de primer grado, sistemas de ecuaciones 2x2 y 3x3, etc.

  • Práctica

    Mundo de la aspiradora - [Detalles]

    Se presenta un agente que interactúa en el mundo de la aspiradora, tal como se presenta en Russel & Norvig (2021). Una versión más compleja de este mundo puede encontrarse en https://github.com/rayheberer/AI-A-Modern-Approach/tree/master/Chapter%202%20Intelligent%20Agents.

  • Práctica

    Agente dirigido mediante tabla - [Detalles]

    Se presentan los agentes dirigidos mediante tablas, es decir, agentes que ejecutan su función a partir de una tabla de percepciones y acciones.

  • Práctica

    Agente reactivo simple - [Detalles]

    Se presentan los agentes reactivos simples, es decir, agentes que reaccionan solamente a la percepción actual.

  • Blog

    Eigenvectores y eigenvalores - [Detalles]

    En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

  • Blog

    Polinomio característico - [Detalles]

    En esta entrada veremos una introducción al concepto de polinomio característico. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

  • Blog

    Polinomio característico de familias especiales - [Detalles]

    En esta entrada veremos varias propiedades que nos van a facilitar el calcular el polinomio característico (y por tanto los eigenvalores) en un amplio rango de matrices diferentes, principalmente matrices triangulares superiores y matrices nilpotentes.

  • Blog

    Matrices similares y su polinomio característico - [Detalles]

    En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).

  • Blog

    Introducción al teorema de Cayley-Hamilton - [Detalles]

    En esta entrada introducimos el teorema de Cayley-Hamilton, otro de los teoremas importantes del curso. Intuitivamente este teorema nos dice que «el polinomio característico anula al operador lineal». Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T) = 0$ .

  • Blog

    Demostración del teorema de Cayley-Hamilton - [Detalles]

    En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.

  • Blog

    Diagonalizar - [Detalles]

    En la entrada anterior estudiamos la triangularización de matrices, que consistía en llevar matrices a una forma triangular superior. En esta fortaleceremos esta idea, y buscaremos maneras de llevar una matriz a una matriz diagonal: a este proceso se le conoce como diagonalizar.

  • Blog

    Repaso de formas bilineales y formas cuadráticas - [Detalles]

    en esta entrada daremos un repaso de los conceptos de formas bilineales y formas cuadráticas, y probaremos algunas propiedades que previamente no fueron demostradas. También nos familiarizaremos con algunos tipos especiales de formas bilineales e intentaremos extender las definiciones ya dadas, esta vez para espacios vectoriales cuyo campo sea $\mathbb{C}$

  • Blog

    Ortogonalidad en espacios euclideanos - [Detalles]

    En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.

  • Blog

    Adjunta de una transformación lineal - [Detalles]

    En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales.

  • Blog

    El teorema de descomposición polar real - [Detalles]

    En esta entrada veremos una de las consecuencias de el teorema espectral: el teorema de descomposición polar. Veremos que toda matriz $A$ tendrá una expresión de la forma $A = US$ donde $U$ es una matriz ortogonal y $S$ es una matriz simétrica positiva.

  • Blog

    Adjunciones complejas y transformaciones unitarias - [Detalles]

    En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.

  • Blog

    Aplicaciones de la forma canónica de Jordan - [Detalles]

    En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

  • Blog

    Teorema del valor medio para campos escalares - [Detalles]

    Demostramos el teorema del valor medio para campos escalares. Con él, vemos que derivadas parciales continuas implican diferenciabilidad.

  • Blog

    Derivadas parciales de orden superior - [Detalles]

    Definimos qué son las derivadas parciales de orden superior para campos escalares. Damos ejemplos y un teorema de conmutatividad.

  • Blog

    Matrices - [Detalles]

    Discutimos la importancia que tendrán las matrices en el cálculo de varias variables. Recordamos ciertas operaciones binarias y elementales.

  • Blog

    Determinantes - [Detalles]

    Repasamos qué son los determinantes, definidos en términos de permutaciones. Recordamos algunas de sus propiedades.

  • Blog

    Polinomio característico - [Detalles]

    Hablamos de polinomio característico y cómo ayuda a encontrar eigenvalores y eigenvectores. Vemos que no depende de la base elegida.

  • Blog

    Formas cuadráticas - [Detalles]

    Hacemos un repaso de lo que son las formas cuadráticas. Vemos la identidad de polarización, el teorema de Gauss y hablamos de positividad.

  • Blog

    Introducción al curso y proposiciones matemáticas - [Detalles]

    Hablamos de las nociones de verdadero y falso en matemáticas. Decimos qué son las proposiciones matemáticas. Introducimos tablas de verdad.

  • Blog

    Inferencias Matemáticas - [Detalles]

    Vemos lo que es una inferencia matemática, sus partes y el significado de inferencias válidas.

  • Blog

    Demostración de proposiciones con cuantificadores - [Detalles]

    En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".

  • Blog

    Producto de matrices con vectores - [Detalles]

    Definimos el producto de matrices con vectores para pocas entradas. Vemos ejemplos y propiedades que cumple.

  • Blog

    Sistemas de ecuaciones lineales - [Detalles]

    Hablamos de sistemas de ecuaciones lineales y qué quiere decir resolverlos. Vemos su forma matricial y una aplicación a sistemas de 2x2.

  • Video

    JAVA, Clases de uso - [Detalles]

    • Clases de uso – Organización por convención. ¿Qué son las clases en JAVA? El método main.  Java, poo, programación orientada a objetos, clases de uso, clases, método main, main

  • Video

    JAVA, Variables y tipos - [Detalles]

    Variables y tipos - Qué son las variables y sus tipos. Cómo se declaran, su sintaxis y definición. Cuáles son los tipos primitivos y derivados así como los operadores en JAVA.

  • Video

    HERENCIA, Herencia simple - [Detalles]

    Herencia simple – Qué es una generalización y especialización. Se presenta el concepto de Herencia en JAVA,

  • Video

    HERENCIA, Herencia múltiple - [Detalles]

    Herencia múltiple – Definición de la herencia múltiple, características, lenguajes que la usan.

  • Video

    Valores, referencias y ocultamiento, ocultamiento - [Detalles]

    Ocultamiento – Definición de ocultamiento, para qué sirve y características. Definición de atributos y variables locales. Se presentan los bloques y cómo se trabajan en JAVA.

  • Video

    Breviario de Lógica y Conjuntos - [Detalles]

    En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.

  • Video

    Axiomas de Orden - [Detalles]

    En este video se enuncia los axiomas de orden para el conjunto de números positivos. Se demuestra algunas consecuencias de los axiomas, se define el orden, se muestra que el orden es congruente con las operaciones y se definen los intervalos.

  • Video

    Valor absoluto y más sobre el orden de los reales - [Detalles]

    En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.

  • Video

    Números naturales e induccion - [Detalles]

    En este video veremos a los números naturales como un subconjunto del campo de los números reales. Justificaremos el Principio de Inducción Matemática, que es una herramienta muy poderosa para demostrar proposiciones de tipo universal acerca de los números naturales.

  • Video

    Principio Arquimediano - Análisis Matemático I - [Detalles]

    El Principio Arquimediano. En este video se eununcia y demuestra el Principio Arquimediano, como consecuencia del Axioma del Supremo. Se define la parte entera de un real y se demuestra que los números racionales son densos en los reales.

  • Video

    Funciones, Parte 2 - [Detalles]

    En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.

  • Video

    Álgebra de límites - [Detalles]

    En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.

  • Video

    Ley del sándwich y límites en situaciones indeterminadas - [Detalles]

    En este video demostramos la ley del sándwich y probamos un útil teorema que nos permite calcular y demostrar límites en situaciones indeterminadas.

  • Video

    Derivación implícita - [Detalles]

    En este video se explica en método de derivación implícita, se muestra una justificación intuitiva del teorema que la respalda, y se ejemplifica en el cálculo de la pendiente de rectas tangentes.

  • Video

    Teorema del Valor Medio - [Detalles]

    En este video demostraremos el Teorema del Valor Medio para derivadas, como consecuencia del Teorema de Rolle, que es demostrado previamente.

  • Video

    Funciones definidas por casos - [Detalles]

    En este video comentaremos sobre el modo de definción de funciones por casos, en especial, las funciones que se definen en tramos.

  • Video

    Distancia en R - [Detalles]

    En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.

  • Video

    Derivación y continuidad - [Detalles]

    En este video se demuestra que toda función derivable en continua.

  • Sitio web

    COMAL: Cálculo Diferencial e Integral I - [Detalles]

    Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Sitio web

    COMAL: Introducción a Ciencias de la Computación - [Detalles]

    Comenzamos con aspectos históricos y la arquitectura básica de una computadora. Luego, nos centramos en aprender a programar con el paradigma orientado a objetos, usando Java como lenguaje ilustrativo. Explicamos el funcionamiento de compiladores e intérpretes. Hablamos del diseño y programación de algoritmos en un lenguaje imperativo, para lo que se estudian variables, estructuras de control, clases y otros temas avanzados. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.

  • Video

    Elementos del paradigma estructurado, Expresiones, enunciados y estructuras de control en Java - [Detalles]

    Expresiones, enunciados y estructuras de control en Java – Estructuras de control en JAVA, qué son los enunciados y expresiones.

  • Video

    Bases numéricas, Sistema binario y sus potencias - [Detalles]

    Sistema binario y sus potencias – Qué es el sistema binario y sus derivados.

  • Video

    Bases numéricas, Operadores sobre bits - [Detalles]

    Operadores sobre bits – Operadores de JAVA que actúan sobre bits.

  • Video

    Implementación con bits, Enteros en la computadora como anillos - [Detalles]

    Enteros en la computadora como anillos – Representación de datos numéricos; qué son los anillos y cómo se representan los enteros.

  • Video

    La pila de ejecución - [Detalles]

    La pila de ejecución - Qué es la pila de ejecución en JAVA y la lógica detrás de esta.

  • Video

    La pila de ejecución, Registros de llamadas a métodos - [Detalles]

    Registros de llamadas a métodos - Dónde se guarda la información cada que se manda a llamar una función

  • Video

    Correctez, Gráficas de flujo - [Detalles]

    Gráficas de flujo - Qué son y cómo utilizarlo para analizar código de alto nivel

  • Video

    Uso de interfaces, Transliterando a Java - [Detalles]

    Transliterando a Java - qué es transliterar en JAVA (listas)

  • Video

    Implementación con orientación a objetos, TDA lista - [Detalles]

    TDA lista - Cómo aplicar el concepto de Tipo de datos abstracto al concepto de lista y qué operaciones se pueden realizar con las listas.

  • Video

    Implementación con orientación a objetos, Insertar en cualquier posición - [Detalles]

    Insertar en cualquier posición - Qué clase usar para insertar en cualquier posición dependiendo del caso.

  • Video

    Interfaz gráfica de usuario (IGU), Diseño de la lógica de una calculadora simple - - [Detalles]

    Diseño de la lógica de una calculadora simple - Parte 1/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.

  • Video

    Interfaz gráfica de usuario (IGU), Creación de una GUI con Netbeans - [Detalles]

    Creación de una GUI con Netbeans - Parte 2/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.

  • Video

    Interfaz gráfica de usuario (IGU), Implementación de las transiciones en el código - [Detalles]

    Implementación de las transiciones en el código - Parte 3/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.

  • Video

    Implementación de genéricos en Java, Borrado de tipos - - [Detalles]

    Borrado de tipos - Por qué los genéricos sólo ayudan en tiempo de compilación.

  • Video

    Implementación de genéricos en Java, Contaminación del montículo - [Detalles]

    Contaminación del montículo - Regla Gólem. Qué hacer cuando se contamina el montículo.

  • Video

    Implementación de genéricos en Java, Tipos puros - [Detalles]

    Tipos puros - Interactuando con código viejo; qué hacer cuando las versiones del pasado quedan obsoletas; compatibilidad

  • Video

    Modelo Vista Controlador, Patrones de diseño - [Detalles]

    Patrones de diseño - Explicación del modelo vista controlador para desarrollar aplicaciones de software; qué es, patrón y explicación. Explicación de los tres tipos de patrones de diseño.(creación, estructurales y comportamiento)

  • Video

    Modelo Vista Controlador, El patrón Observador Listeners and Events - [Detalles]

    El patrón Observador Listeners and Events - también conocido como publicación-suscripción. Dónde usarlo y para qué

  • Video

    Interfaces gráficas de usuario en JAVA, Bibliotecas para IGUs en JAVA - [Detalles]

    Bibliotecas para IGUs en JAVA - Cómo programar interfaces gráficas de usuario en java; qué bibliotecas preestablecidas existen para esto.

  • Video

    Definición de grupos de homotopía - [Detalles]

    Definimos una operación en los grupos de homotopía y probamos que está bien definida.

  • Actividad

    La operación en los groups de homotopía - [Detalles]

    Vemos que la operación en los grupos pi_n esta bien definida

  • Video

    Los grupos de homotopía sí son grupos - [Detalles]

    Probamos que pi_n satisface las propiedades de grupo.

  • Video

    En un espacio arco conexo no importa el punto base - [Detalles]

    Probamos que si X es un espacio topológico arco conexo entonces pi_n(X,a) es isomorfo a pi_n(X,b) para cualesquiera a y b en X

  • Video

    Acción del grupo fundamental - [Detalles]

    Vemos que el grupo pi_1 actúa en los grupos de homotopía superiores

  • Video

    Functorialidad de los grupos de homotopía - [Detalles]

    Vemos que pi_n forma un functor de la categoría de espacios topológicos a la categoría de grupos

  • Video

    Sucesión exacta larga de grupos de homotopía relativos - [Detalles]

    Vemos que si tenemos una filtración de espacio A <B <X entonces podemos formar una sucesión exacta larga con los grupos de homotopía relativos de estos espacios. Esta sucesión sirve mucho para hacer calculos.