Funciones circulares de suma y diferencias - [Detalles]
En este capitulo de Cimientos Matemáticos daremos continuación al tema anterior, mostrando ahora mas propiedades de las funciones circulares, así como realizar el cálculo de la suma y resta de seno, coseno y tangente. Además, abordaremos las funciones circulares del doble de un número y la transformación de productos a sumas y viceversa de estas funciones trigonométricas.
Funciones circulares - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos todo lo relacionado con las funciones circulares, como se comportan en cada caso especifico, cuales son los valores que llegan a tomar dependiendo del cuadrando donde se encuentren, para después abordar lo que son las identidades trigonométrica, los diferentes tipos que hay y para podemos utilizarlos.
Cuestionario de funciones circulares - [Detalles]
Este es un cuestionario para repasar el Módulo 9 del texto "Cimientos Matemáticos" donde se abarcan temas como: identidades trigonométricas, valores de las funciones circulares, etc.
Cuáles son todas las soluciones enteras de una ecuación diofántica - [Detalles]
Demostramos que todas las soluciones de una ecuación lineal Diofántica tienen una forma en particular (expresada en términos de una solución particular y del MCD). Por lo que basta con conocer una solución particular para dar todas las posibles soluciones.
Problemas de optimización - [Detalles]
Solución de algunos problemas de optimización haciendo uso del los criterios para hallar máximos y mínimos de una función.
Teorema del valor medio para la integral - [Detalles]
Teorema valor medio, valor medio generalizado, valor medio integral, valor medio generalizado integral
Resolución de triángulos - [Detalles]
Hacemos uso de las Leyes de senos y cosenos para la resolución de triángulos. Es decir, mostramos que, sabiendo algunos datos de un triángulo cualquiera, podemos saber cuándo miden los lados y ángulos restantes por medio de las leyes de senos y cosenos
Los Elementos de Euclides: Teorema 21 - [Detalles]
En este video cubrimos el Teorema 21 de Los Elementos de Euclides. Aquí demostramos que si desde los extremos de uno de los lados de un triángulo se construyen dos rectas que se encuentren en el interior de él, las rectas construidas serán menores que los lados restantes del triángulo pero el ángulo comprendido por las rectas construidas será mayor.
Los Elementos de Euclides: Teorema 44 - [Detalles]
En este video cubrimos el Teorema 44 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo sobre una recta dada, con un ángulo igual a un ángulo dado, y cuya área sea igual al área de un triángulo dado.
Ejercicio Discontinuidad y continuidad con valor absoluto - [Detalles]
En este video estudiamos una función \(f\) que es discontinua en todas partes, pero su valor absoluto resulta ser continuo en todo el dominio real.
Los Elementos de Euclides: Teorema 2 - [Detalles]
En este video cubrimos el Teorema 2 de Los Elementos de Euclides. Aquí se realiza la construcción de un segmento en un punto dado, igual a un segmento dado.
Los Elementos de Euclides: Teorema 42 - [Detalles]
En este video cubrimos el Teorema 42 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, en un ángulo dado y con un área igual al área de un triángulo dado.
Los Elementos de Euclides: Teorema 45 - [Detalles]
En este video cubrimos el Teorema 45 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, que tenga un área igual al área de un cuadrilátero dado y con un ángulo igual a un ángulo dado.
Todas las gráficas no isomorfas de orden 4 - [Detalles]
En este video presentamos todas las gráficas no isomorfas de orden 4. A partir de esta pequeña familia, introducimos de manera intuitiva conceptos importantes como: la gráfica completa, ciclos, trayectorias, estrellas, gráficas conexas, árboles y gráficas planares. Todos estos conceptos se definirán de manera formal en video subsecuentes.
Cuestionario de funciones circulares de suma y diferencia - [Detalles]
Este es un cuestionario para repasar el Módulo 10 del texto "Cimientos Matemáticos" donde se abarcan temas como: transformación de productos a suma y viceversa, seno, coseno y tangente de sumas y diferencias, etc.
En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.
Nota 14. Familia de Conjuntos y particiones. - [Detalles]
En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.
Establecemos la regla para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de Inyectividad, damos una característica que todas las gráficas de una función inyectiva deben cumplir.
Propiedades del valor esperado - [Detalles]
Enunciamos y demostramos una serie de propiedades del valor esperado de una variable aleatoria, entre estas propiedades una muy importante en el desarrollo del curso la cual es la Ley del Estadístico Inconsciente.
Nota 21. Conteo, ordenaciones con repetición. - [Detalles]
En esta nota comenzaremos a ver las técnicas de conteo, las cuales son una aplicación de los números naturales; analizaremos la situación conocida como ordenaciones con repetición, que nos dan todas las posibilidades de formar una secuencia ordenada de m posiciones, llenadas con los n objetos de un determinado conjunto.
El teorema espectral real - [Detalles]
En esta entrada enunciaremos y demostraremos el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.
Ejemplos de cómo resolver una ecuación diofántica - [Detalles]
Vemos un método para encontrar una solución particular de la ecuación diofántica lineal. En el método hacemos uso del Máximo común divisor y a partir de la solución encontrada podemos generar todas las demás soluciones utilizando las fórmulas del segundo teorema del tema actual.
Teorema de Sylvester - [Detalles]
En esta entrada introduciremos la noción de la signatura de una matriz. A grandes rasgos, esta noción nos dice «qué tan positiva» es una matriz simétrica. Para definir esta noción, lo haremos primero para las matrices diagonales. Luego lo definiremos para todas las matrices simétricas a través del teorema que demostramos la entrada anterior.
Circunferencias ortogonales (parte 1) - [Detalles]
Demostramos que es posible trazar rectas tangentes a una circunferencia desde un punto exterior y que es posible trazar una circunferencia ortogonal a otra con un centro dado y que esté fuera de la circunferencia
Existencia de la forma canónica de Jordan - [Detalles]
Lo que haremos ahora es mostrar una versión análoga de la forma canónica de Jordan para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración.
Introducción a las bifurcaciones. Diagrama de bifurcaciones - [Detalles]
Dibujamos un diagrama que contiene la información de todas las soluciones a una familia uniparamétrica de ecuaciones autónomas, así como los valores de bifurcación, y la naturaleza de las soluciones de equilibrio
Diapositivas sobre subespacios vectoriales - [Detalles]
Damos una nueva definición que son los subespacios vectoriales que es un subconjunto de un espacio vectorial que heredan las propiedades de este último dando así un nuevo espacio vectorial, mostramos que por ser subespacios no es necesario corroborar todas las propiedades pero mostramos cuáles son las que sí se deben corroborar. Estas diapositivas están acompañadas de bastos ejemplos.
Teorema del Residuo - [Detalles]
Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios.
Los Elementos de Euclides: Teorema 23 - [Detalles]
En este video cubrimos el Teorema 23 de Los Elementos de Euclides. Aquí se realiza la construcción sobre una recta dada y en un punto de ella, de un ángulo rectilíneo igual a un ángulo dado.
Los Elementos de Euclides: Teorema 31 - [Detalles]
En este video cubrimos el Teorema 31 de Los Elementos de Euclides. Aquí se realiza la construcción de la recta paralela a una recta dada, por un punto dado.
Nota 28. Combinaciones lineales - [Detalles]
En esta nota definimos lo que es una cambinación lineal de elementos de $\mathbb{R}^n$, veremos que si tomamos un subconjunto no vacio de $\mathbb{R}^n$ y consideramos el conjunto de todas las combinaciones lineales de ese suconjunto entonces obtendremos un subespacio vectorial.
Equivalencia homotópica implica equivalencia homotópica debil - [Detalles]
Un mapeo entre espacios se dice que es una equivalencia homotópica débil si induce isomorfismos en todos los grupos de homotopía. En este video probamos que todas las equivalencias homotópicas son equivalencias homotópicas débiles.
Los números enteros - [Detalles]
En este capítulo de Cimientos Matemáticos, veremos el tema de los números enteros. Exploraremos sus propiedades y operaciones básicas. Veremos cómo cómo se ordenan en una recta numérica, estableciendo desigualdades. Hablaremos de su suma y resta, cuidando cómo trabajar con positivos y negativos. Luego, revisaremos la multiplicación y división de números enteros. Para todas estas operaciones hablaremos de varias propiedades.
Introducción a las bifurcaciones. Valor de bifurcación - [Detalles]
Definimos una familia uniparamétrica de ecuaciones diferenciales autónomas y mediante un ejemplo revisamos el concepto de valor de bifurcación
Resolución de triángulos rectángulo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la medida de dos de sus lados, podemos saber las medidas de todos sus ángulos y su otro lado.
Resolución de triángulos rectángulo, otro ejemplo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la uno de sus lados y uno de sus ángulos, podemos saber las medidas de todos sus ángulos y lados.
Ejercicio Estimación con Teorema del Valor Medio - [Detalles]
En este video, no solo desentrañaremos el significado y la intuición detrás del teorema del Valor Medio, sino que también lo utilizaremos como herramienta clave para demostrar una desigualdad intrigante.
Funciones, sobrecarga de funciones - [Detalles]
Sobrecarga de funciones - Qué es y para qué sirve una sobrecarga de funciones. Sintaxis y ejemplo.
El teorema de clasificación de transformaciones ortogonales - [Detalles]
En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.
Criterio de Eisenstein para verificar que un Polinomio es irreducible - [Detalles]
Presentamos el criterio de Eisenstein, el cual es un teorema que nos dice: Dado un polinomio con coeficientes en los enteros, si existe un numero primo que cumpla cierta propiedad (la cual detallamos en el video), entonces el polinomio es irreducible. Usando este criterio podemos saber si un polinomio es reducible sobre los enteros.
Explicamos en que consiste la simetría central, alrededor de un punto O. La cual describe que dado un punto siempre existe otro punto con el cual, al formar un segmento de recta, el punto central O siempre está en el medio.
Explicamos en que consiste la simetría axial, alrededor de un eje E. La cual describe que dado un punto Q, siempre existe otro punto P, tal que el eje E es la mediatriz del segmento PQ. Describimos esto de forma geométrica con imágenes en un plano.
El teorema de clasificación de cubrientes - parte 1 - [Detalles]
En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un cubriente tal que su grupo fundamental es isomorfo a H.
El teorema de clasificación de cubrientes - parte 2 - [Detalles]
En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un único cubriente tal que su grupo fundamental es isomorfo a H.
Nota 23. Combinaciones. - [Detalles]
En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.
Los Elementos de Euclides: Teorema 46 - [Detalles]
En este video cubrimos el Teorema 46 de Los Elementos de Euclides. Aquí se realiza la construcción de un cuadrado cuyo lado es igual a un segmento dado.
¿Un punto con muchas coordenadas? - [Detalles]
Hablamos sobre algunas peculiaridades de las coordenadas polares, en concreto, sobre que un mismo punto puede tener varias coordenadas polares diferentes, pero todas representan al mismo punto.
34. Integrales de contorno I - [Detalles]
En esta entrada veremos, ahora sí, la definición de integral compleja, con todas las de la ley, solo que descubriremos que hay varios tipos de integral dependiendo de lo que queramos hacer.
23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas. - [Detalles]
Ya repasamos las funciones trigonométricas, repasemos un poco cómo se ven sus funciones inversas, ya que estas también son muy importantes.
Ejercicio Función discontinua en todas partes - [Detalles]
Embárcate en un viaje por los misterios matemáticos mientras exploramos la famosa función de Dirichlet. En este video, nos sumergiremos en la estructura y propiedades de esta curiosa función, demostrando paso a paso cómo es discontinua en todos los puntos del dominio real.
Ejercicio Valor Absoluto - [Detalles]
En este video, exploraremos el enigmático mundo de las desigualdades con valor absoluto, desvelando sus secretos y aprendiendo a resolverlas con precisión y eficacia.
Diapositivas sobre composición de funciones y función inversa - [Detalles]
Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.
13. Funciones multivaluadas - [Detalles]
Ya que comenzamos nuestro estudio de las funciones de variable compleja, debemos introducir unas funciones llamadas "funciones multivaluadas" que no necesariamente cumplen con la definición usual de función, pero son de vital importancia cuando se habla de complejos.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
En esta entrada definiremos lo que significa que dos funciones sean conjugadas y armónicas conjugadas, esto luego nos permitirá caracterizar con aún más precisión a las funciones analíticas por medio de sus partes real e imaginaria.
Funciones invertibles - [Detalles]
Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]
Valor absoluto. Desigualdad del triángulo - [Detalles]
Estudio del concepto valor absoluto y la desigualdad del triángulo con algunas de sus consecuencias.
Valor absoluto y desigualdades - [Detalles]
Revisión de ejercicios de desigualdades con valor absoluto en los números reales.
Teorema del valor intermedio - [Detalles]
Demostración del teorema del valor intermedio
Plano fase para sistemas lineales con cero como valor propio - [Detalles]
Analizamos el plano fase para sistemas lineales tales que tienen al menos un valor propio igual a cero.
Plano fase para sistemas lineales con cero como valor propio (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas que tienen al menos un valor propio igual a cero.
Teorema del valor medio para integrales - [Detalles]
Introducción al concepto del valor medio para integrales.
Teorema de Rolle y teorema del valor medio - [Detalles]
Demostración del teorema de Rolle y del teorema del Valor Medio.
Ejercicio Teorema del Valor Intermedio - [Detalles]
Si $f$ valuada en $0$ es igual a $f$ valuada en $1$, entonces debe existir un valor $x$ tal que $f$ valuada en $x$ es igual a $f$ valuada en $x$ más $1/n$.
Teorema del valor medio para campos escalares - [Detalles]
Demostramos el teorema del valor medio para campos escalares. Con él, vemos que derivadas parciales continuas implican diferenciabilidad.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.
Teorema del Valor Medio - [Detalles]
En este video demostraremos el Teorema del Valor Medio para derivadas, como consecuencia del Teorema de Rolle, que es demostrado previamente.
Funciones polinomiales y racionales. Análisis geométrico de funciones. - [Detalles]
Estudio de funciones polinomiales y racionales. Análisis geométrico de funciones mediante traslaciones, homotecias y reflexiones.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
Ahora resolvamos unas preguntas acerca de funciones conjugadas y funciones conformes.
Funciones suprayectivas y biyectivas - [Detalles]
En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.
Funciones, Funciones en JAVA - [Detalles]
Funciones en JAVA - Definiciones importantes de funciones, parámetros,, características, sintaxis y algunas convenciones universales.
Cuestionario de funciones - [Detalles]
Este es un cuestionario para repasar el Módulo 16 del texto "Cimientos Matemáticos" donde se abarcan temas como: valor de una función, grafica de una función y su relación, tabulación, etc.
Funciones de orden superior, Regresar una función como resultado - [Detalles]
Regresar una función como resultado - Aplicar métodos para obtener funciones como resultado. Anidar funciones.
Transformaciones de variables aleatorias - [Detalles]
Establecemos las bases para hacer transformaciones de variables aleatorias así como las hipótesis que deben cumplir como una composición de funciones, además demostramos que las funciones continuas son Borel-medibles y la composición de una función Borel-medible con una variable aleatoria es una variable aleatoria.
Funciones - inclusión y restricción - [Detalles]
Vemos la definición de las funciones inclusión y restricción de una función, damos algunos ejemplos con funciones numéricas con sus graficas.
Funciones trigonométricas - [Detalles]
Explicamos las funciones trigonométricas: Seno, Coseno y Tangente. Vemos una representación gráfica sobre el circulo unitario de dichas funciones.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Funciones, Parte 3 - [Detalles]
En este video se formaliza el concepto de composición de funciones y se discute sobre cómo es el dominio de una composición de funciones.
23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas - [Detalles]
Habiendo definido las funciones trigonométricas e hiperbólicas complejas en la entrada anterior, utilizaremos el logaritmo complejo para construir las inversas ahora de las trigonométricas y de las hiperbólicas.
Funciones algebraicas - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones algebraicas que son fundamentales en matemáticas, abarcando desde las simples funciones lineales, que dibujan rectas, hasta las cuadráticas con sus parábolas características, pasando por las polinomiales, hasta las racionales.
Funciones, Funciones en JAVA, Declarar, definir y usar una función - [Detalles]
Declarar, definir y usar una función - Cómo se declara y define una función universalmente- Ejemplo de cómo usar una función así como convenciones y parámetros formales y actuales.
Diapositivas sobre funciones - [Detalles]
Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.
Funciones trigonométricas (Parte 2) - [Detalles]
Estudio de las funciones trigonométricas tangente, secante, cosecante y cotangente. Un vistazo a algunas de las funciones trigonométricas inversas.
Funciones trascendentes - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones trascendentes que modelan fenómenos complejos de nuestro mundo, la circunferencia unitaria simplifica la trigonometría, y las funciones exponenciales y logarítmicas describen crecimientos y decaimientos.
13. Funciones multivaluadas - [Detalles]
Ahora queremos estudiar estas funciones llamadas multivaluadas, que no son exactamente como las funciones cotidianas, ver ejemplos y alguna propiedad.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.
Introducción: ¿Qué son las Ciencias de la Computación?, Algoritmos y funciones - [Detalles]
1.2 Algoritmos y funciones - Continuación de los conceptos clave de la materia, qué son los algoritmos y funciones además de sus diferencias y semejanzas.
Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. En esta entrada abordaremos la definición de función, algunas de sus propiedades y ejemplos.
Álgebra de Funciones - [Detalles]
En este video se enlistan las operaciones entre funciones, dando lugar al álgebra de funciones.
Funciones definidas por casos - [Detalles]
En este video comentaremos sobre el modo de definción de funciones por casos, en especial, las funciones que se definen en tramos.
30. Series de potencias y funciones - [Detalles]
Una vez vistas las series de potencias, metámonos a ver como se relacionan con las funciones complejas y que puede pasar si una función está descrita por una serie de potencias.
Otros teoremas de funciones continuas - [Detalles]
Estudio de teoremas derivados del teorema del valor intermedio
Funciones numéricas - [Detalles]
Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.
Funciones iguales - [Detalles]
Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas
Funciones biyectivas - [Detalles]
Damos un repaso a la definición de funciones biyectivas, dando ejemplos con funciones numéricas más complicadas para hablar sobre la biyectividad
Homología singular - funtorialidad - [Detalles]
En este video mostraremos que funciones continuas entre espacios topológicos inducen funciones de complejos de cadenas singulares y, por lo tanto, funciones entre grupos de homología.
41. Técnicas para construir funciones analíticas - [Detalles]
Para finalizar la unidad, vamos a dar unas técnicas para construir funciones analíticas determinando funciones conjugadas armónicas.
Continuidad de funciones de números reales - [Detalles]
En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.
Funciones de orden superior, Definiciones - [Detalles]
Funciones de orden superior - Definiciones y explicación previa a la introducción de este tipo de funciones en JAVA mediante sus interfaces funcionales por sus limitantes
Nota 9. Composición de funciones. - [Detalles]
En esta nota vemos una operación entre funciones llamada composición, así como la prueba de que es una operación asociativa; también vemos varios ejemplos de composiciones y recursos interactivos que nos ayudan a entender mejor el tema, por ultimo introducimos una función muy importante: la función identidad.
Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]
Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.
Actividad 3 Geogebra coordenadas polares - [Detalles]
En este nuevo intercativo presentamos al plano polar, el cual hace lo mismo que en las a nteriores: mover el grado de inclinación y poder dar una longitud de radio pero nos muestra que hay coordenadas polares con valor de longitud de radio negativo el cual es una simetría respecto al origen.
Diapositivas sobre funciones invertibles y biyectivas - [Detalles]
En este tema se demuestra una de las propiedades más importantes de todo el tema de funciones que es que una función es inversa de otra si la composición por ambos lados da la función identidad y segundo que si está función es biyectiva su inversa cumple que la composición resulta la identidad.
Composición de funciones - [Detalles]
Definimos la composición de dos funciones, la cual es una nueva función, vemos un ejemplo con una función numérica
Funciones de distribución de probabilidad - [Detalles]
Definimos la función de distribución probabilística de una variable aleatoria, también demostramos que la función de distribución probabilística es efectivamente una distribución de probabilidad así como mostramos ejemplos de estas funciones.
Ejemplos sobre composición de funciones - [Detalles]
El ejercicio pide exhibir 2 funciones, la primera pide que si una es inyectiva y otra no lo es; la segunda pide que una sea inyectiva y otra sea suprayectiva y la composición de estas no sea ni inyectiva ni suprayectiva.
Nota 8. Imagen directa e inversa de una función. - [Detalles]
En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.
Funciones inyectivas, crecientes y decrecientes - [Detalles]
En este video definimos el concepto de inyectividad, que es un criterio por el que una función puede tener una función inversa, y se discute la relación entre inyectividad y crecimiento-decrecimiento de funciones.
Teorema de Existencia y Unicidad - Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall - [Detalles]
Se desarrolla una teoría preliminar necesaria para demostrar el teorema de existencia y unicidad, en dicha teoría se presentan las ecuaciones integrales, las funciones lipschitzianas y el lema de Gronwall
Cuando tiene solucion una congruencia lineal - [Detalles]
Vemos un ejemplo de una ecuación lineal modulo 4 que no puede tener soluciones enteras (mostramos que si tuviera solución llegamos a una contradicción), esto nos lleva a dar una proposición para saber cuándo una ecuación lineal tiene una solución y una segunda proposición, con la cual podemos saber cuándo una ecuación lineal tiene o no solución.
Los números reales - [Detalles]
En este capitulo de Cimientos Matemáticos exploraremos las propiedades de los números reales, como son estas reglas fundamentales que rigen su manipulación en operaciones matemáticas, mientras que el concepto de valor absoluto añade una capa de comprensión al medir la distancia de un número al cero en la línea numérica.
En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.
Actividad Geogebra funciones en el plano polar - [Detalles]
En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.
Homología singular - invarianza homotópica - [Detalles]
En este video demostraremos una de las propiedades fundamentales de la homología, es decir, que funciones homotópicas inducen funciones iguales en homología. La demostración es un poco larga e involucra cuentas que están relacionadas con la combinatoria del n-simplejo estándar.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos - [Detalles]
Analizamos el caso cuando la matriz asociada al sistema tiene valores propios complejos. Encontramos dos soluciones reales dada una solución compleja formada con un valor y un vector propios complejos.
Valor esperado de una variable aleatoria - [Detalles]
Explicamos la definición de esperanza para el caso continuo y para el caso discreto acompañando de ejemplos.
Ejemplo Desigualdad del Triángulo - [Detalles]
En este video, nos sumergimos en el corazón de una demostración que explora la relación entre $\vert xy - x_0y_0\vert$ y un valor $\varepsilon$ determinado, todo ello haciendo uso de la poderosa Desigualdad del Triángulo.
Ejercicio Límite de función acotada y otra con valor $0$ - [Detalles]
Si $g(x)$ tiende a $0$ y $h(x)$ es una función acotada, ¿qué ocurre con el producto $g(x)h(x)$? En este video, exploramos y demostramos por qué este producto también tiende a $0$.
Ejercicio Función con máximo global - [Detalles]
Si una función $f(x)$ es siempre positiva y tiende a $0$ cuando $x$ se acerca al infinito o al negativo infinito, ¿logra esta función alcanzar su valor máximo en algún punto?
Ejercicio todo número positivo tiene raíz cuadrada - [Detalles]
En este video demostraremos que todo número positivo tiene una raíz cuadrada. ¿Cómo lo hacemos? ¡Con la ayuda del poderoso Teorema del Valor Intermedio!
Cómo verificar que dos funciones son inversas - [Detalles]
Haciendo uso de un ejemplo, mostramos como verificar cuando dos funciones son inversas una de otra.
Guía de estudio sobre funciones y cardinalidad - [Detalles]
Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre funciones - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a funciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]
Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.
Funciones inyectivas - [Detalles]
En esta sección abordaremos el concepto de función inyectiva, notaremos que la función inyectiva será aquella que mande elementos distintos a elementos distintos bajo una función. Veremos varios ejemplos así como equivalencias a ser inyectiva, por ultimo veremos que pasa con la composición de funciones y la inyectividad.
Álgebra de límites - [Detalles]
En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.
Gráfica de una función - [Detalles]
Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales.
Funciones exponenciales y logarítmicas - [Detalles]
Estudio de las funciones exponenciales y logarítmicas, su relación entre ellas. Revisión de resultados importantes como: las leyes de los esponentes, las leyes de los logaritmos y el cambio de base.
Series de Fourier de las funciones pares e impares - [Detalles]
Estudio de las series de Fourier de las funciones pares e impares
Cuestionario sobre funciones en el plano polar - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
31. Funciones elementales como series de potencias - [Detalles]
Vamos a repasar un par de trucos para los cuales se necesario aplicar las propiedades de series de potencias, de las funciones de las cuales conocemos sus series.
Razones Trigonométricas de los ángulos notables - [Detalles]
En este video hablamos sobre el valor de las razones trigonométricas de los ángulos notables, anteriormente vistos. explicamos como se relación entre si las razones trigonométricas en estos ángulos.
Vecindades de números reales - [Detalles]
En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.
Funciones hiperbolicas - [Detalles]
Introducción a las definiciones de las funciones hiperbólicas
Derivada de las funciones exponencial y logarítmica - [Detalles]
Demostración de la derivada de las funciones exponencial y logarímica.
Derivada de las funciones trigonométricas - [Detalles]
Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.
Funciones definidas por casos - [Detalles]
En este video se comenta sobre las funciones de variable real que se definen por casos, en especial, las que se definen por tramos.
Definiciones elementales: Problema de condición inicial, ecuaciones lineales y no lineales - [Detalles]
Definimos el problema de condición inicial (o valor inicial) y a las ecuaciones lineales y no lineales.
Funciones pares e impares. - [Detalles]
Estudio de los conceptos de función par e impar y de resultados relacionados con las operaciones de este tipo de funciones.
Funciones trigonométricas (Parte 1) - [Detalles]
Estudio de algunas identidades trigonométricas más utilizadas. Un primer acercamiento a las funciones seno y coseno, así como la definición de función periódica.
Límites de funciones trigonométricas - [Detalles]
Estudio de los límites de las funciones trigonométricas
Integración de funciones racionales por fracciones parciales - [Detalles]
Enseñanza a las integrales con funciones racionales por el metodo de fracciones parciales.
Introduccion a funciones de varias variables - [Detalles]
Introducción a las funciones de varias variables
Funciones de Lyapunov - [Detalles]
Definimos las funciones de Lyapunov y estudiamos algunas propiedades útiles respecto a sistemas de ecuaciones y sus puntos de equilibrio.
Ejemplo de la unión de funciones - [Detalles]
Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.
Homotopias entre funciones - [Detalles]
En este video definimos homotopía entre funciones y homotopías que preservan el punto base. Luego demostramos que las homotopías que preservan el punto base inducen el mismo homomorfismo en grupos fundamentales.
22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]
Ya definidas la exponencial y el logaritmo complejos, daremos parao a definir las funciones trigonométricas e hiperbólicas complejas.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
34. Integrales de contorno I - [Detalles]
Ya definimos que son contornos, e integrales de funciones híbridas, pasemos ahora a las integrales, ahora sí, de funciones complejas de $\mathbb{C} \longrightarrow \mathbb{C}$.
41. Técnicas para construir funciones analíticas - [Detalles]
Hagamos más ejercicios utilizando las técnicas de la entrada de blog anterior, para encontrar conjugadas y funciones analíticas.
Funciones inversas - [Detalles]
En esta sección hablaremos acerca de las funciones inversas, para ello introduciremos conceptos como el de inversa derecha y el de inversa izquierda, veremos como se relacionan con los conceptos anteriores de función inyectiva, sobreyectiva y biyectiva.
Funciones compatibles - [Detalles]
En esta entrada definiremos las funciones compatibles y veremos varios resultados relacionados a ellos. Este concepto será de gran utilidad en la demostración de nuestro siguiente teorema: el teorema de recursión.
Funciones de variable real - [Detalles]
En este video se enlistan las funciones de variable real más comunes.
Nota 7. Relaciones y funciones - [Detalles]
En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.
Funciones de orden superior, Pasar una función como parámetro - [Detalles]
Pasar una función como parámetro - Implementar una interfaz funcional para pasar la función a parámetro. Introducción a las clases anónimas internas y a las LAMBDA
Ecuaciones diferenciales homogéneas con coeficientes constantes - [Detalles]
Se estudia un método para resolver ecuaciones diferenciales homogéneas de segundo orden con coeficientes constantes de acuerdo al valor del discriminante de la ecuación auxiliar
Plano fase para sistemas lineales con valores propios repetdos (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas que tienen un único valor propio.
Cuestionario de los números reales - [Detalles]
Este es un cuestionario para repasar el Módulo 15 del texto "Cimientos Matemáticos" donde se abarcan temas como: postulados de campo, postulados de orden, valor absoluto, etc.
Limites laterales - [Detalles]
En este video se explica la idea de los límites laterales, se hacen algunos ejemplos y se demuestra que cuando los límites laterales coinciden, el límite de la función existe y es igual al valor común de los límites laterales.
Continuidad en intervalos cerrados - [Detalles]
En este video se explica el concepto de continuidad en intervalos cerrados y se demuestran los teoremas de Bolzano y del Valor Intermedio.
Composición de Funciones Biyectivas es Biyectiva - [Detalles]
Al igual que los casos anteriores demostramos que: Si dos funciones son biyectivas, entonces su composición es biyectiva
Método de la transformada de Laplace. Problemas que involucran funciones continuas por pedazos - [Detalles]
Aplicamos el método de la transformada de Laplace para resolver problemas de condición inicial cuya ecuación diferencial involucra funciones continuas por pedazos, y resolvemos un ejemplo particular.
Suma, producto y composición de funciones - [Detalles]
Estudio de los conceptos de suma, producto, cociente y composición de funciones.
Funciones crecientes y decrecientes. Funciones acotadas. - [Detalles]
Estudio de los conceptos de función creciente, decreciente y acotada, así cómo la revisión de ejemplos.
Ejemplos de funciones invertibles - [Detalles]
Se muestran 2 ejemplos en donde se expresan 2 funciones y buscamos su función inversa en caso de que esta exista.
Ejemplo 3 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se demuestra que el subconjunto de funciones constantes, que es subconjunto del conjunto de funciones, es un subespacio vectorial.
Álgebra homológica - homotopías - [Detalles]
En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.
Ejemplos de funciones de varias variables - [Detalles]
Se presentan varios ejemplos de funciones de varias variables que cumplen con distintas condiciones sobre ser C_1, tener derivadas parciales, ser continuas, ser derivables, etc.
28. Sucesiones y series de funciones - [Detalles]
Desde hace varias entradas habíamos definido sucesiones, y en la anterior series, pero ambas para números complejos, ahora subiremos un escalón, definiendo estos conceptos también para funciones complejas.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
28. Sucesiones y series de funciones - [Detalles]
Ya que vimos sucesiones y series de números complejos, ahora toca ver los mismos conceptos pero para funciones de variable compleja. Veamos un par de preguntas para ver si se entendió bien.
33. Integrales de funciones híbridas - [Detalles]
Comenzaremos practicando un poco de integración sencilla en funciones híbridas $f:[a,b]\longrightarrow \mathbb{C}$.
26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]
Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.
Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas. - [Detalles]
En esta nota probamos varios resultados referentes a la composición de funciones inyectivas, suprayectivas y biyectivas.
Cuestionario de funciones algebraicas - [Detalles]
Este es un cuestionario para repasar el Módulo 17 del texto "Cimientos Matemáticos" donde se abarcan temas como: función lineal, función cuadrática, sus propiedades, funciones polinomiales, etc.
Introducción a funciones - [Detalles]
En esta entrada revisamos el concepto de función matemática, así como la igualdad entre funciones.
Funciones inyectivas, suprayectivas y biyectivas - [Detalles]
En esta entrada hablamos sobre funciones inyectivas sobreyectivas y biyectivas.
Composición de funciones - [Detalles]
En esta entrada revisamos la composición entre funciones y algunas propiedades.
Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
Funciones de orden superior, Ejemplo de aplicación - [Detalles]
Ejemplo de aplicación - Breve ejemplo de implementación de funciones-objeto de orden superior.
Equivalencia entre funciones biyectivas e invertibles - [Detalles]
Definimos la inversa de una función, demostramos principalmente que: Una función tiene inversa si y sólo si, es biyectiva. Además de esto demostramos otro par de Teoremas relacionados a la inversa de una función.
43. Clasificación de ceros y singularidades de una función analítica - [Detalles]
Realizaremos unos ejercicios para aterrizar las definiciones de singularidad de una función, si es removible, polo o esencial con funciones muy bien conocidas.
Ejercicio Teorema del Sandwich - [Detalles]
¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?
Localización de máximos y mínimos. Monotonía de funciones. - [Detalles]
Estudio de los conceptos máximo y mínimo de una función, la derivada y la monotonía de una función y el Criterio de la primera derivada.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
Graficar funciones en coordenadas polares - [Detalles]
Vemos como graficar una función en el plano polar. Para mostrar un ejemplo tomamos una función del ángulo f(theta), y damos su grafica en el plano polar.
Graficar funciones en coordenadas polares: otro método - [Detalles]
Damos un método alternativo para graficar una función en el plano polar. A partir de la gráfica de una función en coordenadas cartesianas, se puede usar como guía para dar la gráfica en coordenadas polares.
33. Integrales de funciones híbridas - [Detalles]
Ahora en esta entrada, ya armados con el concepto de función híbrida, veremos la definición de la integral de una función híbrida, con esto luego podremos pasar a la integral de una función compleja.
Ejercicio Representación de funciones con función par e impar - [Detalles]
En este video explicamos cómo descomponer cualquier función en dos compañeras esenciales: una función par y una función impar.
Soluciones de una ecuación cuadrática - [Detalles]
Hablamos sobre las posibles soluciones de una ecuación cuadrática (damos un breve recordatorio sobre la formula general o más popularmente conocida como "chicharronera"). Vemos gráficamente cuando una ecuación cuadrática tiene dos, una o ninguna solución real. Definimos el discriminante y haciendo uso de el vemos cuando la ecuación cuadrática tiene una o dos soluciones reales, o cuando su solución es compleja.
Reglas para escribir una demostración - [Detalles]
Platicamos en que consiste una demostración, y además damos cuatro reglas a seguir para conseguir una demostración coherente y exitosa. Una demostración es una justificación de la veracidad de un teorema.
Definición de función - [Detalles]
Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último
Vemos en que consiste la parametrización de una curva. Vemos algunos ejemplos y como una parametrización representa una curva, además de que una misma curva puede tener más de una parametrización.
Diapositivas sobre lugar geométricos de las cónicas - [Detalles]
Formalizamos el concepto de las cónicas definiédolas como lugares geométricos, por lo cual se surge una definición respecto a los puntos que generan a nuestras figuras cónicas siendo una definición más formas y que más adelante nos ayudará a generar las ecuacioens canónicas de cada una de las cónicas, también hablamos sobre los elementos más importante de cada una de ellas.
9. Continuidad en un espacio métrico - [Detalles]
Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Diapositivas sobre determinantes - [Detalles]
Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.
Bases ortonormales y descomposición de Fourier - [Detalles]
Definimos la descomposición de Fourier dada una base ortonormal y vemos su relación con la norma. Aplicamos las ideas a polinomios y funciones periódicas.
Usando los conceptos de función inyectiva y suprayectiva, definimos cuando una función es biyectiva, hablamos de algunos ejemplos para ilustrar funciones biyectivas y demostramos que la función identidad es biyectiva.
Teoremas sobre el límite de funciones - [Detalles]
Revisión de teoremas del límite de una función
Ejemplo de funciones inyectivas, suprayectivas y biyectivas - [Detalles]
Se deja un ejemplo para demostrar que una función es inyectiva, suprayectiva y biyectiva; y otro en donde no lo es para mayor comprensión del tema para el alumno.
Cuestionario de gráfica de funciones - [Detalles]
Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Un criterio de levantamiento de funciones - [Detalles]
En este video demostramos un criterio que nos dice exactamente cuándo existe un levantamiento de una función con dominio arbitrario.
Unicidad del levantamiento de funciones - [Detalles]
En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).
Complejos CW - funciones características y subcomplejos - [Detalles]
En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.
14. Límites en $\mathbb{C}$ - [Detalles]
En esta entrada conoceremos el límite de una función de variable compleja, cuya definición no es lejana a la de funciones de variable real, para luego poder abrirnos paso hacia la continuidad.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
Nota 11. Funciones inyectivas, suprayectivas y biyectivas. - [Detalles]
En esta nota introducimos los conceptos de funcón inyectiva, función suprayectiva y función biyectiva, así como varios ejemplos de estas. También demostramos que es equivalente que una función sea biyectiva a que sea invertible.
Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]
En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.
Funciones (parte II) - [Detalles]
En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.
Ejercicio Funciones invertibles por un lado - [Detalles]
En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.
Ejercicio Limite superior de una sucesión - [Detalles]
En este video estudiamos los límites limsup y el liminf. Navegaremos entre secuencias y funciones, descubriendo cómo estas dos nociones nos brindan perspectivas únicas sobre el comportamiento asintótico.
Funciones, Parte 2 - [Detalles]
En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.
Funciones, Parte 4 - [Detalles]
En este video sólo se muestra un ejemplo de problemas típicos de los libros de texto, consistente en "encontrar el dominio de una función".
COMAL: Teoría de los Conjuntos - [Detalles]
En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Clases de homotopía de funciones con domino la n-esfera - [Detalles]
Vemos una manera equivalente de definir los grupos de homotopía
El teorema de descomposición polar real - [Detalles]
En esta entrada veremos una de las consecuencias de el teorema espectral: el teorema de descomposición polar. Veremos que toda matriz $A$ tendrá una expresión de la forma $A = US$ donde $U$ es una matriz ortogonal y $S$ es una matriz simétrica positiva.
Introducción a las bifurcaciones. Determinación de los valores de bifurcación - [Detalles]
Determinamos los valores de bifurcación con ayuda de las gráficas y las primeras derivadas de las funciones que determinan a la familia uniparamétrica de ecuaciones autónomas
Cuantas soluciones tiene una congruencia lineal - [Detalles]
Usando un ejemplo vemos cuantas soluciones llega a tener una ecuación lineal modulo "m", esto nos lleva a buscar un método para conocer el número de soluciones de una ecuación lineal. Haciendo uso de un teorema que demostramos durante el video, llegamos a un corolario el cual nos dice que una ecuación lineal modulo "m", tiene MCD(a,m) soluciones.
Multiplicación de números complejos en su forma polar - [Detalles]
Usando la forma polar de los números complejos, damos una formula muy sencilla para multiplicar complejos (en su forma polar). Vemos que tiene una representación geométrica muy parecida a una rotación, o una suma de vectores en el plano complejo.
En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.
Teoría de Gráficas - Cuestionario 1 - [Detalles]
Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.
Interfaz gráfica de usuario (IGU), Diseño de la lógica de una calculadora simple - - [Detalles]
Diseño de la lógica de una calculadora simple - Parte 1/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Interfaz gráfica de usuario (IGU), Creación de una GUI con Netbeans - [Detalles]
Creación de una GUI con Netbeans - Parte 2/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]
Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.
Cambio de coordenadas de polares a cartesianas - [Detalles]
Explicamos como pasar de coordenadas polares a coordenadas cartesianas, de un punto. Usamos las funciones trigonométricas para dar las coordenadas cartesianas a partir de las coordenadas polares (radio, ángulo).
Propiedades de las sucesiones convergentes - [Detalles]
Estudio de propieades de las funciones convergentes
Derivabilidad y continuidad - [Detalles]
Relación entre derivabilidad y continuidad y revisión de las primeras reglas de derivación (derivada de las operaciones con funciones).
Diapositivas sobre razones trigonométricas - [Detalles]
Damos la introducción al tema de trigonometría como las razones trigonométricas, la medición en grados o radianes, funciones trigonométricas de ángulos notables, resolución de triángulos basándonos en las razones trigonométricas y leyes de senos cosenos.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Introducimos las nociones de conexidad y compacidad, que nos permitirán dar caracterizaciones de subconjuntos de $\mathbb{C}$, además veremos su relación con las funciones continuas y estudiaremos sus propiedades topológicas.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.
24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]
Ya hablamos bastante acerca de las funciones complejas, su continuidad y derivadas, ahora revisaremos un poco más afondo la geometría, por medio de las transformaciones, veremos varios tipos de estas y como afectan al plano y a subconjuntos de este.
Sucesiones monótonas - [Detalles]
Definición y propiedades de las funciones monótonas
Sucesiones divergentes y sus propiedades - [Detalles]
Definción, ejemplos y propiedades de las funciones divergentes
Definición de continuidad y sus propiedades - [Detalles]
Definición, ejemplos y propiedades de las funciones continuas
Integrales trigonométricas basicas - [Detalles]
Enseñanza a la integración de las funciones trigonométricas basicas.
Reglas de derivación - [Detalles]
Resumen de las reglas de derivación y demostración de la derivada de funciones frecuentes.
Diapositivas sobre coordenadas polares - [Detalles]
Mostramos lo que es el plano polar, para qué sirve este plano, cómo se utiliza, cuáles son las entradas de sus coordenadas, definimos lo que es un radián y cómo se utiliza este para utilizar el plano polar. Dejamos algunos ejemplos de funciones graficadas en este nuevo plano.
Ejemplo 3 espacio vectorial - [Detalles]
Demostramos que el conjunto de funciones numéricas cumple con las diez reglas de los espacios vectoriales, y vemos que es un espacio vectorial.
Exponencial, logaritmo y trigonometría en los complejos - [Detalles]
Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.
Problemas de exponencial, logaritmo y trigonometría en C - [Detalles]
Resolvemos problemas de las funciones exponencial, logarítmica y trigonométricas en el campo complejo.
24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]
Revisemos ahora aspectos geométricos acerca de las funciones, o transformaciones $T:\mathbb{C} \longrightarrow \mathbb{C}$.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.
20. Exponencial compleja - [Detalles]
Ahora vamos a definir unas cuantas de las funciones complejas mas importantes, empezando por la exponencial compleja. y que son mas ricas en propiedades y por lo tanto más interesantes para estudiar.
Unidad II: Analicidad y funciones de variable compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la segunda unidad.
Unidad II: Analicidad y funciones de variable compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la segunda unidad.
39. Teoremas de Weierstrass - [Detalles]
Vamos a ver unos cuantos resultados importantes para ver cómo se relacionan las series de funciones, derivadas e integrales de estas y veremos bajo qué condiciones se puede derivar e integrar término a término.
30. Series de potencias y funciones - [Detalles]
Repasemos unos cuantos aspectos, un poco más técnicos acerca de las series de potencias, tales como diferenciabilidad.
Isomorfismos de orden - [Detalles]
En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.
Principio de recursión en los números naturales - [Detalles]
En esta entrada revisamos las funciones recursivas, su definición y ejemplos.
Continuidad en intervalos cerrados 2 - [Detalles]
En este video demostramos que las funciones continuas en intevalos cerrados son acotadas, y después, demostramos que alcanzan sus valores máximo y mínimo.
Recursividad, recursión en JAVA - [Detalles]
Recursión en JAVA - Cómo funciona y cómo se implementan/declaran las funciones recursivas en JAVA
Espacios vectoriales - [Detalles]
Definimos qué son los espacios vectoriales. Damos muchos ejemplos, entre ellos, espacios de matrices, espacios de funciones y espacios de polinomios.
Problemas de combinaciones lineales, generadores e independientes - [Detalles]
Resolvemos problemas de vectores generadores y linealmente independientes. Damos ejemplos con espacios de vectores, matrices, polinomios y funciones.
Composición de inyectivas es inyectiva - [Detalles]
Usando el concepto de inyectividad, demostramos el teorema: Si dos funciones son inyectivas, entonces su composición es inyectiva.
Composición de suprayectivas es suprayectiva - [Detalles]
Usando el concepto de suprayectividad, demostramos el teorema: Si dos funciones son suprayectivas, entonces su composición es inyectiva.
Funciones inyectivas, sobreyectivas y biyectivas. Función inversa. - [Detalles]
Estudio de los conceptos de función inyectiva, sobreyectiva, biyectiva y de función inversa así cómo de resultados relacionados.
Continuidad uniforme - [Detalles]
Definición y ejemplos de funciones uniformemente continuas
Integrales trigonométricas: Producto de potencias de senos y cosenos - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones senos y cosenos
Integrales trigonométricas: Producto de potencias de tan(x) y sec(x) - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones tan(x) y sec(x).
Área entre curvas - [Detalles]
Enseñanza sobre el cálculo del area delimitada entre dos funciones.
Regla de la cadena - [Detalles]
Demostración de la derivada de composición de funciones y la regla de la cadena.
Medida de probabilidad - [Detalles]
Presentamos el concepto de medida de probabilidad y sus propiedades básicas. Mostramos algunos ejemplos de funciones que son medidas de probabilidad.
Sistemas gradiente - [Detalles]
Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.
Álgebra homológica - complejos de cadenas - [Detalles]
En este video comenzamos a estudiar álgebra homológica desde un punto de vista puramente algebraico. Definimos complejos de cadenas, subcomplejos, complejos cociente, homología y funciones inducidas.
Homología - el complejo de cadenas singulares - [Detalles]
En este video definiremos el complejo de cadenas singulares usando funciones del n-simplejo estándar a un espacio topológico X.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Chequemos un poquito de la definición de función y de sus partes real e imaginaria.
14. Límites en $\mathbb{C}$ - [Detalles]
Analizaremos nuevamente la definición de límite, pero ahora para funciones complejas.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Anteriormente vimos continuidad en espacios métricos en abstracto, ahora nos vamos a bajar al terreno complejo y considerar la definición de continuidad únicamente en funciones complejas.
22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]
Responderemos unas preguntas de senos y cosenos complejos, así como senos y cosenos hiperbólicos.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Abordaremos formalmente el concepto de continuidad en sentido complejo, debemos estar advertidos de que, a pesar de que la definición no diferirá mucho de la de variable real, el comportamiento en los complejos puede cambiar de formas extrañas, analizaremos propiedades y caracterizaciones de funciones complejas continuas.
Unidad III: Series de números complejos - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Examen - [Detalles]
En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad IV: Integración compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.
Unidad IV: Integración compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
35. Integrales de contorno II - [Detalles]
Continuaremos con integrales de contorno, y haciendo camino hacia el Teorema Fundamental del Cálculo para funciones complejas.
Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]
En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.
Nota 22. Conteo. Ordenaciones. - [Detalles]
En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.
39. Teoremas de Weierstrass - [Detalles]
Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.
Ejercicio Regla de la Cadena - [Detalles]
En este video, nos sumergimos en ejemplos prácticos y teoría detrás de la técnica esencial de la regla de la Cadena, facilitando la derivación de funciones compuestas.
Cuestionario de funciones trascendentes - [Detalles]
Este es un cuestionario para repasar el Módulo 18 del texto "Cimientos Matemáticos" donde se abarcan temas como: función seno, coseno y sus respectivas propiedades, función exponencial, función logaritmica, etc.
Funciones, Parte 1 - [Detalles]
En este video se discute el concepto intuitivo de función, junto con otros conceptos asociados como dominio, codominio, regla de correspondencia y composición. Después se introduce la definición formal de función y se compara con la definición intuitiva. Finalmente se discuten algunos ejemplos.
Limites de funciones - [Detalles]
En este video se expone la definición del límite cuando x tiende a p de f(x).
En este video platicamos sobre algunos tipos de discontinuidades de funciones de números reales.
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Funciones de orden superior, Aplicación para listar directorios con java nio - [Detalles]
Aplicación para listar directorios con java nio - Cómo usar la API de JAVA-nio para listar directorios
Bases duales, recetas y una matriz invertible - [Detalles]
Probamos que las formas coordenadas de una base son base del espacio dual. Vemos problemas prácticos de bases duales y una relación con matrices invertibles
Explicamos y definimos la inversa de una función, lo cual, dada una función "f(x)", definimos una nueva función la cual llamamos su función inversa, y damos las propiedades que debe cumplir.
Diapositivas sobre cómo escribir una demostración directa - [Detalles]
Explicamos las características de hacer una demostración directa de p implica q acompañada de una serie de ejemplos báscios respecto a este tipo de demostraciones.
El criterio de la raíz racional - [Detalles]
Estudiamos el criterio de la raíz racional el cual nos permite determinar las únicas raíces racionales que puede tener un polinomio de coeficiente enteros, asimismo mostramos una aplicación directa, una indirecta y una con un polinomio de coeficientes racionales.
El soporte de una permutación - [Detalles]
Definimos el concepto de fijar y mover elementos para una permutación. También definimos el soporte de una permutación. Finalmente damos algunos ejemplos que ilustran las definiciones.
Álgebra Moderna I: Grupo Cociente - [Detalles]
La definición de subgrupos normales surgió de la necesidad de extender las propiedades de los enteros a grupos más generales. En los enteros, definimos una relación de equivalencia (módulo n) que nos permite obtener clases de equivalencia. Estas clases no solo generan una partición, sino que también constituyen un subgrupo de Z. La idea central es generalizar este concepto: buscamos definir una operación en ciertas clases de equivalencia para que también formen un grupo.
Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]
¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.
El grado de un vértice - [Detalles]
En este video se definen la vecindad, el grado de un vértice y el grado promedio de una gráfica. Se prueba el primer teorema en Teoría de Gráficas, a saber, que la suma de todos los grados en una gráfica es el doble del número de aristas. Se definen y estudian también las gráficas regulares y la secuencia de grados de una gráfica.
Operaciones con polinomios - [Detalles]
Hablamos primero sobre los monomios, los cuales consisten en un término, conformado de un coeficiente, una variable y un exponente. Después vemos la definición de polinomio con una variable, la cual es una expresión algebraica conformada varios monomios.
Definiciones elementales: Ecuación diferencial ordinaria, solución, y orden de una ecuación - [Detalles]
Definimos una ecuación diferencial ordinaria, solución y el orden de una ecuación.
Método de reducción de orden - [Detalles]
Dada una solución a una ecuación lineal homogénea de segundo orden, podemos encontrar una segunda solución linealmente independiente a la primera, mediante el método de reducción de orden.
Exponencial de una matriz y matriz fundamental de soluciones - [Detalles]
Se define el concepto de exponencial de una matriz y se ve su utilidad en los sistema lineales además de probar que es una matriz fundamental de soluciones a estos sistemas lineales
Distancia punto recta - [Detalles]
Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta.
Relaciones entre conjuntos - [Detalles]
Definimos que es una relación entre conjuntos. Mediante ejemplos explicamos que es una relación entre conjuntos y sus propiedades. También definimos que es el Dominio, Codominio e Imagen, en una relación de conjuntos.
Paridad y signo de una permutación - [Detalles]
Paridad de una permutación y el signo de una permutación. Además damos algunos ejemplos ilustrativos.
21. Logaritmo complejo y potencias complejas - [Detalles]
Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".
43. Clasificación de ceros y singularidades de una función analítica - [Detalles]
En esta entrada vamos a definir lo que es una singularidad aislada de una función analítica y caracterizar los diferentes tipos que hay.
Álgebra Moderna I: Factorización Completa - [Detalles]
Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.
Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de H en G - [Detalles]
En esta entrada definiremos una relación de equivalencia en un grupo. Nos referimos al grupo de los enteros con la suma (Z,+) en el cual es posible establecer una relación de equivalencia que induce a una partición con exactamente n conjuntos.
Definición formal de gráfica conexa - [Detalles]
Definimos formalmente lo que es una gráfica conexa y sus componentes. Probamos dos resultados que confirman dos intuiciones claras: (1) que si en una gráfica de orden n todos los vértices tienen grado "grande" entonces la gráfica es conexa; (2) que si una gráfica de orden n tiene "muchas" aristas entonces la gráfica es conexa. En ambos casos se determina de manera exacta el significado de "muchas", en función de n.
El cuello y la circunferencia - [Detalles]
Descripción: Definimos el cuello y la circunferencia de una gráfica. A modo de ejemplo calculamos dichos parámetros para la gráfica de Petersen. También probamos una cota inferior de la circunferencia en términos del grado mínimo, y una cota superior del cuello en términos del diámetro.
En la entrada anterior estudiamos la triangularización de matrices, que consistía en llevar matrices a una forma triangular superior. En esta fortaleceremos esta idea, y buscaremos maneras de llevar una matriz a una matriz diagonal: a este proceso se le conoce como diagonalizar.
Dualidad y representación de Riesz en espacios euclideanos - [Detalles]
En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».
Ejemplos: determinar el dominio de una función - [Detalles]
En este video hacemos un par de ejemplos en los que se determina el dominio de una función, es decir, el dominio máximo de números reales, que es posible para una regla de correspondencia dada.
Diapositivas sobre demostraciones de bicondicionales - [Detalles]
Mostramos las opciones por las cuales podemos demostrar una proposición bicondicional y la explicación lógica del por qué es posible hacerlo, la explicación se acompaña de 2 ejemplos cada uno respecto a las maneras de demostrar una proposición bicondicional.
Diapostivas sobre relaciones de equivalencia - [Detalles]
Partimos de una definición de las diapositivas anteriores y de las definiicones de relaciones reflexivas, simétricas y transitivas, la relación que cumpla con estas 3 se llama una relación de equivalencia y de esta nueva definición se desprende las definiciones de clase de equivalencia y particiones, estas ideas se ilustran con más ejemplos.
Discriminante De Cónicas - [Detalles]
Retomamos la ecuación general de las cónicas (la cual es una ecuación de segundo grado de dos variables). Definimos el Discriminante para las cónicas, el cual nos ayuda a saber el tipo de cónica que representa una ecuación general para las cónicas.
¿Qué es una demostración? - [Detalles]
Platicamos sobre las demostraciones, en qué consisten y que herramientas nos pueden ayudar para hacer una demostración. Las matemáticas universales y para siempre.
Congruencias como relación de equivalencia - [Detalles]
En este video vemos que la relación de congruencia es, justo como podríamos sospechar, una relación de equivalencia en los enteros. Mostramos que la congruencia cumple las tres propiedades para ser una relación de equivalencia: Reflexividad, Simetría, Transitividad. Hablamos sobre la partición que genera en los enteros y cuáles son las clases de equivalencia para cada entero.
Ecuaciones lineales y congruencias - primeros ejemplos - [Detalles]
Repasamos brevemente que es una ecuación lineal y definimos las ecuaciones lineales modulo "m" de una variable. Vemos cuales son los posibles valores que pueden solucionar nuestra ecuación lineal y algunos ejemplos de cuáles serían las soluciones a algunas ecuaciones lineales.
Cómo calcular las raíces enésimas de un número - [Detalles]
Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo.
Diapositivas sobre espacios vectoriales - [Detalles]
Definimos lo que es un espacio vectorial y los elementos que habitan en él (vectores), mostramos que para demostrar por definición que un espacio es vectorial debe de cumplir las 10 propiedades de éste. Se proporcionan ejemplos de espacios vectoriales y las demostraciones sobre estas 10 propiedades de la definición; se proporciona una aplicación de espacios vectoriales que es ver a la fuerza como una magnitud de dirección y magnitud, es decir, como un vector.
Diapositivas sobre bases de espacios vectoriales - [Detalles]
A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.
Lugar Geométrico De Las Cónicas - [Detalles]
Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.
Aplicaciones de la forma canónica de Jordan - [Detalles]
En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.
Interfaz gráfica de usuario (IGU), Implementación de las transiciones en el código - [Detalles]
Implementación de las transiciones en el código - Parte 3/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Como demostrar una implicación. Demostración directa - [Detalles]
Platicamos las características de la demostración directa y damos un ejemplo con una proposición sobre los números enteros múltiplos de 6.
Analisis cualitativo de sistemas de ecuaciones lineales - [Detalles]
Discutimos una serie de observaciones con las cuales podemos describir un sistema lineal sin resolverlo directamente. También se demuestra que un sistema lineal tiene una única solución, infinitas soluciones, o ninguna solución.
Potencias de números complejos - [Detalles]
Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación).
Propiedades de la exponencial de una matriz - [Detalles]
Analizamos las principales propiedades que cumple la exponencial de una matriz cuadrada con coeficientes constantes, además de relacionarla con los problemas de condición inicial para sistemas lineales de primer orden.
Diapositivas sobre proposiciones - [Detalles]
Definimos lo que es una proposición y la negación de una proposición acompañado de varios ejemplos para fijas los conceptos básicos de las diapositivas presentadas.
Diapositivas sobre relaciones de conjuntos - [Detalles]
Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,
Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.
Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]
Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).
Todo grupo es el grupo fundamental de algún espacio - [Detalles]
En este video demostraremos que todo grupos es el grupo fundamental de algún espacio. Las herramientas principales para demostrar este teorema es la existencia de una presentación y una aplicación muy directa del teorema de van Kampen.
Homología singular - la homología de una cuña - [Detalles]
En este video demostraremos que la homología de una cuña es isomorfa a la suma directa de las homologías de los espacios con los que estamos haciendo cuña.
3. El plano complejo $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.
16. Diferenciabilidad en el sentido complejo - [Detalles]
Introducimos por fin el concepto de diferenciabilidad en el sentido complejo, veremos la definición de derivada de una función compleja y estudiaremos cuando una función es derivable y cuando no y las propiedades de estas.
¿Qué son las demostraciones en matemáticas? - [Detalles]
En este video explicamos con una analogia que es una demostración en matemáticas
Nota 15. Relaciones de equivalencia y particiones. - [Detalles]
En esta nota veremos cómo las relaciones de equivalencia generan particiones, y concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia. Con esta nota concluimos la primera unidad del curso.
Conjunto cociente - [Detalles]
En esta entrada definiremos al conjunto cociente, dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.
Gráficas regulares y secuencias de grado q - [Detalles]
Aquí damos respuesta a las siguientes preguntas ¿Para qué valores de n y r existe una gráfica r-regular de orden n? ¿Qué secuencias de n números enteros no negativos son la secuencia de grados de una gráfica?
En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices. Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.
Demostraciones matemáticas (El mundo de los Blorg) - [Detalles]
En esta entrada introducimos la idea de una demostración matemática, su significado y una de las primeras estrategias para empezar a demostrar.
Matrices como transformaciones lineales - [Detalles]
Definimos qué es una transformación lineal. Vemos que a cualquier matriz se le puede asociar una transformación lineal, y viceversa.
Pasar de frase a implicación - [Detalles]
Se muestran ejemplos de cómo traducir una frase común, a una proposición lógica.
Demostrar que una proposición es falsa - [Detalles]
Explicamos como demostrar que una proposición o enunciado es falso, damos un ejemplo usando los números enteros.
Como demostrar un bicondicional (si y sólo si) - [Detalles]
Damos reglas generales para demostrar una proposición con bicondicional (si y solo sí). Particularmente utilizamos una demostración de ida y otra de vuelta.
Tipos de relaciones entre conjuntos - [Detalles]
Hablamos de relaciones de conjuntos muy especiales, la relación identidad, la inversa de una relación, relación reflexiva, relación simétrica, relación transitiva y relación de equivalencia y damos un ejemplo de cada una.
Usamos el conjunto Imagen, de una función, para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de suprayectividad.
Definimos que es una permutación, y hablamos de sus usos y características. También damos una fórmula de conteo para saber cuántas permutaciones tenemos en un conjunto de n elementos, ya sea permutaciones con o sin repeticiones.
La matriz de coeficientes de un sistema de ecuaciones - [Detalles]
Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.
Definimos el determinante de una matriz y describimos la forma para calcular el determinante de una matriz de 2x2.
Determinante de una matriz de $4 imes 4$ y moraleja final - [Detalles]
Vemos como calcular el determinante de la matriz de 4x4 mediante el método por cofactores (damos tips para reducir el número de operaciones). También explicamos lo que significa que el determinante de una matriz sea cero.
Definición de anillo - [Detalles]
Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero.
Hay una cantidad infinita de números primos - [Detalles]
Para terminar esta sección demostramos un teorema de bastante relevancia, el cual nos dice que existe una cantidad infinita de numero primos. La demostración es sencilla y hacemos uso del teorema fundamental de la aritmética.
Los teoremas de Fermat y de Euler - [Detalles]
Vemos el pequeño teorema de Fermat y el Teorema de Euler. Primero demostramos el teorema de Euler, el cual nos da una relación de la función de Euler con una congruencia modulo "m", y usando este resultado demostramos el pequeño teorema de Fermat.
Multiplicidad de una raíz - [Detalles]
Definimos la multiplicidad de una raíz. La cual es el numero "m" tal que es el mayor entero para el cual "(x-a)^m" divide al polinomio. Damos algunos ejemplos para saber cómo identificar la multiplicidad de alguna raíz.
Campo de pendientes asociado a una ecuación diferencial de primer orden - [Detalles]
Revisamos cómo asociar un campo de pendientes a una ecuación de la forma dy/dt=f(t,y(t)) mediante varios ejemplos sencillos.
Teorema de existencia y unicidad. Ecuación integral asociada - [Detalles]
Damos los primeros detalles para la demostración del Teorema de existencia y unicidad de Picard. Encontramos una manera equivalente de resolver un problema de condición inicial, que es resolviendo una ecuación integral asociada.
Ecuaciones lineales no homogéneas de segundo orden y sus soluciones - [Detalles]
Demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.
Radio de convergencia de series de potencias cerca de un punto ordinario - [Detalles]
Calculamos el radio de convergencia para una solución por serie de potencias cerca de un punto ordinario para una ecuación diferencial de segundo orden con coeficientes variables.
La exponencial de una matriz - [Detalles]
Definimos la exponencial de una matriz con coeficientes constantes.
La exponencial de una matriz y la matriz fundamental de soluciones - [Detalles]
Relacionamos la exponencial de una matriz A de coeficientes constantes con la matriz fundamental de soluciones al sistema lineal homogéneo que tiene a A como matriz asociada.
Método de valores y vectores propios para diagonalizar una matriz con valores propios distintos - [Detalles]
Desarrollamos el método de valores y vectores propios considerando una matriz A diagonalizable, cuyo polinomio característico asociado tiene n raíces distintas.
Diagonalización de una matriz con valores propios distintos (Ejemplo) - [Detalles]
Ponemos en práctica el método de valores y vectores propios diagonalizando una matriz cuyos valores propios son todos distintos.
Diagonalización de una matriz con valores propios repetidos (Ejemplo) - [Detalles]
Mediante un ejemplo analizamos el caso de una matriz A diagonalizable cuyos valores propios no son todos distintos.
Definición intuitiva de límite de una función - [Detalles]
Presentación de la idea intuitiva del límite de una función
Definición formal de límite de una función - [Detalles]
Definición formal del límite de una función
Límite de una función a través de sucesiones - [Detalles]
Estudio del límite de una función a través de sucesiones
Longitud de una curva - [Detalles]
Enseñanza sobre el cálculo de la longitud de arco de una función en un intervalo.
Circunferencias homoteticas - [Detalles]
Mostramos que la homotecia de una circunferencia es una circunferencia, dos circunferencias siempre son homotéticas y algunos ejercicios.
Veremos una condición necesaria y suficiente para que el triángulo pedal de un punto degenere en una recta, conocida como recta de Simson.
Rectas tangente y normal a una curva - [Detalles]
Revisión de ejercicios donde haciendo uso de la derivada obtenemos la recta normal y tangente a una curva.
Polinomios de Taylor (Parte 1) - [Detalles]
Estudio de los polinomios de Taylor: su definición formal y un teorema sobre ser una buena aproximación a una función dada.
Propiedades de una medida de probabilidad - [Detalles]
Desarrollamos la propiedad de complementación y el principio de inclusión-exclusión que cumple una medida de probabilidad.
Propiedades de una medida de probabilidad, parte 2 - [Detalles]
Desarrollamos más propiedades de una medida de probabilidad: interacción con la relación de subconjunto, la subaditividad y sigma-subaditividad.
Mini-cuestionario: Matrices como transformaciones lineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo una matriz está asociada a una transformación lineal y viceversa.
Dispositivas de conectores: conjunción y disyunción - [Detalles]
Definimos la conjunción y la disyunción sobre una proposición, también mostramos que este tipo de proposiciones están formadas por 2 proposiciones (así formando una gracias a estos conectores) se muestra sobre como este tipo de proposiciones son verdaderas o falsas.
Diapositivas sobre traducciones entre proposiciones - [Detalles]
Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.
Diapositivas sobre imagen y preimagen de una función - [Detalles]
Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.
Diapositivas sobre cardinalidad y conjuntos - [Detalles]
Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.
Diapositivas sobre conjuntos infinitos - [Detalles]
Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.
Diapositivas sobre operaciones matriciales - [Detalles]
Continuamos construyendo la definición de una matriz pero ahora definimos sus operaciones básicas somo la suma y multiplicación de dos matrices también su multiplicación por escalar, también hablamos que una matriz de nx1 o también llamado vector columna es un vector con n entradas que se ocupa para hablar de un elemento de Rn.
Diapositivas sobre traslación de ejes - [Detalles]
Continuando con el tema de canónicas y ya sabiendo diferenciar cada una de éstas ahora aumentamos un poco la dificultad haciendo una traslación de los ejes, es decir, con cónicas fuera del origen ya teniendo éstas fuera del origen veremos que es muy sencillo calcular sus elementos báscios como el centro, focos y demás.
Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta.
Demostramos la Ley de Senos, la cual da una relación entre los lados y ángulos de triángulos no rectángulos. La ley de senos nos da una relación de la longitud de un lado de un triángulo al seno del ángulo opuesto.
Ejercicio 1 bases de espacios vectoriales - [Detalles]
Damos la definición de una base en el plano cartesiano, y mostramos cuando dos vectores forman una base para este espacio vectorial.
Ejercicio 3 bases de espacios vectoriales - [Detalles]
Usando la definición de una base para un espacio vectorial cualquiera, demostramos una condición equivalente para saber cuándo un conjunto es base de un espacio vectorial.
Definimos el determinante de una matriz y describimos la forma para calcular el determinante de una matriz de 2x2.
Damos una breve definición de los semiespacio, los cuales son regiones del espacio separadas por un plano. Los semiespacios están caracterizados por una desigualdad relacionada a la ecuación del plano que los separa.
La homotopía de caminos rel 0,1 es una relación de equivalencia - [Detalles]
En este video se continua preparando el camino para definir el grupo fundamental de un espacio topológico. El objetivo del video es mostrar que la relación de homotopía de caminos rel 0,1 es una relación de equivalencia.
El homomorfismo inducido por un cubriente - [Detalles]
En este video demostramos que el homomorfismo inducido en grupos fundamentales por una proyección cubriente es inyectivo. Este resultado es una consecuencia del teorema de levantamiento de homotopías.
Homología singular - la homología de una esfera - [Detalles]
En este video calcularemos la homología de una esfera. Este cálculo hará uso de la sucesión exacta del cociente, la cual, a su vez es consecuencia de muchos de los teoremas que ya hemos visto.
Homología singular - El grado de una función entre esferas - [Detalles]
En este video definimos el grado de una función entre esferas y estudiamos sus propiedades básicas.
Homología celular - una fórmula para el homomorfismo frontera - [Detalles]
En este video damos una fórmula explícita para el homomorfismo frontera en el complejo de cadenas celular. Esto termina de establecer cómo se comporta el complejo de cadenas celular de un complejo CW.
Homología celular - ejemplo - una cuña de círculos - [Detalles]
En este video explicamos cómo calcular la homología de una cuña de círculos usando el complejo de cadenas celular.
Mini-cuestionario: Bases duales, recetas y una matriz invertible - [Detalles]
Mini-cuestionario para verificar el entendimiento de qué es una base dual y cómo realizar varias operaciones relacionadas con bases duales.
Introducción a estructuras algebraicas - [Detalles]
Definimos una serie de estructuras algebraicas así como una lista de propiedades que deben cumplir estas estructuras.
Teoremas de Fermat y de Wilson - [Detalles]
Motivamos, enunciamos y demostramos los teoremas de Fermat y de Wilson con problemas del tipo saber si una potencia de un número es congruente con otro o encontrar el residuo de una congruencia,
Ecuaciones en congruencias - [Detalles]
Demostramos una serie de resultados que nos ayudan a saber si una ecuación de congruencias tiene solución única o si al menos tiene solución.
Factorización completa y unicidad de la factorización - [Detalles]
Definimos lo que es una factorización completa y demostramos que la factorización completa de una permutación es única salvo el orden de los factores.
La relación entre paridad y signo - [Detalles]
Demostramos que una permutación es par si y sólo si su signo es iguala 1. Equivalentemente, vemos que una permutación es impar si y sólo si su signo es igual a -1. Esto muestra que la noción de paridad y la de signo son equivalentes.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
44. Teorema del residuo y aplicaciones - [Detalles]
En esta última entrada, definiremos el residuo de una función analítica y veremos el teorema del residuo, mediante el cual nos será posible evaluar integrales reales, tanto impropias como integrales definidas, de una manera sorprendentemente sencilla.
Mundo de la aspiradora - [Detalles]
Esto es una libreta de Juypter en donde se plantea un mundo en el cual se va moviendo una aspiradora. La aspiradora tiene ciertas capacidades de moverse hacia arriba, abajo, izquierda, derecha, y además detecta ciertas percepciones.
Álgebra Moderna I: Paridad de una permutación - [Detalles]
A partir de la entrada anterior, se puede definir el signo de una permutación. Lo cual guía a introducir la función signo y probar que es multiplicativa. Posteriormente se descubre al Grupo alternante.
Los Elementos de Euclides: Teorema 14 - [Detalles]
En este video cubrimos el Teorema 14 de Los Elementos de Euclides. Aquí demostramos que si dos segmentos de recta forman con una recta y en un punto de ella, ángulos adyacentes iguales a dos rectos, y no están del mismo lado de dicha recta, entonces los segmentos forman parte de una misma recta.
Diseño y programación orientada a objetos; Diseño - [Detalles]
1.3 Diseño: tarjetas de responsabilidad y UML - Diseño de una solución orientada a objetos. Cómo se hace una tarjeta de responsabilidad. ¿Qué es la notación UML? y cómo hacer un diagrama de clases. Se da el primer acercamiento al concepto de herencia o generalización, implementación o realización y contención (agregación y composición). Por último se habla de dependencia y asociación.
En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.
Composición de relaciones - [Detalles]
En esta sección definiremos una nueva relación a partir de dos relaciones con ciertas características y una operación a la que llamaremos composición. Veremos si la operación composición tiene propiedades como la conmutatividad o la asociatividad.
Ejercicio Intervalos anidados - [Detalles]
En este video exploramos el Teorema de los Intervalos Anidados. Este teorema, una joya en el análisis real, nos habla de la intersección de una sucesión de intervalos cerrados y su misterioso comportamiento.
Ejercicio Teorema de la Función Inversa - [Detalles]
En este video, aplicaremos el teorema de la función Inversa para demostrar que, si una función $f$ posee una primitiva, entonces su función inversa también la tiene.
La distancia entre dos vértices - [Detalles]
Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.
Eigenvectores y eigenvalores - [Detalles]
En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.
Triangularizar y descomposición de Schur - [Detalles]
En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.
Adjunta de una transformación lineal - [Detalles]
En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales.
Interfaces gráficas de usuario en JAVA, IGU con Swing - [Detalles]
IGU con Swing - Cómo programar una una interfaz con JAVA swing.
Sucesión exacta larga de grupos de homotopía relativos - [Detalles]
Vemos que si tenemos una filtración de espacio A <B <X entonces podemos formar una sucesión exacta larga con los grupos de homotopía relativos de estos espacios. Esta sucesión sirve mucho para hacer calculos.
Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]
Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.
Matriz transpuesta y propiedades de las operaciones matriciales - [Detalles]
Definimos la traspuesta de una matriz y discutimos sus propiedades. También discutimos varias propiedades algebraicas de las operaciones de matrices: Asociatividad, conmutatividad, distributividad y otras propiedades asociadas a las operaciones de matrices con escalares.
Soluciones a las ecuaciones diferenciales - [Detalles]
Estudio de las propiedades generales de las soluciones de una ecuación diferencial ordinaria
Diapositivas sobre combinatoria - [Detalles]
Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.
Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]
Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.
Cuestionario sobre lugar geométricos de las cónicas - [Detalles]
Ponemos en práctica las definiciones de cada una de las cónicas como lugares geométricos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre las ecuaciones canónicas de las cónicas - [Detalles]
Ponemos en práctica las ecuaciones canónicas para cada una de nuestra cónicas mediante ejercicios muy simples que tratan sobre identificar dada la ecuación de qué tipo de cónica se trata o se trataría, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre simetría de las cónicas - [Detalles]
Definimos lo que es una simetría y los tipos que hay de éstas, mostramos que las simetrías están presentes en las figuras que estamos estudiando, teniendo ya sea solo uno o ambas simetrías (axial y central).
Damos una introducción a las secciones cónicas, las cuales son lugares geométricos descritos por la circunferencia, elipse, parábola, hipérbola. También mencionamos algunos elementos importantes como la generatriz, vértice y el eje. Damos la ecuación que define a las secciones cónicas y como diferenciarlas a partir de su ecuación general.
Álgebra Moderna I: Operación binaria asociativa y conmutativa - [Detalles]
A continuación se manejan dos tipos de operaciones especificas: las operaciones binarias asociativas y las operaciones conmutativas. Dentro de estos conceptos se espera que el lector pueda reconocer cuando una operación binaria recae dentro de alguno de estos dos tipos mencionados o no. En las notas, se da ejemplo de como reconocer la conmutatividad dentro de un arreglo de Tabla.
Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]
En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.
Formas cuadráticas hermitianas - [Detalles]
El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades. Al final enunciaremos una versión compleja del teorema de Gauss.
Sistemas de $2 imes 2$ y su geometría - [Detalles]
Se da una representación geométrica para las ecuaciones lineales y los sistemas de ecuaciones lineales de 2x2. También se explica la representación geométrica de las soluciones para un sistema de ecuaciones lineales de 2x2.
Introducción a las bifurcaciones en sistemas de dos ecuaciones de primer orden - [Detalles]
Damos una breve introducción a las bifurcaciones en sistemas de dos ecuaciones de primer orden.
Dispositivas sobre las propiedades de la negación, conjunción y disyunción - [Detalles]
Tomando las definicones pasadas de conjunción y disyunción ahora enunciamos una serie de propiedades que tienen, estas propiedades son demostradas desde el punto de vista de equivalencias de formas proposicionales.
Diapositivas sobre proposiciones bicondicionales - [Detalles]
Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.
Diapositivas sobre demostraciones de conjuntos - [Detalles]
Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.
Cuestionario sobre dependencia e independencia lineal - [Detalles]
Ponemos en práctica las definiciones que se revisaron respecto a la independencia lineal son una serie de afirmaciones las cuáles nos muestran si la definición fue comprendida o no, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]
Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre cónicas - [Detalles]
Damos inicio a un nuevo tema que es el tema de las cónicas, estas surgen a partir de cortar un cono en diferentes ángulos, las cónicas son: circunferencia, parábola, elipse e hipérbola, damos los elementos que distinguen una de la otra tanto en su forma geométrica pero también con su ecuación general es posible diferenciarlas.
Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado.
Rotación De Ejes Y Figuras - [Detalles]
Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola.
Parametrización de cónicas - [Detalles]
Vemos como parametrizar las secciones cónicas. Usamos las razones trigonométricas para dar una parametrización de algunas secciones cónicas.
Multiplicación de números complejos - [Detalles]
Vemos la forma de multiplicar números complejos, usando las reglas anteriormente vistas (las cuales guardan similitudes a la multiplicación de polinomios), podemos llegar a una fórmula para la multiplicación. Hacemos algunos ejemplos para mostrar la multiplicación de números complejos en acción.
Cambio de coordenadas y forma polar de un complejo - [Detalles]
Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.
8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]
Estudiaremos las sucesiones de números complejos, el cual resulta un objeto fundamental para el estudio del concepto de las aproximaciones, utilizando los conceptos de distancia que definimos en la entrada anterior e introducimos el "límite de una sucesión" y cuando puede o no existir.
Expresiones algebraicas - [Detalles]
En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.
Matrices de formas sesquilineales - [Detalles]
En esta entrada daremos una relación entre formas sesquilineales, formas cuadráticas hermitianas y matrices. Daremos la definición y veremos sus propiedades. Gran parte de la relación que había para el caso real se mantiene al pasar a los complejos. Las demostraciones en la mayoría de los casos son análogas, sin embargo, haremos énfasis en las partes que hacen que el caso real y el complejo sean distintos.
Matrices positivas y congruencia de matrices - [Detalles]
En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).
Determinantes de vectores e independencia lineal - [Detalles]
Definimos determinantes de vectores con respecto a una base. Vemos que los determinantes son las únicas formas n-lineales alternantes y que detectan bases.
Qué es una proposición matemática - [Detalles]
Definimos las proposiciones lógicas, dando ejemplos de proposiciones lógicas que podemos entender con el lenguaje cotidiano.
Usamos las tablas de verdad para definir la negación lógica de una proposición, damos ejemplos de la negación para proposiciones lógicas que podemos entender con el lenguaje cotidiano.
Demostración por casos - [Detalles]
Explicamos como realizar una demostración por casos y las reglas que se deben seguir, damos ejemplos con números enteros.
Demostración de un cuantificador - [Detalles]
Explicamos cómo demostrar una proposición o enunciado que involucre cuantificadores. Veremos las estrategias principales y ejemplos que usen los cuantificadores existe, para todo y existe un único.
Particiones, relaciones y clases de equivalencia - [Detalles]
Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia
Ejemplo de partición, clases y relación de equivalencia - [Detalles]
Continuamos con la discusión sobre las relaciones de equivalencia, damos un ejemplo y demostramos que es una relación de equivalencia, usamos el ejemplo para ilustrar sus clases de equivalencia y la partición.
Ejemplo de demostración de relación de equivalencia - [Detalles]
Damos un ejemplo de relación de equivalencia con elementos del plano cartesiano y demostramos que es una relación de equivalencia, es decir, cumple las 3 propiedades
El maximo común divisor como combinación lineal entera - [Detalles]
Demostramos un teorema que nos afirma que el máximo común divisor se puede escribir como una combinación lineal de sus dividendos. Hacemos uso de las propiedades de divisibilidad anteriormente vistas y después generalizamos el teorema para el máximo común divisor de un numero arbitrario de enteros.
Resolviendo un problemacon ecuaciones diofánticas - [Detalles]
Resolvemos un problema donde podemos hacer uso de las ecuaciones diofánticas para dar la solución al problema. Describimos como abstraer el problema a una ecuación diofántica, y usando lo anteriormente visto, damos la solución.
Más propiedades de congruencias - [Detalles]
Continuamos viendo propiedades sobre las congruencias. Vemos que si dos enteros expresados productos: "a*x", "a*y", son congruentes modulo "m", es equivalente a que los enteros "x", "y" sean congruentes modulo "m/MCD(a,m)", dándonos una relación entre el módulo y el máximo común divisor. Igualmente vemos algunas propiedades más que surgen de este teorema.
Circunferencias ortogonales (parte 2) - [Detalles]
Comenzamos a establecer las hipótesis para saber si es posible trazar una circunferencia ortogonal a dos circunferencias dadas
Curvas integrales y soluciones a una ecuación diferencial de primer orden - [Detalles]
Revisamos la relación existente entre las curvas integrales del campo asociado a la ecuación de primer orden dy/dt=f(t,y) y sus soluciones.
Ecuaciones autónomas, soluciones de equilibrio, línea fase y esbozo de soluciones - [Detalles]
Esbozamos las soluciones a una ecuación de primer orden de la forma dy/dt=f(y), la cual denominamos ecuación autónoma, mediante el uso de sus soluciones de equilibrio y la línea fase asociada a la ecuación.
Ecuaciones diferenciales exactas - [Detalles]
Comenzamos el estudio de las ecuaciones exactas, y demostramos un teorema que nos dice cuándo una ecuación es exacta y tiene solución
Teorema de existencia y unicidad. Iteraciones de Picard - [Detalles]
Construimos las iteraciones de Picard que nos ayudarán a encontrar una solución al problema de condición inicial, bajo ciertas hipótesis que analizamos antes de demostrar la parte de la existencia del Teorema de Picard
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces reales distintas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son reales y distintas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces repetidas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son repetidas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces complejas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son complejas.
Soluciones por series de potencias cerca de un punto ordinario - [Detalles]
Comenzamos la revisión de las ecuaciones de segundo orden con coeficientes variables, y mostramos la existencia de una solución con desarrollo en serie de potencias alrededor de un punto ordinario.
Ecuación de Bernoulli y ecuación de Riccati - [Detalles]
Se presentan las ecuaciones diferenciales de Bernoulli y de Riccati y se desarrolla el método de resolución de cada una de ellas
Teorema de Existencia y Unicidad - Iterantes de Picard y Convergencia - [Detalles]
Continuación con el desarrollo de una teoría preliminar para demostrar el teorema de existencia y unicidad, en este caso se presentan las iterantes de Picard y se hace un breve repaso de convergencia de series y sucesiones
Serie de Taylor y de Maclaurin - [Detalles]
Estudio de las series de Taylor y de Maclaurin como aproximación a una función.
Secciones locales y caja de flujos - [Detalles]
Continuamos presentando las herramientas necesarias para la demostración del teorema de Poincaré - Bendixson en el plano. En esta ocasión definimos una sección local en un punto del plano y su caja de flujos.
Diapositivas sobre proposiciones condicionales - [Detalles]
Enunciamos otro tipo de proposiciones en matemáticas que son las condicionales o implicaciones que nos dan la relación de causa-efecto dentro del enunciaso, el material es acompañado de una lista de ejemplos.
Diapositivas sobre reglas para escribir demostraciones - [Detalles]
Mostramos la importancia de escribir demostraciones y entablamos las cuatro reglas usuales para escribir una demostración coherente y lógica.
Diapositivas sobre coordenadas en el espacio - [Detalles]
Estudiamos el espacio pero con tres diferentes tipos de sistemas coordenados que son: las rectangulares (el espacio euclideano), esféricas y cilíndricas; estudiamos cada entrada de la terna ordenada, y que ocurre cuando cada una de ellas se deja libre. También estudiamos que es posible pasar de un espacio a otro con cambios de variables.
Diapositivas sobre dependencia e independencia lineal - [Detalles]
Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.
Diapositivas sobre discriminante y excentricidad - [Detalles]
Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.
Lugar geométrico en el plano cartesiano - [Detalles]
Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. Usamos las fórmulas conocidas de un cuadrado para demostrar dicho teorema.
Lugares Geométricos en el plano polar - [Detalles]
Damos una explicación sobre los lugares geométricos en el plano polar. Vemos que las condiciones para representar algunos lugares geométricos son diferentes en el plano polar.
Sistemas de coordenadas en el espacio. Cartesianas, coordenadas cilíndricas y coordenadas esféricas - [Detalles]
Damos una pequeña presentación de los tres principales sistemas de coordenadas tridimensionales: Cartesianas, esféricas y cilíndricas. Igualmente hablamos sobre las ventajas de cada sistema de coordenadas.
Ejemplo 1 subespacio Vectorial - [Detalles]
Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta vertical), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.
Ejemplo 2 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.
Ejemplo diferentes formas de la ecuación de la recta - [Detalles]
En este ejemplo vemos como a partir de la ecuación de la recta en forma de punto pendiente, podemos transformarla a las demás formas. Es decir, dada una misma recta, vemos como representarla en sus demás formas.
Ejercicios para identificar y graficar cónicas - [Detalles]
Usamos la ecuación general de las cónicas para identificar el tipo de sección cónica dada una ecuación. Vemos algunos ejemplos y obtenemos sus elementos.
La propiedad de levantamiento de homotopías para cubrientes - [Detalles]
En este video demostramos una de las propiedades más importantes de los espacio cubrientes: el teorema de levantamiento de homotopías. En videos posteriores veremos algunas consecuencias de este enunciado.
Homología singular - escisión - [Detalles]
En este video enunciaremos en teorema de escisión sin demostración. Este teorema es una de las propiedades fundamentales de la homología y nos dice que siempre que tomemos homología relativa, podemos ignorar lo que pasa adentro del subespacio con el que estamos relativizando.
Mini-cuestionario: Cambios de base de transformaciones lineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo realizar cambios a las matrices que representan una transformación lineal al cambiar de base.
Compatibilidad del orden con las operaciones de los naturales - [Detalles]
Proporcionamos una definición de orden equivalente relacionada a la operación suma en el conjunto de los números naturales.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
Veamos una primera entrada de las ecuaciones C-R.
29. Series de potencias. Introducción y criterios de convergencia. - [Detalles]
En esta entrada definimos lo que es una serie de potencias, un tipo muy particular de series, utilizando las dos entradas anteriores veamos que tanto podemos estudiar acerca de ellas.
¿Qué es una gráfica? - [Detalles]
En este video se presenta la definición formal de gráfica. Se explica cómo las representaciones visuales (o dibujos) nos sirven para entender la combinatoria de estos objetos. Se reconoce la necesidad de identificar gráficas que, aunque no son iguales formalmente, son esencialmente la misma (gráficas isomorfas), y se define isomorfismo entre gráficas.
Axiomas de Campo en los números reales - [Detalles]
La lista de axiomas de campo son las reglas que rigen a los números con una estructura adecuada. En particular el conjunto de números reales satisface esta lista y en este video discutimos cada uno.
Ejercicio Desigualdad Medias - [Detalles]
En este video, desglosaremos y demostraremos la famosa desigualdad que relaciona estas dos medias, una herramienta esencial para muchos campos de las matemáticas y la ciencia.
Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]
Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.
Los Elementos de Euclides: Teorema 27 - [Detalles]
En este video cubrimos el Teorema 27 de Los Elementos de Euclides. Este teorema prueba que si al incidir una recta sobre otras dos, hace los ángulos alternos iguales entre sí, entonces las dos últimas rectas son paralelas.
Los Elementos de Euclides: Teorema 28 - [Detalles]
En este video cubrimos el Teorema 28 de Los Elementos de Euclides. Aquí se demuestra que si al incidir una recta sobre otras dos hace los ángulos correspondientes iguales, o los ángulos conjugados internos suplementarios, entonces las dos últimas rectas son paralelas.
Los Elementos de Euclides: Teorema 30 - [Detalles]
En este video cubrimos el Teorema 30 de Los Elementos de Euclides, aquí se demuestra que si las paralelas a una misma recta son paralelas entre sí. (También se conoce como la propiedad transitiva del paralelismo de rectas)
Álgebra Moderna I: Acciones - [Detalles]
Para esta sección, necesitamos tomar el concepto de acción. Hemos estado usando el verbo actuar para referirnos a esta transformación que sucede al operar un a en G y otro elemento, sea del mismo G o de las clases laterales. La realidad es que ya usar actuar da una idea de lo que estamos queriendo decir. Estamos usando un elemento de un grupo para transformar un elemento de otro.
Álgebra de conjuntos - [Detalles]
En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.
Ecuaciones de la línea recta - [Detalles]
En este capitulo de Cimientos Matemáticos abordaremos conceptos clave de geometría analítica, como lugares geométricos y ecuaciones. Exploraremos la forma general de la ecuación de la línea recta y su expresión en la forma pendiente-ordenada al origen. También analizaremos la relación entre la inclinación y la pendiente de una recta, así como las propiedades de rectas paralelas y perpendiculares.
Ecuaciones de las cónicas - [Detalles]
En este capitulo de Cimientos Matemáticos exploraremos cuatro figuras importantes en este modulo: la circunferencia, la parábola, la elipse y la hipérbola, cada una con su propia identidad matemática. Estas ecuaciones son clave para comprender y modelar fenómenos diversos, enriqueciendo nuestra percepción del mundo.
Formas alternativas para definir un árbol - [Detalles]
Exploramos y probamos varias de las distintas identidades que puede tener un árbol. Es decir, estudiamos propiedades equivalentes a la de ser una gráfica sin ciclos y conexa.
MiniCOMAL: Cimientos Matemáticos - [Detalles]
Cimientos Matemáticos es un texto escrito de matemáticas pre-universitarias hecho por el Dr. Eric Pauli Pérez Contreras. Cubre varios temas importantes que se deben conocer y manejar apropiadamente para facilitar el estudio de las matemáticas a nivel universitario. En este curso podrás consultar el material elaborado en archivos PDF, así como una multitud de mini-cuestionarios para evaluar tus conocimientos sobre los temas que se tratan en cada capítulo.
Se presenta el modelo del perceptrón como una introducción a las redes neuronales
Adjunciones complejas y transformaciones unitarias - [Detalles]
En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.
COMAL: Inteligencia Artificial - [Detalles]
Este curso revisa las principales áreas de la Inteligencia Artificial desde un enfoque teórico y práctico, que permita el diseño y la implementación de sistemas inteligentes para problemas específicos. Se busca abarcar una perspectiva general del área. El enfoque está basado en agentes racionales. Los temas que se abordan son algoritmos de búsqueda, métodos probabilísticos y modelos basados en aprendizaje estadístico. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.
La categoría de homotopía - [Detalles]
Definimos una categoría en donde los isomorfismos son las equivalencias homotópicas
Matrices invertibles - [Detalles]
Damos la definición de matrices invertibles. Probamos propiedades básicas y esbozamos un método inicial para encontrar la inversa de una matriz.
Forma escalonada reducida - [Detalles]
Definimos que una matriz esté en forma escalonada reducida. Vemos cómo resolver su sistema lineal asociado. Hablamos de operaciones y matrices elementales.
Teorema de reducción gaussiana - [Detalles]
Demostarmos el teorema de reducción gaussiana, mostrando algoritmicamente que toda matriz puede ser llevada a una equivalente en forma escalonada reducida.
Más ejemplos de reducción gaussiana - [Detalles]
Resolvemos más problemas que usan el algoritmo de reducción gaussiana. Vemos ejemplos concretos y uno cuyas dimensiones dependen de una variable entera.
Reducción gaussiana para determinar inversas de matrices - [Detalles]
Damos equivalencias útiles de matrices invertibles. Usamos reducción gaussiana para ver si una matriz es invertible y determinar inversas de matrices.
Forma matricial de una transformación lineal - [Detalles]
Definimos la forma matricial de transformaciones lineales. Vemos que la composición de transformaciones corresponde al producto de sus formas matriciales.
Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]
Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz
Demostración por casos - [Detalles]
Explicamos el método y reglas para realizar una demostración por casos. También se dan recomendaciones para saber cuándo aplicar la demostración por casos.
Demostración por contrapositiva - [Detalles]
Explicamos el método de demostrar una implicación usando su contrapositiva y vemos algunos ejemplos.
Demostración de que hay infinitos primos - [Detalles]
Explicamos cómo demostrar que hay una cantidad infinita de números primos. Para tal fin suponemos ciertos el teorema fundamentar de la aritmética.
Familias de conjuntos - [Detalles]
Damos la definición de familia de conjuntos, unión e intersección de familias de conjuntos., mediante ejemplos platicamos que es una familia de conjuntos y sus propiedades.
Familias indexadas de conjuntos - [Detalles]
Continuamos con la discusión sobre familias de conjuntos, pero ahora añadimos el concepto de índice, el cual sirve para indexar una familia de conjuntos.
Imagen y preimagen - [Detalles]
Damos la definición de la imagen y la preimagen de un elemento bajo una función cualquiera y damos algunos ejemplos sencillos.
Unicidad de la función inversa - [Detalles]
Continuamos con la explicación de la función inversa, y demostramos que la función inversa de una función "f(x)" es única.
Principio de inducción - [Detalles]
Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.
Ejemplo principio de inducción - [Detalles]
Usamos de principio de inducción matemática para memostrar una proposicion P_n. Demostramos primero el caso base (demostrando que P_1 es cierta), y despues el paso inductivo (si P_n es cierto entonces P_n+1 es cierta).
Inducción matemática (1) - [Detalles]
Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.
Ejemplo combinatoria - [Detalles]
Usamos combinatoria para responder: ¿De cuantas maneras se pueden repartir 3 medallas en una carrera de 12 caballos? Damos la fórmula de conteo según importe el orden o no, o si se admiten repeticiones.
Propiedades del combinatorio - [Detalles]
Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.
Teorema del binomio - [Detalles]
Explicamos y demostramos el Teorema del Binomio. La cual es una fórmula que proporciona el desarrollo de la n-ésima potencia de un binomio, hacemos el ejemplo para n=2.
Damos una demostración alternativa del Teorema del Binomio. También explicamos la relación del binomio con la combinatoria y el triángulo de Pascal.
Introducción a los sistemas de ecuaciones lineales - [Detalles]
Damos la definición de una ecuación lineal y damos ejemplos de cuales no son ecuaciones lineales. Definimos un sistema de ecuaciones lineales como un conjunto de ecuaciones lineales. Finalmente se da la definición y un ejemplo de solución al sistema de ecuaciones lineales.
Se define la forma escalonada de una matriz NxM (también se define la forma escalonada reducida), y se dan varios ejemplos de matrices escalonadas, así como ejemplo de matrices que no están en su forma escalonada.
Operaciones con matrices - [Detalles]
Explicamos la suma de matrices y la multiplicación de una matriz por un escalar. También damos la definición de un vector y el producto punto. Explicamos de manera sencilla la multiplicación de matrices.
Inducción matemática (1) - [Detalles]
Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.
Divisibilidad algoritmo de la división (versión corregida) - [Detalles]
Mostramos el algoritmo de la división: Un algoritmo mediante el cual podemos obtener el cociente y el residuo de una división, esto también nos sirve para expresar un entero (dividendo) en términos del divisor, cociente y residuo: (dividendo = cociente*divisor + residuo).
El algoritmo de Euclides: enunciado y demostración. - [Detalles]
Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor.
División de números complejos - [Detalles]
Vemos la forma de dividir número complejos, usando la multiplicación anteriormente vista podemos llegar a una fórmula para la división. Hacemos algunos ejemplos para mostrar la división de números complejos en acción.
Definimos el concepto de polinomio en una variable, vemos varios ejemplos, y definimos varios conceptos relacionados.
Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]
Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo.
Definimos el concepto de ángulo central en una circunferencia
Ángulos interiores - [Detalles]
Definimos los conceptos de ángulo inscrito, ángulo semi-inscrito y ángulo interior en una circunferencia y demostramos que el ángulo semi-inscrito mide la mitad del ángulo central que subtiende el mismo arco
Ángulos exteriores - [Detalles]
Definimos los conceptos de ángulo circunscrito y ángulo exterior en una circunferencia
Caracterización de cuadriláteros cíclicos y teorema de Ptolomeo - [Detalles]
Demostramos que por tres puntos no colineales pasa una única circunferencia, demostramos algunas propiedades de los cuadriláteros convexos, el teorema de Ptolomeo y su recíproco
La línea de Simson y la circunferencia de los nueve puntos - [Detalles]
Definimos la proyección de un punto sobre una recta, demostramos el teorema de la línea de Simson y su recíproco y el teorema de la circunferencia de los nueve puntos
Potencia en términos de distancia al centro y radio - [Detalles]
Demostramos algunos resultados que involucran la potencia de un punto respecto a una circunferencia
Ecuaciones lineales homogéneas de primer orden - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de primer orden.
Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante - [Detalles]
Resolvemos el caso general de una ecuación lineal no homogénea de primer orden, por el método de factor integrante.
Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros (Ejemplos) - [Detalles]
Resolvemos dos ecuaciones por el método de variación de parámetros, una de ellas la resolvimos por el método de factor integrante en un video anterior, esto para comprobar que los dos métodos llevan a la misma solución.
Ecuaciones diferenciales no exactas. Método del factor integrante - [Detalles]
Resolvemos el problema que surge cuando una ecuación no cumple con la definición de ser exacta.
Ecuaciones lineales homogéneas de segundo orden. Conjunto fundamental de soluciones y el Wronskiano - [Detalles]
Definimos al conjunto fundamental de soluciones de una ecuación, y al Wronskiano de dos soluciones. Vemos la relación que guardan estos dos conceptos, y demostramos algunas propiedades que cumplen estos.
Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros - [Detalles]
Desarrollamos el método de variación de parámetros para resolver una ecuación lineal no homogénea de segundo orden.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.
Ecuación diferencial de Euler (Ejemplo) - [Detalles]
Resolvemos una ecuación diferencial de Euler en particular
Ecuación de Laguerre - [Detalles]
Encontramos una solución a la ecuación diferencial de Laguerre cerca del punto singular regular t=0.
Ecuación de Bessel (Parte 1) - [Detalles]
Hallamos la ecuación indicial para la ecuación de Bessel de orden lambda alrededor del punto singular regular t=0. Posteriormente encontramos una solución a la ecuación de Bessel de orden cero.
Ecuación de Bessel (Parte 2) - [Detalles]
Encontramos una solución a la ecuación de Bessel de orden uno.
Ecuación hipergeométrica - [Detalles]
Encontramos la ecuación indicial asociada a la ecuación hipergeométrica de manera general, y después encontramos una solución particular al caso cuando γ=1/2.
Transformada de Laplace y sus propiedades - [Detalles]
Definimos la transformada de Laplace de una función y demostramos algunas propiedades que nos servirán para resolver problemas de condición inicial.
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 2) - [Detalles]
Hablamos un poco del problema de condición inicial para sistemas de ecuaciones de primer orden, así como del Teorema de existencia y unicidad correspondiente, tanto en una versión general como en su versión para sistemas de ecuaciones lineales homogéneas.
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 3) - [Detalles]
Escribimos a los sistemas en forma de matrices. Además transformamos una ecuación de orden n en un sistema de n ecuaciones diferenciales.
La exponencial de una matriz diagonalizable. Conceptos elementales - [Detalles]
Definimos los conceptos necesarios para desarrollar el método de vectores y valores propios, y los relacionamos con el problema de calcular la exponencial de A.
Sistemas lineales homogéneos con coeficientes constantes. Matriz no diagonalizable - [Detalles]
Consideramos el caso cuando la matriz asociada al sistema tiene valores propios repetidos y NO es diagonalizable. Definimos a los vectores propios generalizados de una matriz, desarrollamos un algoritmo mediante el cual encontramos n soluciones linealmente independientes al sistema, y por tanto la solución general.
Límites laterales - [Detalles]
Definición y ejemplos de límites laterales de una función
Continuidad de la función inversa - [Detalles]
Revisión de la relación entre una función, su inversa y la continuidad
Ángulos en la circunferencia - [Detalles]
Demostramos algunos resultados que nos permiten medir ángulos respecto a una circunferencia y vemos algunas aplicaciones.
Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros - [Detalles]
Se hace una generalización del método de variación de parámetros para resolver de manera general ecuaciones diferenciales no homogéneas de segundo orden
Ecuación de Cauchy-Euler - [Detalles]
Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler
Método de variación de parámetros para sistemas lineales no homogéneos - [Detalles]
Desarrollamos el método de variación de parámetros para encontrar una solución particular al sistema lineal no homogéneo con coeficientes constantes.
Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de existencia - [Detalles]
Demostramos la existencia de una solución al problema de condición inicial para sistemas de ecuaciones de primer orden.
Propiedades básicas de la integral definida - [Detalles]
Propiedades básicas de la integral definida, aditividad, suma, producto por una constante
Áreas de superficies de revolución - [Detalles]
Enseñanza al calculo del área de una superficie de revolución.
Sistemas de ecuaciones diferenciales - [Detalles]
Se presenta una introducción a los sistemas de ecauciones diferenciales compuestos por varias ecuaciones diferenciales lineales de primer orden
Valores y vectores propios para resolver sistemas lineales - [Detalles]
Se desarrolla la teoría preliminar hacía el método de valores y vectores propios para resolver sistemas lineales homogéneos, así mismo se hace un breve repaso sobre éstos conceptos desde una perspectiva del álgebra lineal
Sistemas lineales no homogéneos – Método de variación de parámetros - [Detalles]
Se presenta una generalización del método de variación de parámetros para resolver sistemas de ecuaciones diferenciales lineales de primer orden no homogéneas con coeficientes constantes
Estudiamos la homotecia entre polígonos y circunferencias, una herramienta que usaremos en demostraciones futuras.
Potencia de un punto - [Detalles]
Presentamos los resultados más básicos sobre potencia de un punto respecto a una circunferencia y mostramos algunos ejemplos.
Cuadrilátero circunscrito - [Detalles]
Estudiamos algunas propiedades del cuadrilátero circunscrito, aquel cuyos lados son tangentes a una circunferencia dentro del cuadrilátero.
Derivada de la función inversa - [Detalles]
Demostración y ejemplos de la derivada de la inversa de una función.
Localización de máximos y mínimos. Regiones de convexidad y puntos de inflexión. - [Detalles]
Revisión del Criterio de la segunda derivada para encontrar máximos y mínimos de una función. Estudio de los conceptos convexidad, concavidad y puntos de inflexión.
Estudio del concepto de diferencial de una función y algunas aplicaciones.
Construcción de σ-álgebras - [Detalles]
Desarrollamos el concepto de sigma-álgebra generado por una familia de subconjuntos del espacio muestral. Con este se construye el sigma-álgebra de los borelianos.
La probabilidad geométrica - [Detalles]
Presentamos la probabilidad geométrica, que es un enfoque de la probabilidad con cierta relevancia histórica. Brindamos una construcción con cierta formalidad, pero muy vaga, de la noción de área en R2. Desarrollamos el ejemplo de la aguja de Buffon.
Probabilidad condicional - [Detalles]
Desarrollamos la probabilidad condicional, una herramienta nueva que permite describir la asociación que existe entre eventos
Teorema de probabilidad total - [Detalles]
Demostramos el teorema de probabilidad total, que es una herramienta muy útil a la hora de calcular probabilidades.
El péndulo simple - [Detalles]
Obtenemos una ecuación de segundo orden que modela el movimiento de un péndulo. Posteriormente estudiamos el sistema de ecuaciones asociado y su plano fase.
Variables aleatorias - [Detalles]
Desarrollamos el concepto de variable aleatoria así como definiciones equivalentes a la primer propuesta, asimismo se presentan unos ejemplos básicos de lo que representa una variable aleatoria.
Variables aleatorias mixtas - [Detalles]
Presentamos la conjunción de los dos tipos de variables aleatorias así como maneras de como hacer una construcción de este tipo de variable aleatoria acompañada de ejemplos para el cálculo de probabilidades.
Varianza de una Variable Aleatoria - [Detalles]
None
Mini-cuestionario: Forma escalonada reducida - [Detalles]
Mini-cuestionario para verificar el entendimiento de la noción de que una matriz esté en forma escalonada reducida, y cómo se relaciona con la solución del sistema asociado.
Mini-cuestionario: Matrices invertibles mediante sistemas de ecuaciones - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para encontrar la inversa de una matriz
Diapositivas de cuantificadores - [Detalles]
Mostramos los símbolos más recurrentes en matemáticas para denotar la existencia, unicidad la totalidad y pertenencia de elementos en un conjunto asi mismo es acompañado por una lista de ejemplos.
Diapositivas sobre cómo escribir una demostración por casos - [Detalles]
Mostramos la importancia y los motivos para poder ocupar este tipo de demostraciones por casos.
Guía de estudio sobre lógica proposicional - [Detalles]
Se deja una lista de ejercicios respecto a los temas de lógica proposicional y demostraciones para la práctica de los alumnos, refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario Unidad 1 Álgebra Superior - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a lógica proposicional, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Ejemplos sobre lógica proposicional - [Detalles]
Se deja una lista de ejemplos respecto a los temas de lógica proposicional con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.
Diapositivas sobre producto cartesiano - [Detalles]
Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.
Guía de estudio sobre conjuntos y relaciones - [Detalles]
Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre conjuntos - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Ejemplos sobre conjuntos y relaciones - [Detalles]
Se deja una lista de ejemplos respecto a los temas de conjuntos y relaciones con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.
Diapositivas sobre el principio de inducción - [Detalles]
Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.
Diapositivas sobre ejemplos de inducción - [Detalles]
Demostramos de 2 maneras distintas el teorema de la suma de Gauss y mostramos la manera compacta de externar una suma.
Diapositivas sobre el teorema del binomio - [Detalles]
Enunciamos el teorema del binomio de Newton y el triángulo de Pascal, como estas 2 temas involucran combinatoria, se demuestra el teorema del binomio y se muestran ejemplos con el triángulo de Pascal y su relación con el número combinatorio. Finalmente se dejan una lista de ejercicios para practicar estos temas.
Guía de estudio sobre inducción matemática y cálculo combinatorio - [Detalles]
Se deja una lista de ejercicios respecto a los temas combinatia e inducción matemática. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre inducción matemática y cálculo combinatorio - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a inducción matemática y cálculo combinatorio. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Ejemplos de resolución de problemas de inducción matemática y cálculo combinatorio - [Detalles]
Se deja una lista de ejemplos respecto a los temas de inducción matemática y combinatoria con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.
Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]
Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.
Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]
En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.
Guía de estudio sobre sistemas de ecuaciones lineales, matrices y determinantes - [Detalles]
Se deja una lista de ejercicios respecto a los temas de matrices y solución a sistemas de ecuaciones lineales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre sistemas de ecuaciones lineales y espacios vectoriales - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a matrices (operaciones y determinantes) y para solucionar sistemas de ecuaciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Guía de estudio sobre espacios vectoriales - [Detalles]
Se deja una lista de ejercicios respecto a los tema de espacios vectoriales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]
Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.
Diapositivas de subconjuntos del plano y espacio cartesiano - [Detalles]
En estas diapositivas sirve de retroalimentación respecto a los temas 2 temas anteriores, son un repaso de esteos subconjuntos generados por una condición dentro del plano cartesiano o dentor del espacio cartesiano.
Diapositivas de distancia entre 2 puntos - [Detalles]
Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.
Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Actividad 2 Geogebra coordenadas polares - [Detalles]
En esta nueva actividad de geogebra interactiva seguimos planteando como se mueve sobre el plano polar una coordenada pero ahora también lo que se está implementando es el cálculo del punto medio, la intersección con los ejes polares y más propiedades.
Guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre trigonometría y más sistemas de coordenadas - [Detalles]
Ponemos en práctica el módulo de trigonometría para una mejor preparación al presentar un examen parcial de etse tema. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Lista de ejercicios sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Diapositivas sobre matrices - [Detalles]
Definimos lo que es una matriz y definimos el espacio de matrices de "n" renglones por "m" columnas y algunas matrices cuadradas especiales de este espacio.
Cuestionario sobre matrices - [Detalles]
Ponemos en práctica los primeros conocimientos de lo que es una matriz y sobre este nuevo espacio a estudiar, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre producto punto - [Detalles]
Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.
Cuestionario sobre determinantes - [Detalles]
Ponemos en práctica la resolución de problemas que involucren el cálculo de determinantes de una matriz y especialmente en el método de Sarrus, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre producto cruz - [Detalles]
Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.
Cuestionario sobre producto triple de vectores - [Detalles]
Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre espacios vectoriales - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.
Diapositivas sobre semiplanos - [Detalles]
Definimos lo que es el segmento de una recta, como este se puede divividir en partes iguales; también definimos lo que son los semiplanos y cómo esta definición tiene que ver con rectas.
Cuestionario sobre semiplanos - [Detalles]
Ponemos en práctica nuestro nuevo tema de semiplanos con dos ejercicios muy sencillos en donde solo hay que clasificar correctamente los semiplanos separados por una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre rectas y planos - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este tercer módulo de estudios que es todo lo relacionado a rectas, planos, perpendicularidad, vector normal, y más. Hay ejercicios teóricos tanto ejercicios prácticos.
Guía de estudio sobre cónicas - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este cuarto y último módulo de estudios que es todo lo relacionado a cónicas; ecuación general, ecuación canónica, excentricidad, traslación y rotación de ejes, simetría y parametrización. Hay ejercicios teóricos tanto ejercicios prácticos.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. El Teorema de Pitágoras es válido solo para triángulos rectángulos.
Distancia entre dos puntos en el espacio cartesiano - [Detalles]
Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional.
Qué es un radián. Tallercito feliz - [Detalles]
En este taller nos dedicamos a explicar qué es un radián, durante el taller se realiza una actividad muy divertida que pueden hacer con Arilín desde su casa. Por otro lado, explicamos la relación entre radianes y grados, cómo hacer convenciones de radianes a grados y viceversa.
Leyes de cósenos. Demostración - [Detalles]
Demostramos la ley de Cosenos, la cual es una generalización del teorema de Pitágoras en los triángulos rectángulos en trigonometría.
Multiplicación escalar por matriz - [Detalles]
Definimos y explicamos la multiplicación de un escalar por una matriz. Damos algunos ejemplos y los errores comunes que se pueden cometer.
Ejemplo 4 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se muestra un subconjunto de un espacio vectorial (una recta, descrita por su ecuación de recta), NO es un subespacio vectorial.
Producto cruz ( producto vectorial) - [Detalles]
Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores.
Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores.
Definimos los semiplanos, los cuales son regiones del plano cartesiano delimitados por una recta. Vemos su representación geométrica y como representarlos por desigualdad relacionada a la ecuación de la recta.
Distancia entre dos rectas en el espacio - [Detalles]
Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula.
Distancia entre un plano y un punto - [Detalles]
Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades.
Ecuación de la circunferencia - [Detalles]
Damos una ecuación para la circunferencia a base de su definición como lugar geométrico. Vemos como a partir de sus componentes, centro y su radio, podemos conocer la ecuación de la circunferencia.
Ecuación de la la Elipse - [Detalles]
Damos una ecuación para la elipse a base de su definición como lugar geométrico. Vemos como a partir de sus focos y otros componentes podemos dar la ecuación de la elipse.
Ecuación De La Parábola - [Detalles]
Damos una ecuación para la parábola a base de su definición como lugar geométrico. Vemos a partir de su foco y directriz, podemos dar la ecuación de la parábola.
Ecuación de la hipérbola - [Detalles]
Damos una ecuación para la hipérbola a base de su definición como lugar geométrico, con centro en el origen y focos en el eje x. Vemos como a partir de su foco, directriz y otros componentes, podemos dar la ecuación de la parábola.
Demostración del teorema fundamental del álgebra usando el grupo fundamental del círculo - [Detalles]
En este video damos una demostración hermosa del teorema fundamental del álgebra usando e hecho de que el grupo fundamental del círculo es cíclico infinito.
Homomorfismos inducidos - [Detalles]
En este video demostramos que cualquier función entre espacios topológicos induce una homomorfismo entre grupos fundamentales (con puntos bases adecuados).
El enunciado del teorema de van Kampen - [Detalles]
En este video damos una breve motivación para el enunciado del teorema de van Kampen. El video lo terminamos con el enunciado formal de dicho teorema. En un video posterior daremos la demostración. Espero que lo disfruten.
Presentaciones de grupos - [Detalles]
En este video definimos lo que es una presentación de un grupo y damos algunos ejemplos.
El grupo fundamental no detecta células de dimensió mayor que 2 - [Detalles]
En este video demostraremos que el grupo fundamental queda inalterado si adjuntamos o pegamos una célula de dimensión mayor que dos a un espacio.
El cubriente universal - parte 1 - [Detalles]
En este video definimos una condición necesaria para que un espacio tenga cubriente universal: la noción de ser semi-localmente simplemente conexo.
El teorema de clasificación de cubrientes - parte 3 - [Detalles]
En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.
Homología singular - el 0-ésimo grupo de homología - [Detalles]
En este video veremos que el 0-ésimo grupo de homología singular es la suma de copias de los coeficientes, una por cada componente arco-conexa del espacio.
Homología singular - homología reducida - [Detalles]
En este video definiremos una ligera variante de la homología singular, lo que se conoce como homología reducida. Esta homología reducida es, en ocasiones, más conveniente a la hora de hacer cuentas.
Homología singular - la sucesión exacta de la tercia - [Detalles]
En este video deducimos una sucesión exacta larga que involucra grupos de homología relativas de tres espacios Z contenido en Y y Y contenido en X. Esta sucesión es muy parecida a la sucesión exacta larga de la pareja y se deduce usando el teorema fundamental del álgebra homológica.
Homología singular - el teorema del punto fijo de Brouwer - [Detalles]
Como aplicación del cálculo de la homología de una esfera demostraremos el teorema del punto fijo de Brouwer en dimensiones arbitrarias. La estrategia es idéntica a la que ya usamos para demostrar el teorema de Brouwer en dimensión 2 con el grupo fundamental.
Homología singular - acciones libres en la esfera - [Detalles]
En este video demostramos el único grupo que puede actuar libremente en una esfera de dimensión par es el grupo cíclico con dos elementos.
Complejos CW - ejemplos - los espacios proyectivos - [Detalles]
En este video daremos la definición de los espacios proyectivos. Luego describiremos una estructura celular en dichos espacios.
Complejos CW - productos - [Detalles]
En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.
Complejos CW - cocientes - [Detalles]
En este video daremos una estructura celular al cociente de un complejo CW con un subcomplejo.
Homología celular - ejemplo - superficies - [Detalles]
En este video explicamos cómo calcular la homología de una suma conexa de toros.
Proyecto: Modelo de Leslie para explotación animal y eigenvalores - [Detalles]
Este proyecto de aplicación usa nociones básicas de álgebra lineal para plantear un modelo poblacional para cierta especie, así como una posible expltación responsable de la misma.
Mini-cuestionario: Introducción a forma matricial de transformaciones lineales - [Detalles]
Mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.
Mini-cuestionario: Más sobre formas matriciales de transformaciones lineales - [Detalles]
Otro mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.
Construcción de los enteros y su suma - [Detalles]
Construimos el conjunto de los números enteros a partir de los números naturales, definimos a un número entero como una clase de equivalencia, definimos su operación suma y su inverso; también demostramos algunas propiedades básicas de la operación suma en los enteros.
Ideales en los enteros - [Detalles]
Definimos a los ideales en los enteros. Vemos ejemplos, una definición alternativa, propiedades y un teorema de caracterización.
Congruencias y el anillo de enteros módulo n - [Detalles]
Definimos lo que es una congruencia y lo que es un anillo de módulo n, demostramos que Z_{n}es un campo si y sólo si n es primo.
Problemas de ecuaciones en congruencias y teorema chino del residuo - [Detalles]
Resolvemos una serie de ejercicios de ecuaciones lineales de congruencias.
Racionales y sus expansiones decimales - [Detalles]
Damos una serie de ejemplos que nos muestran la relación entre los números racionales y sus expresiones decimales.
La norma en los complejos - [Detalles]
Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Problemas de sistemas de ecuaciones complejos y forma polar - [Detalles]
Resolvemos una serie de problemas de sistemas de ecuaciones lineales con números complejos, asi también enunciamos la relga de Kramer para la resolución de estos problemas.
Máximo común divisor de polinomios y algortimo de Euclides - [Detalles]
Definimos lo que es un ideal en los polinomios, proporcionamos un ejemplo y una caracterización de los ideales en los polinomios, al igual que en entradas anteriores tomamos ideas principales de temas que se ocupaban en los enteros pero ahora los adaptamos a los polinomios como lo es el máximo común divisor, el algoritmo de Euclides y demostramos la identidad de Bézout.
Factorización en ciclos disjuntos - [Detalles]
Demostramos que toda permutación de un conjunto finito es una composición de ciclos disjuntos. Además damos un ejemplo para ilustrar la demostración.
Factorización en transposiciones - [Detalles]
Definimos lo que es una transposición y demostramos que toda permutación se puede factorizar como producto de transposiciones.
Multiplicatividad del signo. Parte 2 - [Detalles]
Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.
Subgrupo generado por un subconjunto - parte 2 - [Detalles]
Se da una caracterización del subgrupo generado por un conjunto en términos de palabras.
Grupos cíclicos - parte 2 - [Detalles]
Se dan más propiedades de los grupos cíclicos y su relación con la función phi de Euler, se da una caracterización de los grupos cíclicos finitos.
Lema de Burnside: demostración alternativa - [Detalles]
Se enuncia y demuestra el Lema de Burnside (una demostración alternativa de otra que se dio en otro video que no aparece en el sitio).
Consecuencias del teorema de Cauchy - [Detalles]
Se muestran algunas aplicaciones y consecuencias del teorema de Cauchy: ser p-grupo es equivalente a tener orden una potencia de p, todo p-grupo no trivial tiene centro no trivial, todo grupo de orden el cuadrado de un primo es abeliano, los subgrupos maximales de un p-grupo son normales y de índice p.
Introducción al Cálculo - [Detalles]
Se habla de la historia del cálculo y una noción intuitiva de límite
Esta sólo es una prueba
Nota 1. Noción de Conjunto - [Detalles]
En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.
La Inducción matemática - [Detalles]
La inducción matemática es una herramienta fundamental para poder demostrar proposiciones que tienen que ver con los números naturales. En este video discutimos cuál es su estructura y como se implementa.
Nota 10. Función inversa - [Detalles]
En esta nota explicamos el concepto de función inversa, partiendo de los conceptos de función inversa derecha y función inversa izquierda, vemos varios ejemplos relacionados y demostramos que si una función tiene tanto inversa derecha como izquierda entonces esta es la función inversa y además es única.
Nota 17. El orden en los números naturales. - [Detalles]
En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.
Álgebra Moderna I: Permutaciones y Grupo Simétrico - [Detalles]
En primera instancia tenemos que definir lo que es una permutación de un conjunto X. Posteriormente podremos construir el concepto de Grupo Simétrico y la definición de un r-ciclo.
Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]
En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.
Los Elementos de Euclides. Teorema 7 - [Detalles]
En este video cubrimos el Teorema 7 de Los Elementos de Euclides. Aquí se demuestra que no se pueden levantar sobre una misma recta otras dos rectas iguales respectivamente a dos rectas dadas.
Los Elementos de Euclides: Teorema 11 - [Detalles]
En este video cubrimos el Teorema 11 de Los Elementos de Euclides. Aquí se realiza la construcción de la recta perpendicular a una recta dada y en un punto de ella.
Los Elementos de Euclides: Teorema 12 - [Detalles]
En este video cubrimos el Teorema 12 de Los Elementos de Euclides. Aquí se realiza la construcción de la perpendicular a una recta dada, por un punto no perteneciente a la recta dada
Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]
El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.
Álgebra Moderna I: Segundo Teorema de Isomorfía - [Detalles]
Para esta entrada nos apoyaremos en el diagrama de retícula propuesto anteriormente, con el cual introduciremos el segundo teorema de isomorfía. Posteriormente reforzaremos y daremos una versión mas intuitiva de este teorema.
Álgebra Moderna I: Tercer Teorema de Isomorfía - [Detalles]
"Alguna vez te haz preguntado: ¿Qué ocurre con un cociente de cocientes?" Después de una breve introducción al tercer teorema de isomorfía, comenzaremos enunciándolo y probándolo a partir del primer teorema.
Los Elementos de Euclides: Teorema 13 - [Detalles]
En este video cubrimos el Teorema 13 de Los Elementos de Euclides. Aquí se demuestra que al levantarse una recta sobre otra se forman ángulos tales que cada uno de ellos es de 90° (es decir, cada uno de ellos es recto) o bien son suplementarios (es decir, suman 180°, suman dos rectos)
Álgebra Moderna I: Teorema de Cayley - [Detalles]
A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley
Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]
Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.
Los Elementos de Euclides: Teorema 43 - [Detalles]
En este video cubrimos el Teorema 43 de Los Elementos de Euclides. Aquí trabajamos con una propiedad de los complementos de los paralelogramos.
Diferencia simétrica - [Detalles]
En esta sección hablaremos de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos, algunos otros los probaremos con el método de demostración habitual.
Conjuntos inductivos y axioma del infinito - [Detalles]
En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.
Bases para cualquier espacio vectorial - [Detalles]
Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en Álgebra lineal, específicamente, el hecho de que todo espacio vectorial tiene una base
Ejercicio Optimización (Escalera) - [Detalles]
¿Alguna vez te has preguntado cuál es la escalera más larga que puedes pasar entre dos pasillos que se cruzan? En este problema, usaremos técnicas de máximos y mínimos para determinar la longitud máxima de una escalera que puede maniobrarse a través de estos pasillos.
Subgráficas y la gráfica complemento - [Detalles]
En este video definimos la gráfica complemento de una gráfica dada, así como algunas operaciones básicas. Definimos el concepto de subgráfica y distinguimos dos tipos importantes: subgráficas inducidas y subgráficas generadoras.
Nociones de trigonometría - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.
Caminos, paseos y trayectorias - [Detalles]
Definimos camino, paseo y trayectoria, así como camino cerrado, circuito y ciclo. Probamos que todo u-v camino contiene una u-v trayectoria.
Contando caminos con la matriz de adyacencia - [Detalles]
Definimos la matriz de adyacencia de una gráfica G, y probamos que la k'esima potencia de esta matriz cuenta el número de caminos de longitud k que existen de un vértice a otro en G.
Paseos Eulerianos y el origen de la Teoría de Gráficas - [Detalles]
Es este video definimos multigráfica, paseo Euleriano y multigráfica Euleriana. También hablamos de la historia de los siete puentes de Köninsberg, que se reconoce como el origen dela Teoría de Gráficas y probamos un resultado de Euler, de 1736, que nos da un criterio para determinar si una multigráfica es o no es Euleriana.
Cuestionario de ecuaciones de la línea recta - [Detalles]
Este es un cuestionario para repasar el Módulo 11 del texto "Cimientos Matemáticos" donde se abarcan temas como: lugares geométricos y sus ecuaciones, punto-pendiente de una recta, forma general de la ecuación de la línea recta, etc.
Cuestionario de ecuaciones de cónicas - [Detalles]
Este es un cuestionario para repasar el Módulo 12 del texto "Cimientos Matemáticos" donde se abarcan temas como: circunferencia, parábola, elipse, con sus respectivas propiedades cada una, etc.
Mundo de la aspiradora - [Detalles]
Se presenta un agente que interactúa en el mundo de la aspiradora, tal como se presenta en Russel & Norvig (2021). Una versión más compleja de este mundo puede encontrarse en https://github.com/rayheberer/AI-A-Modern-Approach/tree/master/Chapter%202%20Intelligent%20Agents.
Agente dirigido mediante tabla - [Detalles]
Se presentan los agentes dirigidos mediante tablas, es decir, agentes que ejecutan su función a partir de una tabla de percepciones y acciones.
Mundo del laberinto con tráfico - [Detalles]
Se modifica el mundo del laberinto para introducir los algoritmos de búsqueda informada y problemas de búsqueda con una función de costo.
Algoritmo Alfa-Beta - [Detalles]
Se presenta el algoritmo de búsqueda adversaria Alfa-Beta como una mejora sobre el algoritmo Minimax.
Introducción al curso - [Detalles]
Introducción al curso de álgebra lineal II, vemos un repaso general de lo que se vio en el curso anterior así como varios resultados importantes a tener en cuenta, damos una idea general de los temas y resultados que se verán en este nuevo curso.
Polinomio característico - [Detalles]
En esta entrada veremos una introducción al concepto de polinomio característico. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.
Introducción al teorema de Cayley-Hamilton - [Detalles]
En esta entrada introducimos el teorema de Cayley-Hamilton, otro de los teoremas importantes del curso. Intuitivamente este teorema nos dice que «el polinomio característico anula al operador lineal». Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T) = 0$ .
Aplicaciones del teorema de Cayley-Hamilton - [Detalles]
En esta entrada veremos ejemplos y aplicaciones del teorema de Cayley-Hamilton, como encontrar la inversa de una matriz o su polinomio mínimo.
Matrices de formas bilineales - [Detalles]
En esta entrada formalizaremos la relación entre formas bilineales y matrices. Veremos cómo se define la matriz asociada a una forma bilineal y cómo podemos traducir operaciones con la forma bilineal en operaciones con su matriz asociada.
Ortogonalidad en espacios euclideanos - [Detalles]
En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.
Proceso de Gram-Schmidt en espacios euclideanos - [Detalles]
En esta entrada recordaremos el teorema de Gram-Schmidt el cual nos ayuda a encontrar una base ortonormal en un espacio euclidiano, y veremos ejemplos de su aplicación
Representaciones matriciales, eigenvalores y eigenvectores - [Detalles]
Estudiamos representaciones matriciales de una transformación lineal. Con la idea de eigenvectores, hablamos de representaciones sencillas.
Divergencia, laplaciano y rotacional - [Detalles]
Hacemos una breve introducción de los conceptos de divergencia, laplaciano y rotacional. Los relacionamos con posibles aplicaciones.
Inferencias Matemáticas - [Detalles]
Vemos lo que es una inferencia matemática, sus partes y el significado de inferencias válidas.
Relaciones en conjuntos: dominio, codominio y composición - [Detalles]
En esta entrada hablamos sobre relaciones entre conjuntos, el dominio, imagen de una relación así como la composición entre relaciones.
Cardinalidad de conjuntos finitos - [Detalles]
Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]
Introducción a vectores y matrices con entradas reales - [Detalles]
Damos una introducción muy sencilla a los vectores y matrices con entradas reales. Hablamos de su noción de igualdad y vemos ejemplos.
Sistemas de ecuaciones lineales - [Detalles]
Hablamos de sistemas de ecuaciones lineales y qué quiere decir resolverlos. Vemos su forma matricial y una aplicación a sistemas de 2x2.
El espacio vectorial $\mathbb{R}^n$ - [Detalles]
Damos una introducción al espacio vectorial R^n. Definimos combinaciones lineales, bases e independencia lineal. Vemos varios ejemplos.
HERENCIA, Herencia simple - [Detalles]
Herencia simple – Qué es una generalización y especialización. Se presenta el concepto de Herencia en JAVA,
En este video se platica sobre el problema de determinar la recta tangente a una curva en un punto específico.
Números naturales e induccion - [Detalles]
En este video veremos a los números naturales como un subconjunto del campo de los números reales. Justificaremos el Principio de Inducción Matemática, que es una herramienta muy poderosa para demostrar proposiciones de tipo universal acerca de los números naturales.
Derivación implícita - [Detalles]
En este video se explica en método de derivación implícita, se muestra una justificación intuitiva del teorema que la respalda, y se ejemplifica en el cálculo de la pendiente de rectas tangentes.
Teorema de la Función Inversa - [Detalles]
En este video se hace una demostración del Teorema de la Función Inversa.
Limites de sucesiones - [Detalles]
En este video se motiva la definición de límite de una sucesión de números reales, y se ejemplifica con la sucesión 1/n.
Intervalos de crecimiento - [Detalles]
En este video se muestra la relación entre el signo de la derivada y la tendencia creciente/decreciente de una función. Al final se establece el criterio de la primera derivada para máximos y mínimos locales.
COMAL: Introducción a Ciencias de la Computación - [Detalles]
Comenzamos con aspectos históricos y la arquitectura básica de una computadora. Luego, nos centramos en aprender a programar con el paradigma orientado a objetos, usando Java como lenguaje ilustrativo. Explicamos el funcionamiento de compiladores e intérpretes. Hablamos del diseño y programación de algoritmos en un lenguaje imperativo, para lo que se estudian variables, estructuras de control, clases y otros temas avanzados. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.
La pila de ejecución, Registros de llamadas a métodos - [Detalles]
Registros de llamadas a métodos - Dónde se guarda la información cada que se manda a llamar una función
Implementación con orientación a objetos, Lista versión iterativa - [Detalles]
Lista versión iterativa - Cómo implementar una versión iterativa de lista y nodos para para ahorrar tiempo y espacio (eficiencia).
Interfaces gráficas de usuario en JAVA, IGU con javaFX - [Detalles]
IGU con javaFX - Cómo programar una interfaz con javaFX
Definición de grupos de homotopía - [Detalles]
Definimos una operación en los grupos de homotopía y probamos que está bien definida.
Espacios H y grupos H - [Detalles]
Definimos una versión homotópica de los grupos topologícos
Grupos de homotopía de un producto - [Detalles]
Vemos una fórmula para pi_n(X x Y)
Espacios vectoriales definición y un ejemplo - [Detalles]
Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.
Espacios vectoriales definición y un ejemplo - [Detalles]
Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.
El teorema espectral y de descomposición polar complejos - [Detalles]
En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.
Método de las isoclinas - [Detalles]
Presentamos el método de las isoclinas para encontrar las soluciones de la ecuación dy/dt=f(t,y) mediante las curvas de nivel de la función f.
Puntos notables del triángulo - [Detalles]
Demostramos que las medianas, las mediatrices, las bisectrices tanto internas como externas y las alturas de un triángulo son concurrentes.
Cuestionario sobre parametrización de cónicas - [Detalles]
Ponemos en práctica las parametrizaciones logradas para las cónicas, en el cuestionario ocupamos que el alumno realice las parametrizaciones (y todavía) que sepa identificar las cónicas pero ahora dada la parametrización, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Coordenadas cilíndricas - [Detalles]
Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas.
Simetría de las cónicas - [Detalles]
Retomamos las simetrías en el plano: central y axial, para ver qué tipo de simetrías poseen las secciones cónicas. Cuando las secciones cónicas tienen simetría central, indicamos cual es el punto al cual se tiene esta simetría, para la simetría axial indicamos el eje en el cual se tiene simetría axial.
Combinatoria: el ejemplo del poker - [Detalles]
Analizamos el póker como un ejemplo de combinatoria. Usando combinatoria damos un ranking para las diez manos del póker, las cuale son combinaciones de cartas que podemos hacer para ganar. Las manos son: escalera real, escalera de color, poker, full, color, escalera, trio, doble pareja, pareja y carta alta.
Los enteros módulo $m$ - [Detalles]
Definimos los enteros modulo "m". Este conjunto consiste de las clases de equivalencia de la congruencia modulo "m". Definimos la operación suma y multiplicación en el conjunto de los enteros modulo "m" (recordemos que sus elementos son clases de equivalencia). Mostramos que las operaciones cumplen las propiedades necesarias para que los enteros modulo "m" sean un anillo.
Ecuaciones lineales homogéneas de segundo orden. Propiedades de las soluciones - [Detalles]
Estudiamos a las ecuaciones homogéneas de segundo orden y el comportamiento de las soluciones
Ecuaciones diferenciales autónomas - [Detalles]
Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden en las que no aparece explícitamente la variable independiente, mejor conocidas como ecuaciones autónomas
Soluciones a ecuaciones diferenciales de orden superior - [Detalles]
Estudio de las propiedades de las soluciones de las ecuaciones diferenciales de orden superior
Propiedades cualitativas de las trayectorias - [Detalles]
Se desarrollan las principales propiedades cualitativas de las trayectorias en el plano fase de un sistema de ecuaciones diferenciales
Diapositivas sobre matrices y operaciones - [Detalles]
Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.
Cuestionario sobre simetría de las cónicas - [Detalles]
Ponemos en práctica las simetrías que se pueden presentar en las figuras cónicas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Excentricidad de las cónicas - [Detalles]
Definimos la excentricidad de las cónicas, el cual es un parámetro con el cual podemos clasificas las cónicas, es decir, conociendo la excentricidad de la cónica podemos saber de qué tipo de sección cónica se trata.
Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.
25. Transformaciones lineales y transformaciones de Möbius - [Detalles]
En la entrada anterior ya vimos transformaciones y varios tipos, ahora vamos a concentrarnos en dos tipos muy especiales de transformaciones: las lineales y las de Möbius, las últimas en particular esconden bajo su mano un montón de propiedades interesantes que veremos con detalle.
Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]
En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.
Demostración del teorema de Cayley-Hamilton - [Detalles]
En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.
Transformaciones normales, simétricas y antisimétricas - [Detalles]
A partir de la noción de adjunción es posible definir ciertos tipos especiales de transformaciones lineales: las transformaciones normales, las simétricas y las antisimétricas. En esta entrada veremos dichos conceptos.
Propiedades de la negación, conjunción y disyunción de proposiciones. - [Detalles]
Se da la definición de formas proposicionales equivalentes. Mediante tablas de verdad se demuestran las leyes o propiedades de conmutatividad, asociatividad, distributivita y las Leyes de De Morgan
Ejemplo de clase de equivalencia y partición - [Detalles]
Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.
Ecuación diofántica lineal en dos variables - [Detalles]
Definimos la ecuación Diofánticas, como ecuaciones algebraicas para las cuales que buscan soluciones enteras. Nos concentramos en las ecuaciones de la forma "a*x+b*y=n", con a,b,n enteros. Mostramos cuando la ecuación tiene solución entera y cuantas soluciones tiene.
Ejemplo calcular raíces de un número complejo - [Detalles]
Continuamos analizando las raíces de un numero complejo, hacemos varios ejemplos para calcular y dar la representación geométrica de las raíces quinta de "4-4*i".
El grado de un polinomio - [Detalles]
Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo.
Teorema para buscar las Raíces enteras y racionales de un polinomio - [Detalles]
Demostramos un teorema que nos ayuda a encontrar las raíces racionales o enteras de un polinomio cuyos coeficientes son enteros. El teorema nos indica que basta con buscar en los divisores del término independiente ("a_0") y del coeficiente líder del polinomio ("a_n").
Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]
Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias.
Introducción a las ecuaciones diferenciales ordinarias: motivación y ejemplos (Parte 1) - [Detalles]
Revisamos un par de ejemplos sencillos donde las ecuaciones diferenciales hacen su aparición, motivando su estudio.
Introducción a las ecuaciones diferenciales ordinarias: motivación y ejemplos (Parte 2) - [Detalles]
Revisamos un par de ejemplos sencillos donde las ecuaciones diferenciales hacen su aparición, motivando su estudio.
Ecuaciones no lineales de primer orden separables - [Detalles]
Comenzamos el estudio a las ecuaciones no lineales considerando el caso de las ecuaciones separables
Postulados de Euclides - [Detalles]
Exponemos los postulados y las nociones comunes que Euclides enunció y las consecuencias del quinto postulado.
Introducción a las ecuaciones diferenciales - [Detalles]
Introducción general a las ecuaciones diferenciales ordinarias
Campos de pendientes y su ecuación diferencial asociada - [Detalles]
Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden
Forma exponencial de las series de Fourier - [Detalles]
Revisión a la forma exponencial de las series de Fourier
Soluciones a sistemas de ecuaciones diferenciales - [Detalles]
Se estudian las propiedades de las soluciones a los sistemas lineales tanto homogéneos como no homogéneos
Circunferencias de Lemoine - [Detalles]
Veremos las Circunferencias de Lemoine y su generalización, las circunferencias de Tucker, ambas relacionadas con el punto de Lemoine.
Interpretación de las operaciones con eventos - [Detalles]
Explicamos el significado de las operaciones con conjuntos en el contexto de la probabilidad.
Principios de conteo 3 - Combinaciones - [Detalles]
Desarrollamos el concepto de combinaciones. En este caso, al contar las combinaciones, todos aquellos arreglos con los mismos objetos (pero en orden distinto) se consideran indistinguibles. Utilizamos las herramientas de la entrada anterior para encontrar el número de combinaciones.
Las nulclinas y el plano fase - [Detalles]
Definimos las nulclinas de un sistema de ecuaciones de primer orden, y estudiamos los aspectos más importantes que nos ayudarán a esbozar el plano fase de un sistema.
Las nulclinas y el plano fase (Ejemplos) - [Detalles]
Mediante el método de las nulclinas esbozamos el plano fase de un par de sistemas de ecuaciones no lineales.
Mapeo de Poincaré - [Detalles]
Hablamos un poco acerca del mapeo de primer retorno de Poincaré y relacionamos las secciones locales en un punto con las órbitas cerradas de un sistema de ecuaciones.
Diapositivas sobre operaciones de conjuntos - [Detalles]
Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.
Diapositivas sobre espacios vectoriales - [Detalles]
Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.
Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]
Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]
Dando continuidad al tema anterior de las rectas pero ahora hacemos ahora la generalización de este tipo de rectas en más dimensiones (R^n). Vemos la recta paramétrica y como encontrar esta recta si conocemos dos puntos pertenecientes a ella. Las diapositivas se encuentran acompañadas de ejemplos.
Cuestionario sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]
Ponemos en práctica esta extensión respecto a las ecuaciones de las rectas en R^n, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre rotación de ejes - [Detalles]
Ponemos en práctica las rotaciones que se les pueden hacer a las figuras cónicas y como esta rotación repercute en su ecuación, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre parametrización de cónicas - [Detalles]
Ya teniendo nociones sobre la parametrización de curvas ahora nos interesará parametrizar estas figuras que estamos estudiando, estas parametrizaciones solo son posibles con ayuda de nuestro módulo 2 "trigonometría", con ayuda en estas identidades y razones es posible hacer las parametrización de las cónicas.
Razones trigonométricas - [Detalles]
Hablamos sobre las razones trigonométricas: coseno, seno, tangente, secante, cosecante y cotangente, las cuales están relacionadas con un triángulo rectángulo, escritas en termino de sus catetos e hipotenusa.
Coordenadas esféricas - [Detalles]
Explicamos como un punto en el espacio se puede representar por medio de las coordenadas esféricas. Vemos la representación geométrica de los dos ángulos de las coordenadas esféricas.
Ecuaciones de la recta - [Detalles]
Vemos las diferentes formas de representar la ecuación de la recta. Las formas de la ecuación de la recta que vemos son: Punto pendiente, ecuación segmentaria o canónica, ecuación general y paramétrica. También mencionamos algunas partes importantes de la ecuación de la recta, como la pendiente y la ordenada al origen.
Homología singular - la homología y las componentes arco-conexas - [Detalles]
En este video veremos cómo calcular el 0-ésimo grupo de homología singular y su relación con las componentes arco-conexas de nuestro espacio.
Homología singular - campos vectoriales en la esfera - el teorema de la bola peluda - [Detalles]
En este video demostramos que las únicas esferas que tienen campos vectoriales que no se hacen cero en ninguna parte son las de dimensión impar. Esto implica el teorema de la bola peluda, es decir, que todo campo vectorial sobre la esfera tienen un cero.
Complejos CW - definición - [Detalles]
En este video definiremos complejo CW, un tipo muy particular de espacio que se estudian en topología algebraica. Muchos de los espacios que nos son familiares son complejos CW, por ejemplo, las esferas, los espacios proyectivos y las superficies.
Raíces de números complejos y raíces de la unidad - [Detalles]
Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.
Inmersión de R en R[x], grado y evaluación - [Detalles]
Damos las definiciones principales y más escenciales del tema de polinomios como los son: raíz, grado, potencia de un polinomio; asimismo demostramos las propiedades más fundamentales de estos nuevos conceptos.
Raíces de polinomios de grados 3 y 4 - [Detalles]
Mostramos formas para encontrar las raíces de los polinomios de grado tres, cuatro y hablaremos sobre polinomios con grados más altos; para encontrar las raíces de estos polinomios de grado tres ocupamos el método Cardano y para polinomios de grado cuatro el método de Ferrari.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
Recordaremos nociones de la representación en forma polar y repasaremos las nociones y propiedades de las potencias y raíces complejas.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
Repasaremos un par de propiedades que se derivan de las ecuaciones de C-R.
Ejercicio de Conjuntos (De Morgan) - [Detalles]
En este video, emprenderemos un viaje meticuloso para demostrar la validez de las Leyes de De Morgan, dos principios fundamentales que conectan la lógica con las operaciones de conjuntos.
Álgebra Moderna I: Permutaciones disjuntas - [Detalles]
A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.
Historia de las Ciencias de la Computación; Fechas y personajes - [Detalles]
1.1 Fechas y personajes - Fechas históricas, personajes y conceptos desde las aportaciones de los babilonios y egipcios en el 2000 AC hasta 1944 con John Von Neumann y sus aportaciones a nuestra era de la computación.
El complemento de un conjunto - [Detalles]
En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.
Propiedades del producto cartesiano (parte II) - [Detalles]
En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.
En esta nueva sección veremos algunas otras equivalencias del axioma de elección, pero éstas en particular no son tan evidentes e incluso resultan sorprendentes. En muchas ramas de las matemáticas se apela a las formas equivalentes del axioma de elección que veremos en esta sección, es por ello que es importante tratarlas.
En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las fracciones: partes iguales de un todo. Aprenderás a simplificarlas, encontrar equivalentes, sumarlas, restarlas, ordenarlas y compararlas. Incluso como realizar la multiplicación y división de fracciones.
Monomios y polinomios - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.
Geometría elemental - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.
Conjuntos y Lógica - [Detalles]
En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.
En este capitulo de Cimientos Matemáticos veremos un compilado de las formulas más importantes vistas a lo largo de todos los capítulos anteriores y abarcaremos algunos temas nuevos para interés de las personas.
Problema de las 8 reinas - [Detalles]
Se define el problema de las 8 reinas como introducción a la búsqueda optimizada.
Aplicar polinomios a transformaciones lineales y matrices - [Detalles]
En esta entrada veremos el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad.
Introducción al curso y proposiciones matemáticas - [Detalles]
Hablamos de las nociones de verdadero y falso en matemáticas. Decimos qué son las proposiciones matemáticas. Introducimos tablas de verdad.
Tipos de enunciados matemáticos - [Detalles]
Introducción En esta entrada platicamos de varios tipos de enunciados con los que te vas a encontrar frecuentemente en trayectoria matemática a nivel universitario. Para entender correctamente las definiciones siguientes, es muy importante que ya estés familiarizado con el concepto de proposición matemática que tratamos con anterioridad. Axiomas En las matemáticas, los axiomas son enunciados […]
Demostraciones directas e indirectas - [Detalles]
Revisamos las estrategias para demostrar directa e indirectamente. Ponemos un ejemplo de las demostraciones por casos.
Leyes de De Morgan y diferencia simétrica de conjuntos - [Detalles]
En esta entrada hablamos de la diferencia y diferencia simétrica entre conjuntos, las leyes de De Morgan y un resumen de las propiedades de conjuntos.
JAVA, Poniendo las clases en paquetes - [Detalles]
• Poniendo las clases en paquetes – Ejemplo de cómo crear clases y paquetes.
Introducción a las sucesiones de números reales. - [Detalles]
En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.
Matrices de bloques - [Detalles]
Definimos el concepto de matrices de bloques. Damos ejemplos y vemos que sus operaciones son compatibles con las de matrices.
Reducción gaussiana en sistemas lineales $AX=b$ - [Detalles]
Aplicamos el algoritmo de reducción gaussiana en sistemas lineales de la forma AX=b para llevarlos a un sistema más sencillo y con las mismas soluciones.
Suma y suma directa de subespacios - [Detalles]
Definimos la operación de suma de subespacios de un espacio vectorial. Hablamos de subespacios en posición de suma directa y de las propiedades de sumarlos.
Transformaciones lineales y vectores independientes - [Detalles]
Estudiamos el efecto que tienen las transformaciones lineales en bases, en conjuntos generadores y en linealmente independientes.
Matrices de cambio de base - [Detalles]
Definimos a las matrices de cambio de base. Vemos cómo nos ayudan a expresar un vector como combinación lineal de elementos de distintas bases.
Formas cuadráticas, propiedades, polarización y teorema de Gauss - [Detalles]
Retomamos las formas bilineales y cuadráticas. Mostramos la identidad de polarización y sus consecuencias. Enunciamos el teorema de clasificación de Gauss.
Problemas de desigualdades vectoriales - [Detalles]
Resolvemos problemas de desigualdades usando desigualdades vectoriales. Vemos aplicaciones de las desigualdades de Cauchy-Schwarz y de Minkowski.
Transformaciones multilineales antisimétricas y alternantes - [Detalles]
Definimos transformaciones n-lineales antisimétricas y alternantes. Vemos que las familias coinciden casi siempre. Comenzamos a hablar de determinantes.
Técnicas básicas de cálculo de determinantes - [Detalles]
Vemos varias técnicas para el cálculo de determinantes. Entre ellas empezamos con determinantes de 2x2, 3x3 y qué hacen las operaciones elementales.
Conjunción y Disyunción - [Detalles]
Usamos las tablas de verdad para definir la conjunción y disyunción para dos proposiciones lógicas.
Damos las definiciones de los cuantificadores: para todo, existe y existe un único. Mediante ejemplos mostramos su uso en la lógica proposicional.
Diferencia y diferencia simétrica de conjuntos - [Detalles]
Vemos las definiciones diferencia y diferencia simétrica de conjuntos, además damos algunos ejemplos
Ejercicio de repaso de operaciones con conjuntos - [Detalles]
Damos un repaso a las operaciones con conjuntos: Unión, Intersección, etc. Usamos ejemplos sencillos de subconjuntos de números naturales.
Demostraciones con conjuntos - [Detalles]
Usamos ejemplos para dar tips y métodos para demostrar contenciones e igualdades, así como las reglas para demostrar por casos.
Hablamos un poco sobre la notación que se suele emplear para las sumas o series, así como de a que se refiere la sumatoria.
Triángulo de Pascal - [Detalles]
Vemos cómo utilizar el triángulo de Pascal y explicamos como deducir sus coeficientes. También comparamos las propiedades del combinatorio con los coeficientes en el triángulo de Pascal. Todo esto nos ayuda para calcular la n-ésima potencia de un binomio.
Subespacios vectoriales - [Detalles]
Definimos los subespacios vectoriales, los cuales son subconjuntos de un espacio vectorial que son por sí mismos espacios vectoriales. Mostramos que basta con comprobar las reglas 1, 3, 4 y 6 para ver que un subconjunto es subespacio vectorial.
Subespacio vectorial (ejemplo 1) - [Detalles]
Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.
El anillo de los números enteros - [Detalles]
Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior.
Propiedades del máximo común divisor - [Detalles]
Demostramos algunas propiedades sobre el máximo común divisor, vemos que puede sacar enteros, y varias propiedades más, las cuales demostramos haciendo uso del teorema de combinación lineal anteriormente visto.
Operaciones con el número $i$ - [Detalles]
Definimos la suma de los términos que tienen al número i. Igualmente vemos cómo multiplicar números reales por términos que tengan el número i y por último vemos las potencias del número i.
Forma polar de un número complejo - [Detalles]
Vemos como escribir un numero complejo en su forma polar (mediante su modulo y su argumento). Para esto hacemos uso de las razones trigonométricas y vemos su representación en el plano complejo.
Introducción, nociones comunes y postulados de Euclides - [Detalles]
Damos la introducción al curso. Para ello hablamos de las definiciones elementales en geometría. Planteamos los postulados de Euclides, nociones comunes y algunas de sus consecuencias.
Algunas propiedades del triángulo - [Detalles]
Demostramos el recíproco del quinto postulado y las expresiones para calcular el área de un triángulo rectángulo y un triángulo cualquiera
Medianas, bisectrices, mediatrices y alturas - [Detalles]
Damos las definiciones de varios puntos y rectas notables del triángulo y demostramos algunas de sus propiedades
Concurrencia de medianas - [Detalles]
Demostramos que las medianas de un triángulo son concurrentes .
Triángulos pedales - [Detalles]
Damos las definiciones de triángulo mediano, triángulo órtico y triángulo pedal y demostramos algunas de sus propiedades
Otros puntos y rectas notables del triángulo - [Detalles]
Demostramos que la suma de los tres ángulos internos de un triángulo suman dos ángulos rectos y que las bisectrices de dos ángulos exteriores de un triángulo y la del ángulo interior no adyacente son concurrentes por tercias
Rectas notables en circunferencias y ángulos inscritos - [Detalles]
Definimos las rectas notables en la circunferencia y los ángulos en la circunferencia, además demostramos algunas de sus propiedades
Más de rectas notables en circunferencias y cuadriláteros cíclicos - [Detalles]
Demostramos algunas propiedades de las rectas notables en la circunferencia
Problemas de cuadriláteros cíclicos y rectas anti-paralelas - [Detalles]
Resolvemos algunos problemas relacionados con la circunferencia, definimos las rectas antiparalelas y demostramos algunos resultados
Curvas integrales asociadas a un campo de pendientes - [Detalles]
Definimos las curvas integrales del campo de pendientes asociado a nuestra ecuación diferencial dy/dt=f(t,y).
Clasificación de soluciones de equilibrio - [Detalles]
Clasificamos a las soluciones de equilibrio de la ecuación autónoma dy/dt=f(y) en tres tipos: atractores, repulsores y nodos.
Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]
Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.
Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]
Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 1) - [Detalles]
Damos las primeras definiciones acerca de sistemas de ecuaciones de primer orden y mostramos dos ejemplos de problemas donde los sistemas aparecen.
Repaso Teoría de Conjuntos (Parte 2) - [Detalles]
Presentación de las operaciones de conjuntos.
Propiedades algebraicas de los números reales (Parte 1) - [Detalles]
Estudio de las propiedades básicas de los números reales con sus operaciones: suma y producto.
Estudio de las definiciones para ínfimo y supremo de un conjunto, resultados relacionados y ejemplos.
Operaciones con sucesiones convergentes - [Detalles]
Revisión de las operaciones con sucesiones convergentes
Sucesiones de Cauchy - [Detalles]
Definición y ejemplo de sucesiones de Cauchy y su relación con las sucesiones convergentes
Ecuaciones diferenciales como modelos matemáticos - [Detalles]
Estudio de problemas reales donde las ecuación diferenciales son el modelo matemático que describe y resuleve al problema
Ecuaciones diferenciales exactas - [Detalles]
Desarrollo del método de resolución de las ecuaciones diferenciales exactas
Ecuaciones diferenciales de orden superior - [Detalles]
Introducción general a las ecuaciones diferenciales ordinarias de orden superior
Ecuaciones lineales no homogéneas de segundo orden – Método de coeficientes indeterminados - [Detalles]
Al estudiar el caso no homogeneo de las ecuaciones diferenciales de segundo orden se presenta un primer método que propone soluciones en forma de series similares a la función g
Oscilaciones mecánicas - [Detalles]
Se aplican los resultados obtenidos en el estudio de las oscilaciones mecánicas
Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]
Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.
Sistemas de dos ecuaciones de primer orden. Campo vectorial asociado - [Detalles]
Asociamos un campo vectorial a un sistema de ecuaciones de primer orden con coeficientes constantes, y analizamos su relación con las curvas del plano fase del sistema.
Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio - [Detalles]
Comenzamos el estudio cualitativo a los sistemas de dos ecuaciones no lineales. Linealizamos el sistema en sus puntos de equilibrio y estudiamos el comportamiento de las soluciones cerca de estos.
Integrales impropias del primer tipo - [Detalles]
Introducción a las integrales impropias y del primer tipo.
Integrales impropias del segundo tipo - [Detalles]
Enseñanza a las integrales impropias del segundo tipo.
Criterios de convergencia para las integrales impropias - [Detalles]
Enseñanza a los teoremas para el criterio de convergencia de integrales impropias.
Definición de series y series infinitas - [Detalles]
Estudio de la definición de las sumas parciales y series infinitas.
Series geométrica - [Detalles]
Estudio de las series geométricas.
Criterio de la divergencia y de acotación - [Detalles]
Enseñanza a los teoremas de la divergencia y de acotación como criterios de convergencia para las series.
Criterio de la razón y el criterio de la raiz - [Detalles]
Estudio del criterio de la raiz y la razoón como criterios de convergencia para las series.
Criterio de la integral - [Detalles]
Estudio al criterio de la integral para las series como criterio de convergencia.
Enseñanza a la definición de las p-series.
Serie de potencias - [Detalles]
Enseñanza a la definición de las series de potencias.
Series de Fourier - [Detalles]
Introducción a la definición de las series de Fourier
Curvas paramétricas - [Detalles]
Estudio a las curvas paramétricas y su definición
Tangentes a curvas paramétricas - [Detalles]
Estudio de la derivada a las curvas parametricas
Coordenadas polares - [Detalles]
Estudio a las coordenadas polares
Presentamos la trigonometría elemental a partir de las razones trigonométricas en un triangulo rectángulo y mostramos algunas identidades.
Circunferencias tritangentes - [Detalles]
Estudiaremos algunos resultados referentes a las circunferencias tritangentes, es decir el incírculo y excÍrculos de un triángulo.
Medianas y centroide - [Detalles]
Estudiamos algunas propiedades de las medianas y el centroide, resolveremos algunos ejercicios y problemas de construcción.
Veremos que los ángulos del triangulo órtico son bisecados por los lados y las alturas de su triángulo de referencia y el problema de Fagnano
Circunferencia de los nueve puntos - [Detalles]
Presentamos la circunferencia de los nueve puntos, determinada por los pies de las alturas, los puntos medios y los puntos de Euler.
Estudiamos algunas propiedades del punto de Nagel y las de otros objetos relacionados con este punto, como la circunferencia de Spieker.
Veremos que las simedianas de un triángulo son concurrentes y algunos resultados sobre este punto de concurrencia, el punto simediano.
Puntos de Brocard - [Detalles]
Estudiamos algunas de las propiedades del primer y segundo punto de Brocard que son otro par de puntos conjugados isogonales del triangulo.
Mini-cuestionario: Introducción al curso, vectores y matrices - [Detalles]
Mini-cuestionario para verificar el entendimiento de las operaciones de suma vectorial y producto escalar.
Área bajo la curva - [Detalles]
Se aborda el tema del concepto de la integral con las sumas de Riemann y se dan tres ejemplos de su aplicación.
Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]
Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales
Las nulclinas en el estudio cualitativo de los sistemas no lineales - [Detalles]
Se define el concepto de nulclinas y se usan como herramientas para la construcción de un esbozo general del plano fase de los sistemas no lineales
El péndulo con fricción - [Detalles]
Revisamos el sistema de ecuaciones que modela el movimiento de un péndulo con fricción y estudiamos las diferencias que existen con el péndulo simple. Además esbozamos el plano fase del el sistema.
Variables aleatorias discretas - [Detalles]
Presentamos el primer tipo de variables aleatorias que son las discretas tomando un soporte finito o infinito numerable, también se muestra la relación entre la función de masa de probabilidad y la función de distribución.
Variables aleatorias continuas - [Detalles]
Presentamos el segundo tipo de variables aleatorias que son las continuas tomando un soporte infinito no numerable así como mostramos la relación de la función de masa con la función de distribución relacionado con el teorema fundamental del cálculo.
Mini-cuestionario: Transpuesta de matrices, matrices simétricas y antisimétricas - [Detalles]
Mini-cuestionario para verificar el entendimiento de las nociones de transposición de matrices, matrices simétricas y antisimétricas
Mini-cuestionario: Sistemas de ecuaciones lineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones relacionadas con sistemas de ecuaciones lineales
Diapositivas sobre demostraciones con cuantificadores - [Detalles]
Explicamos como se demuestran proposiciones matemáticas que cuentan con cuantificadores, cómo demostrar que son verdaderos o que son falsos, las diapositivas van acompañadas de ejemplos.
Diapositivas sobre conjuntos - [Detalles]
Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.
Diapositivas sobre familias de conjuntos - [Detalles]
Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.
Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]
Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.
Cuestionario de plano cartesiano y espacios geométricos - [Detalles]
Ponemos en práctica las definiciones del tema de espacios geométricos dentro del plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]
Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Resolución de guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Cuestionario sobre ley de senos, ley de cosenos y resolución de triángulos - [Detalles]
Ponemos en práctica el tema de las leyes de los senos y cosenos pra ser aplicadas en la resolución de triángulos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Actividad 1 Geogebra coordenadas polares - [Detalles]
En esta primera actividad de geogebra interactiva nos muestra como en el plano polar se cambian las coordenadas a raíz de su longitud de radio y del grado al que estén puestos.
Guía de autoevaluación sobre trigonometría y más sistemas de coordenadas - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Resolución de guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Cuestionario sobre espacios vectoriales - [Detalles]
Ponemos en práctica el primer acercamiento que tenemos con lo que es un espacio vectorial, nos centramos en la comprensión de la definición y de las características que cumplen estos espacios, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre operaciones matriciales - [Detalles]
Ponemos en práctica los nuevos conocimientos que tenemos de las matrces y sus operaciones que se realizan entre ellas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ecuaciones de planos en el espacio - [Detalles]
Ponemos en práctica el tema de los planos en el espacio euclídeo y las ecuaciones de estos tanto de manera paramétrica, cuando conocemos 3 pu tos que forman parte del plano. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre planos y distancias en el espacio - [Detalles]
Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.
Cuestionario sobre cónicas - [Detalles]
Ponemos en práctica las primeras definiciones que tenemos de cónicas y evaluar si el alumno aprendió a diferenciarlas viendo su ecuación general, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre traslación de ejes - [Detalles]
Ponemos en práctica el tema de las cónicas fuera del origen, el alumno a estas alturas debe ser capaz de identificar la cónica que se está presentando, sus elementos y su construcción dados sus elementos. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre cónicas - [Detalles]
Ponemos en práctica todo el conocimiento nuevo que adquirimos en cuanto a todo lo que involucra el gran bloque de las figuras cónicas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Coordenadas en el plano cartesiano - [Detalles]
Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas.
Lugares en el espacio cartesiano - [Detalles]
Recordamos la definición de un lugar geométrico, la cual también aplica para el espacio cartesiano. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas, pero esta vez en el espacio cartesiano, es decir, con 3 coordenadas.
Coordenadas polares - [Detalles]
Explicamos en que consiste el plano polar y las coordenadas polares. Damos la representación geométrica del radio y del ángulo en el plano polar.
Coordenadas Polares: El origen, radio negativo y ángulo negativo - [Detalles]
Damos continuación a la explicación sobre las coordenadas polares, hablamos sobre algunas observaciones como radio o ángulo negativo y como interpretarlo.
Subespacios vectoriales - [Detalles]
Definimos los subespacios vectoriales, los cuales son subconjuntos de un espacio vectorial que son por sí mismos espacios vectoriales. Mostramos que basta con comprobar las reglas 1, 3, 4 y 6 para ver que un subconjunto es subespacio vectorial.
Dependencia e independencia lineal - [Detalles]
Damos las definiciones formales de combinación lineal, dependencia lineal e independencia lineal. También usamos ejemplos para explicar cuando un conjunto de vectores cumple con alguna de estas definiciones
Damos un repaso a trigonometría, las razones trigonométricas, el teorema de Pitágoras y los elementos más relevantes de un triángulo rectángulo.
Orden en los números enteros - [Detalles]
Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales.
El grupo fundamental de la n-esfera - [Detalles]
En este video demostramos que el grupo fundamental de las esferas de dimensión al menos 2 es trivial. Este cálculo nos sigue dando herramientas para desarrollar intuición acerca del grupo fundamental.
R^2 no es homeomorfo a R^n si n es diferente de 2 - [Detalles]
En este video demostramos que R^2 no es homeomorfo a R^n si n es diferente de 2. Para demostrar esto usamos el cálculo de los grupos fundamentales de las esferas. Este resultado es otro ejemplo de cómo usar nuestros invariantes algebraicos (el grupo fundamental) para resolver problemas en topología.
Proyecto: Hoyos de gráficas, espacios cociente y homología - [Detalles]
En este proyecto introducimos las nociones de espacio vectorial cociente, espacio vectorial libre y vemos cómo nos ayudan a definir lo que es la homología.
Proyecto: Álgebra lineal básica en Python y Jupyter - [Detalles]
En este proyecto llevamos varios de los conceptos teóricos de álgebra lineal a un lenguaje de programación. Vemos cómo usar las bibliotecas SymPy y NumPy de Python para trabajar con matrices.
Mini-cuestionario: Espacios vectoriales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones básicas de espacios vectoriales.
Mini-cuestionario: Subespacios vectoriales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones básicas de subespacios vectoriales.
Mini-cuestionario: Bases y dimensión de espacios vectoriales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las nociones de bases y dimensión de espacios vectoriales de dimensión finita.
Mini-cuestionario: Formas bilineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones básicas de formas bilineales.
Mini-cuestionario: Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]
Mini-cuestionario para verificar el entendimiento de las nociones básicas de producto interior y de la desigualdad de Cauchy-Schwarz
Mini-cuestionario: Bases ortogonales y ortonormales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones de bases ortogonales y ortonormales.
Mini-cuestionario: Transformaciones multilineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones básicas de transformaciones multilineales.
Mini-cuestionario: Transformaciones multilineales antisimétricas y alternantes - [Detalles]
Mini-cuestionario para verificar el entendimiento de qué son las formas multilineales antisimétricas y alternantes.
Mini-cuestionario: Propiedades de determinantes - [Detalles]
Mini-cuestionario para verificar el entendimiento de las propiedades básicas de los determinantes.
Mini-cuestionario: Eigenvectores y eigenvectores de transformaciones y matrices - [Detalles]
Mini-cuestionario para verificar el entendimiento de las nociones de eigenvectores y eigenvalores.
Mini-cuestionario: Matrices reales simétricas y sus eigenvalores - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo son los eigenvalores de las matrices simétricas reales.
Introducción al curso y números naturales - [Detalles]
Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.
La construcción de las naturales - [Detalles]
Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.
Definición de la suma y sus propiedades básicas - [Detalles]
Definimos la suma en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Definición del producto y sus propiedades básicas - [Detalles]
Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Divisibilidad en los enteros - [Detalles]
Damos la definición de divisibilidad en los enteros. Discutimos algunas propiedades básicas y otras relacionadas con las operaciones y orden.
Problemas de congruencias y $Z_n$ - [Detalles]
Resolvemos ejercicios que ocupan las definiciones de congruencia, anillo de módulo n para encontras sus unidades e inversos multiplicativos en caso de que los haya.
Ecuaciones diofantinas - [Detalles]
Definimos lo que son las ecuaciones diofantinas que son aquellas ecuaciones con soluciones enteras, asimismo profundizamos en saber que características toman este tipo de ecuaciones para logras saber si tienen solución entera o no.
Construcción de números complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Inmersión de los reales en los complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Problemas de operaciones en el anillo de polinomios - [Detalles]
Resolvemos problemas sobre las operaciones básicas en el anillo de los polinomios con coeficientes reales.
Irreducibilidad en R[x] - [Detalles]
Enunciamos el teorema fundamental del álgebra y el teorema de la factorización única de polinomios sobre los complejos asimismo vemos las raíces complejas de un polinomio y su la irreducibilidad de un polinomio real.
Problemas de desigualdades de polinomios - [Detalles]
Resolvemos problemas que ocupan el material de las desigualdades polinomiales y damos los pasos para poder resolver estos tipos de problemas.
El teorema de derivadas y multiplicidad - [Detalles]
Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
Ejemplos de solución de ecuaciones de grados 3, 4 y más - [Detalles]
Resolvemos ejercicios en los cuales se pide que encontremos las raíces de un polinomio de grado 3 con el método de Cradano, de grado 4 con el método de Ferrari y de grados mayores.
Potencias de un elemento en un grupo - [Detalles]
Se definen las potencias de elementos de un grupo y se explican sus propiedades.
Grupos - "Casi grupos" - [Detalles]
Se dan ejemplos de conjuntos con operaciones que "casi" son grupos y se explican las propiedades de grupo que fallan.
Centralizadores y clases de conjugación - [Detalles]
Se definen los centralizadores y se exploran propiedades de las clases de conjugación.
Grupos simétricos (1) - [Detalles]
Se presentan más propiedades de los grupos simétricos, se estudian permutaciones con la misma estructura cíclica y se concluye que las permutaciones conjugadas son precisamente aquellas que tienen la misma estructura cíclica.
Grupo alternante (1) - [Detalles]
Se estudian las propiedades de los grupos alternantes, un lema sobre el índice de los centralizadores.
Coordenadas polares - [Detalles]
Se introducen las coordenadas polares y disintos tipos de objetos matemáticos que pueden ser descritos a través de ellas.
1. Introducción a los números complejos - [Detalles]
Repasaremos unos breves antecedentes históricos y unas de las primeras motivaciones que nos llevaron a la concepción, y posteriormente creación, de los números complejos.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Volvamos a checar un poco las definiciones de un conjunto conexo y compacto mediante algunos ejemplos.
7. Topologia de $\mathbb{C}$ - [Detalles]
En esta entrada empezamos recordando las nociones de topología en espacios métricos pera luego enfocarnos en el espacio métrico $(\mathbb{C},d)$ y definir todos los conceptos importantes de topología pero ahora en los complejos.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Ahora chequemos más propiedades de las ecuaciones C-R.
Unidad I: Introducción y preliminares - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la primera unidad.
Unidad I: Introducción y preliminares - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la primera unidad.
Unidad III: Series de números complejos - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la tercera unidad.
Unidad III: Series de números complejos - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la tercera unidad.
Unidad IV: Integración compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la cuarta unidad.
Unidad IV: Integración compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la cuarta unidad.
Unidad V: Aplicaciones - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la quinta unidad.
Unidad V: Aplicaciones - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la quinta unidad.
En este examen se evalúan temas de las cinco unidades del curso.
Examen final - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen final del curso.
27. Preliminares de series de números complejos - [Detalles]
Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.
38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]
Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.
Introducción: ¿Qué son las ciencias de la computación?, Computación - [Detalles]
1.1 Computación - Breve introducción a la materia y presentación de algunos conceptos clave que serán utilizados a lo largo del curso como computadora, computación y programa.
Ejercicio de Tablas de verdad - [Detalles]
En este video justificamos la equivalencia de proposiciones utilizando las tablas de verdad y como operan con conectores lógicos.
Nota 3. El complemento de un conjunto. - [Detalles]
En esta nota se presentan las ideas de conjunto universo y conjunto complemento, así como varias propiedades y ejemplos referentes a estos conceptos. También hay un recurso interactivo de Geogebra que ilustra el concepto de complemento de un conjunto.
Nota 4. Unión e intersección de Conjuntos. - [Detalles]
En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.
Algebra Moderna I: Operación binaria - [Detalles]
El objetivo de esta nota es definir el concepto de "operación binaria" dentro del Algebra Moderna. Así mismo, dejar definida la notación del concepto que se adoptará a lo largo de las notas del curso. Y por ultimo se ejemplifican algunas formas de construir este tipo de operaciones.
Nota 26. Propiedades de $\mathbb{R}^n$ - [Detalles]
En la siguiente nota veremos algunas propiedades de $\mathbb{R}^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb{R}$ por cualquier vector de $\mathbb{R}^n$ nos da el neutro aditivo del espacio vectorial, y que la multiplicación de cualquier escalar por el neutro aditivo de $\mathbb{R}^n$, es el mismo neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, denotado por $\tilde{v}$ es de hecho $(-1)v$.
Álgebra Moderna I: Asociatividad Generalizada y Leyes de los Exponentes - [Detalles]
Dentro de las operaciones básicas de un grupo, podemos encontrar la asociatividad. La cual es tratada dentro de esta sección, además de algunas de sus consecuencias inmediatas y un teorema generalizando.
Álgebra Moderna I: Subgrupos - [Detalles]
La proxima estructura que nos interesa estudiar es la de la subcoleccion H de un grupo G, por tanto necesitamos conocer que necesita H para que sea un grupo en si mismo. Así mismo, hay que estudiar propiedades que heredan estas subcolecciones y las caracterizaciones. Por ultimo siempre es bueno revisar que pasa cuando son finitos.
Introducción: ¿Qué son las Ciencias de la Computación?, Complejidad - [Detalles]
1.3 Complejidad - Continuación de los conceptos clave de la materia, significado de la complejidad y sus características (tiempo, espacio, tamaño y dificultad) para su ejecución.
Introducción: ¿Qué son las Ciencias de la Computación?, Modelos Teóricos - [Detalles]
1.4 Modelos teóricos - Uso de modelos teóricos para estudiar los problemas que se van a resolver y sus soluciones. Se aborda el análisis de algoritmos y teoría de la computación.
Introducción: ¿Qué son las Ciencias de la Computación?, Disciplinas semejantes - [Detalles]
1.5 Disciplinas semejantes - Presentación de la familia de disciplinas altamente relacionadas a ciencias de la computación tales como programación, ingeniería de la computación, cibernética, informática, tecnologías de la información y ciencia de datos además de por qué no son lo mismo.
Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]
En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.
Los Elementos de Euclides: Teorema 20 - [Detalles]
En este video cubrimos el Teorema 20 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, la suma de las longitudes de dos cualesquiera de sus lados es mayor que la longitud del tercer lado.
Los Elementos de Euclides: Teorema 22 - [Detalles]
En este video cubrimos el Teorema 22 de Los Elementos de Euclides. Aquí se estudia la construcción de un triángulo a partir de tres segmentos dados que cumplen la condición de que la suma de las longitudes de dos cualesquiera de los segmentos es mayor que la longitud del tercer lado.
Los Elementos de Euclides: Teorema 33 - [Detalles]
En este video cubrimos el Teorema 33 de Los Elementos de Euclides. Aquí se demuestra que las rectas que unen por los extremos y en el mismo lado, rectas iguales y paralelas, son también iguales y paralelas.
Historia de las Ciencias de la Computación; Fechas y lenguajes - [Detalles]
1.2 Fechas y Lenguajes - Fechas históricas y lenguajes de programación. Desde los años de 1950 hasta la década de los 90's con la aparición de Java, lenguaje principal de este curso.
Arquitectura de Von Neumman y el ciclo de acarreo; - [Detalles]
2.1 Arquitectura de Von Neumman y el ciclo de acarreo - ¿Qué es la arquitectura de Von Neumman? ¿Para qué sirve? y ¿Cómo funciona? Breve presentación de quién fue Neumann y sus contribuciones a la Ciencia y a las Ciencias de la Computación.
Diseño y programación orientada a objetos; Introducción - [Detalles]
1.1 Diseño y programación orientada a objetos introducción - Presentación del paradigma así como de las ventajas y características de la POO.
Diseño y programación orientada a objetos; Modelo - [Detalles]
1.2 Modelo orientado a objetos - ¿Qué es el modelo orientado a objetos? Presentación de las características de este modelo y su composición además de la definición de objeto que usaremos, cómo funciona, su rutina y mensaje además los tipos que existen. De igual forma se nos explica la definición de estado de objeto. y los tipos de métodos. También se nos habla de la programación orientada a objetos con clases, su definición y composición. Por último se presenta la definición de interfaz.
Introducción a la programación con Java. Elementos teóricos; Análisis de código - [Detalles]
1.5 Análisis de código - Qué significan las fases del análisis de código (léxico, sintáctico y semántico) y pasos a seguir.
Los elementos de Euclides: Teorema 35 - [Detalles]
En este video cubrimos el Teorema 35 de Los Elementos de Euclides. Este teorema demuestra que los paralelogramos que están sobre la misma base y entre las mismas paralelas tienen áreas iguales.
Los elementos de Euclides: Teorema 36 - [Detalles]
En este video cubrimos el Teorema 36 de Los Elementos de Euclides. Este teorema nos dice que los paralelogramos que tienen bases iguales y que además están entre las mismas paralelas, tienen áreas iguales.
Los Elementos de Euclides: Teorema 37 - [Detalles]
En este video cubrimos el Teorema 37 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que están sobre la misma base y entre las mismas paralelas tienen también áreas iguales.
Los Elementos de Euclides: Teorema 38 - [Detalles]
En este video cubrimos el Teorema 38 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que tienen bases iguales y que están entre las mismas paralelas tienen áreas iguales.
Los Elementos de Euclides: Teorema 39 - [Detalles]
En este video cubrimos el Teorema 39 de Los Elementos de Euclides. Aquí se demuestra que si triángulos iguales están sobre la misma base y en el mismo lado, entonces también están entre las mismas paralelas.
Los Elementos de Euclides: Teorema 40 - [Detalles]
En este video cubrimos el Teorema 40 de Los Elementos de Euclides. Aquí se demuestra que triángulos iguales, que están sobre bases iguales y en el mismo lado, también están entre las mismas paralelas.
Los Elementos de Euclides: Teorema 41 - [Detalles]
En este video cubrimos el Teorema 41 de Los Elementos de Euclides. Aquí se demuestra que si un paralelogramo y un triángulo tienen la misma base y están entre las mismas paralelas, determinadas por la base del triángulo y la paralela que pasa por el vértice opuesto a la base, entonces el área del paralelogramo es el doble que el área del triángulo.
Los Elementos de Euclides: Definiciones - [Detalles]
En este video cubrimos las Definiciones del libro I de Los Elementos de Euclides.
Los Elementos de Euclides: Nociones comunes - [Detalles]
En este video cubrimos las Nociones Comunes del libro I de Los Elementos de Euclides.
Propiedades del producto cartesiano - [Detalles]
En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.
Relaciones de equivalencia - [Detalles]
En esta entrada hablaremos acerca de un tipo de relaciones a las que llamaremos relaciones de equivalencia. Trataremos ejemplos que son relaciones de equivalencia así como ejemplos que no lo son.
Suma en los naturales - [Detalles]
En esta nueva entrada presentaremos la definición formal de la suma, veremos que, gracias al teorema de recursión, es única y demostraremos algunas de las propiedades que satisface usando el principio de inducción.
Axioma de elección - [Detalles]
En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.
Ejercicio Derivación - [Detalles]
En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.
Cuestionario de las fracciones - [Detalles]
Este es un cuestionario para repasar el Módulo 3 del texto "Cimientos Matemáticos". Se cubren temas como la suma, multiplicación, división de fracciones, etc.
Red bayesiana para el problema de Monty Hall - [Detalles]
Se presentan las redes bayesianas para resolver el problema de Monty Hall.
Propiedades de eigenvectores y eigenvalores - [Detalles]
En esta entrada profundizaremos en el estudio de los vectores y valores propios, exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.
Repaso de formas bilineales y formas cuadráticas - [Detalles]
en esta entrada daremos un repaso de los conceptos de formas bilineales y formas cuadráticas, y probaremos algunas propiedades que previamente no fueron demostradas. También nos familiarizaremos con algunos tipos especiales de formas bilineales e intentaremos extender las definiciones ya dadas, esta vez para espacios vectoriales cuyo campo sea $\mathbb{C}$
Formas sesquilineales - [Detalles]
En esta entrada veremos los conceptos de formas sesquilineales y formas hermitianas, ambos conceptos extienden (en algunos sentidos) lo que hemos visto sobre formas bilineales a espacios vectoriales sobre los complejos. Los resultados son casi análogos a los del caso real. Sin embargo, hay algunas diferencias importantes en las que haremos énfasis.
Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]
En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.
Introducción a forma canónica de Jordan - [Detalles]
En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.
Matrices y transformaciones nilpotentes - [Detalles]
Hemos estudiado varias clases importantes de matrices y transformaciones lineales: diagonales, triangulares superiores, simétricas, ortogonales, normales, etc. Es momento de aprender sobre otro tipo fundamental de matrices y transformaciones lineales: las transformaciones nilpotentes.
Derivadas parciales de segundo orden - [Detalles]
Definimos las derivadas parciales de segundo orden para un campo escalar, con ejemplos. Vemos cuándo conmuta el orden de derivación.
Derivadas parciales de orden superior - [Detalles]
Definimos qué son las derivadas parciales de orden superior para campos escalares. Damos ejemplos y un teorema de conmutatividad.
Discutimos la importancia que tendrán las matrices en el cálculo de varias variables. Recordamos ciertas operaciones binarias y elementales.
Formas cuadráticas - [Detalles]
Hacemos un repaso de lo que son las formas cuadráticas. Vemos la identidad de polarización, el teorema de Gauss y hablamos de positividad.
Propiedades de la negación, conjunción y disyunción - [Detalles]
Revisamos las propiedades de tres conectores: la negación, la disyunción y la conjunción. Hablamos de cuándo son dos proposiciones equivalentes.
Demostración de proposiciones con conectores - [Detalles]
En esta entrada revisamos algunos ejemplos de las demostraciones matemáticas con conectores como la conjución y disyunción.
Demostración de proposiciones con cuantificadores - [Detalles]
En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".
Conjuntos y elementos - [Detalles]
Estudiamos las primeras nociones de teoría de conjuntos. Vemos qué significa que un elemento pertenezca a otro y cómo describir conjuntos.
Relaciones de equivalencia y clases de equivalencia - [Detalles]
En esta entrada revisamos las relaciones de equivalencia, clases de equivalencia y particiones de conjuntos.
Operaciones de suma y producto escalar con vectores y matrices - [Detalles]
Definimos las operaciones de suma y producto escalar para vectores y martices. Enunciamos algunas propiedades con ejemplos y demostraciones.
Ingeniería de software, Crisis del software - [Detalles]
Crisis del software - ¿Cómo surge la ingeniería del software? Antecedentes y precursores. Cuáles eran las limitaciones al crear y replicar software.
Ingeniería de software, Crisis del software, Ciclo del software - [Detalles]
Ciclo del software – Explicación de las etapas del ciclo de software.
JAVA, Clases de uso - [Detalles]
• Clases de uso – Organización por convención. ¿Qué son las clases en JAVA? El método main. Java, poo, programación orientada a objetos, clases de uso, clases, método main, main
JAVA, Variables y tipos - [Detalles]
Variables y tipos - Qué son las variables y sus tipos. Cómo se declaran, su sintaxis y definición. Cuáles son los tipos primitivos y derivados así como los operadores en JAVA.
HERENCIA, Herencia simple en la memoria y tipos de ancestros - [Detalles]
Herencia simple en la memoria y tipos de ancestros – Visualización de las herencias, tipos de heredabilidad. Cómo se da la sobreescritura y métodos abstractos.
En este video se enuncia los axiomas de orden para el conjunto de números positivos. Se demuestra algunas consecuencias de los axiomas, se define el orden, se muestra que el orden es congruente con las operaciones y se definen los intervalos.
Introduciremos las nociones de cotas superiores e inferiores, y presentaremos el axioma del supremo, finalizando con la demostración de un par de consecuencias de éste.
Reglas de Derivacion - [Detalles]
En este video se demuestran las reglas más usuales de derivación.
Elementos del paradigma estructurado - [Detalles]
Elementos del paradigma estructurado – Qué es la programación estructurada, características, elementos y antecedentes. Qué son las estructuras de control y cómo organizarlas.
Estructuras de control, Condicionales en JAVA - [Detalles]
Condicionales en JAVA - ¿Cuáles son las estructuras de control condicionales? sintaxis y cómo usarlas.
Recursividad, Recursión doble; torres de Hanoi. - [Detalles]
Recursión doble, Torres de Hannoi - Significado y cómo se ve la recursión doble. Ejemplo de código con las torres de Hannoi.
Correctez, Pruebas unitarias - [Detalles]
Pruebas unitarias - Cómo realizar las pruebas unitarias a partir de gráficas de flujo.
Uso de interfaces, Lista en la memoria de Java - [Detalles]
Lista en la memoria de Java - Cómo se ven las listas y transliteraciones en JAVA. Cómo se van almacenando.
Implementación con orientación a objetos, TDA lista - [Detalles]
TDA lista - Cómo aplicar el concepto de Tipo de datos abstracto al concepto de lista y qué operaciones se pueden realizar con las listas.
Implementación con orientación a objetos, Agregar al final - [Detalles]
Agregar al final - Cómo usar la clase listasimple para agregar objetos al final de las listas.
Tipos genéricos, Introducción, uso y declaración de clases genéricas - [Detalles]
Introducción, uso y declaración de clases genéricas - Qué son, cómo se pueden utilizar y para qué nos pueden servir. Cómo se declaran. Incluye ejemplo de uso y declaración así como las convenciones generales.
Tipos genéricos, Lo que no se puede (parte 1) - [Detalles]
Lo que no se puede (parte 1) - Las 7 reglas que se deben seguir al usar genéricos. así como ejemplos
Tipos genéricos, Lo que no se puede (parte 2) - [Detalles]
Lo que no se puede (parte 2) - Las 7 reglas que se deben seguir al usar genéricos.
Tipos genéricos, Lo que no se puede (parte 3) - [Detalles]
Lo que no se puede (parte 3) - Las 7 reglas que se deben seguir al usar genéricos, así como ejemplos.
Implementación de genéricos en Java, Tipos puros - [Detalles]
Tipos puros - Interactuando con código viejo; qué hacer cuando las versiones del pasado quedan obsoletas; compatibilidad
URL - Localizador uniforme de recursos. Protocolos para acceder a recursos y estructura/formato de las direcciones/referencias de los recursos en internet.
URI - Uniform resource identifier, identificador de recursos uniformes. Codificación especial para los caracteres especiales en las URLs. Cómo codificar y decodificar URLs
Los grupos de homotopía sí son grupos - [Detalles]
Probamos que pi_n satisface las propiedades de grupo.