Resultados de búsqueda: mediatriz como lugar geométrico

537 resultados encontrados

  • Video

    Lugar geométrico en el plano cartesiano - [Detalles]

    Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas. 

  • Blog

    Desigualdad del triángulo y lugar geométrico - [Detalles]

    Mostramos la desigualdad del triángulo y su reciproco y que la bisectriz de un ángulo y la mediatriz de un segmento son lugares geométricos.

  • Diapositivas

    Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]

    Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.

  • Video

    Lugar Geométrico De Las Cónicas - [Detalles]

    Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.  

  • Video

    Ecuación de la circunferencia - [Detalles]

    Damos una ecuación para la circunferencia a base de su definición como lugar geométrico. Vemos como a partir de sus componentes, centro y su radio, podemos conocer la ecuación de la circunferencia. 

  • Video

    Ecuación de la la Elipse - [Detalles]

    Damos una ecuación para la elipse a base de su definición como lugar geométrico. Vemos como a partir de sus focos y otros componentes podemos dar la ecuación de la elipse. 

  • Video

    Ecuación de la hipérbola - [Detalles]

    Damos una ecuación para la hipérbola a base de su definición como lugar geométrico, con centro en el origen y focos en el eje x. Vemos como a partir de su foco, directriz y otros componentes, podemos dar la ecuación de la parábola. 

  • Blog

    Funciones polinomiales y racionales. Análisis geométrico de funciones. - [Detalles]

    Estudio de funciones polinomiales y racionales. Análisis geométrico de funciones mediante traslaciones, homotecias y reflexiones.

  • Video

    Ecuación De La Parábola - [Detalles]

    Damos una ecuación para la parábola a base de su definición como lugar geométrico. Vemos a partir de su foco y directriz, podemos dar la ecuación de la parábola. 

  • Diapositivas

    Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.

  • Video

    Lugares en el espacio cartesiano - [Detalles]

    Recordamos la definición de un lugar geométrico, la cual también aplica para el espacio cartesiano. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas, pero esta vez en el espacio cartesiano, es decir, con 3 coordenadas. 

  • Capítulo del libro

    Geometría elemental - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.

  • Video

    Simetría axial - [Detalles]

    Explicamos en que consiste la simetría axial, alrededor de un eje E. La cual describe que dado un punto Q, siempre existe otro punto P, tal que el eje E es la mediatriz del segmento PQ. Describimos esto de forma geométrica con imágenes en un plano. 

  • Video

    Los Elementos de Euclides: Teorema 10 - [Detalles]

    En este video cubrimos el Teorema 10 de Los Elementos de Euclides. Aquí realizamos la construcción de la mediatriz.

  • Blog

    Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]

    Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales

  • Diapositivas

    Diapositivas sobre lugar geométricos de las cónicas - [Detalles]

    Formalizamos el concepto de las cónicas definiédolas como lugares geométricos, por lo cual se surge una definición respecto a los puntos que generan a nuestras figuras cónicas siendo una definición más formas y que más adelante nos ayudará a generar las ecuacioens canónicas de cada una de las cónicas, también hablamos sobre los elementos más importante de cada una de ellas.

  • Cuestionario

    Cuestionario sobre lugar geométricos de las cónicas - [Detalles]

    Ponemos en práctica las definiciones de cada una de las cónicas como lugares geométricos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de ecuaciones y problemas - [Detalles]

    Este es un cuestionario para repasar el Módulo 5 del texto "Cimientos Matemáticos" donde se abarcan temas como: problemas que dan lugar a ecuaciones, solución de ecuaciones de primer grado, sistemas de ecuaciones 2x2 y 3x3, etc.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Blog

    Equipotencia - [Detalles]

    En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.

  • Blog

    Cardinalidad de conjuntos finitos - [Detalles]

    Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]

  • Video

    Álgebra de Funciones - [Detalles]

    En este video se enlistan las operaciones entre funciones, dando lugar al álgebra de funciones.

  • Interactivo

    Actividad Geogebra hipérbola - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la hipérbola, nos muestra como al cambiar de posición alguno de sus focos, asimismo nos muestra como cambia su ecuación y nos muestra de forma visual como éstos cumplen con la propiedad de la hipérbola.

  • Video

    Funciones iguales - [Detalles]

    Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas

  • Video

    Potencias de números complejos - [Detalles]

    Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación). 

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Interactivo

    Actividad Geogebra funciones en el plano polar - [Detalles]

    En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.

  • Interactivo

    Actividad Geogebra parábola - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la parábola, nos muestra como la parábola cambia al mover la recta directriz o el foco también como se modifica su ecuación, además de mostrarnos visualmente (y algebraicamente) que los puntos que forman a la parábola son efectivamente equidistantes de la directriz y del foco.

  • Video

    Producto cruz ( producto vectorial) - [Detalles]

    Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores. 

  • Blog

    Álgebra Moderna I: Teorema de Cayley - [Detalles]

    A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley

  • Video

    Introducción a la programación con Java. Elementos teóricos; Cómo escribir y ejecutar el primer programa - [Detalles]

    1.4 Cómo escribir y ejecutar el primer programa - Tutorial de cómo diseñar y ejecutar un primer programa en JAVA poniendo a prueba lo aprendido hasta ahora.

  • Capítulo del libro

    Los números enteros - [Detalles]

    En este capítulo de Cimientos Matemáticos, veremos el tema de los números enteros. Exploraremos sus propiedades y operaciones básicas. Veremos cómo cómo se ordenan en una recta numérica, estableciendo desigualdades. Hablaremos de su suma y resta, cuidando cómo trabajar con positivos y negativos. Luego, revisaremos la multiplicación y división de números enteros. Para todas estas operaciones hablaremos de varias propiedades.

  • Capítulo del libro

    Nociones de trigonometría - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.

  • Blog

    Dualidad y representación de Riesz en espacios euclideanos - [Detalles]

    En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

  • Video

    Valor absoluto y más sobre el orden de los reales - [Detalles]

    En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.

  • Video

    Implementación con bits, Enteros en la computadora como anillos - [Detalles]

    Enteros en la computadora como anillos – Representación de datos numéricos; qué son los anillos y cómo se representan los enteros.

  • Video

    Funciones, Funciones en JAVA, Declarar, definir y usar una función - [Detalles]

    Declarar, definir y usar una función - Cómo se declara y define una función universalmente- Ejemplo de cómo usar una función así como convenciones y parámetros formales y actuales.

  • Video

    Funciones de orden superior, Regresar una función como resultado - [Detalles]

    Regresar una función como resultado - Aplicar métodos para obtener funciones como resultado. Anidar funciones.

  • Video

    Tipos genéricos, Introducción, uso y declaración de clases genéricas - [Detalles]

    Introducción, uso y declaración de clases genéricas - Qué son, cómo se pueden utilizar y para qué nos pueden servir. Cómo se declaran. Incluye ejemplo de uso y declaración así como las convenciones generales.

  • Video

    Interfaces gráficas de usuario en JAVA, ICC Controller, Component, cómo comunicarlos - [Detalles]

    ICC Controller, Component, cómo comunicarlos – Cómo se comunica el archivo fxml con nuestro código en java.

  • Blog

    Producto de matrices y composición de sus transformaciones - [Detalles]

    Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.

  • Blog

    Matrices de cambio de base - [Detalles]

    Definimos a las matrices de cambio de base. Vemos cómo nos ayudan a expresar un vector como combinación lineal de elementos de distintas bases.

  • Video

    Tipos de enunciados - [Detalles]

    Definición de enunciados como axiomas, teoremas y sus clasificaciones. También se definen formas proposicionales como la tautología y la contradicción.

  • Video

    Cómo verificar que dos funciones son inversas - [Detalles]

    Haciendo uso de un ejemplo, mostramos como verificar cuando dos funciones son inversas una de otra.

  • Video

    Triángulo de Pascal - [Detalles]

    Vemos cómo utilizar el triángulo de Pascal y explicamos como deducir sus coeficientes. También comparamos las propiedades del combinatorio con los coeficientes en el triángulo de Pascal. Todo esto nos ayuda para calcular la n-ésima potencia de un binomio.

  • Video

    El maximo común divisor como combinación lineal entera - [Detalles]

    Demostramos un teorema que nos afirma que el máximo común divisor se puede escribir como una combinación lineal de sus dividendos. Hacemos uso de las propiedades de divisibilidad anteriormente vistas y después generalizamos el teorema para el máximo común divisor de un numero arbitrario de enteros. 

  • Video

    Congruencias como relación de equivalencia - [Detalles]

    En este video vemos que la relación de congruencia es, justo como podríamos sospechar, una relación de equivalencia en los enteros. Mostramos que la congruencia cumple las tres propiedades para ser una relación de equivalencia: Reflexividad, Simetría, Transitividad. Hablamos sobre la partición que genera en los enteros y cuáles son las clases de equivalencia para cada entero. 

  • Video

    Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]

    Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias. 

  • Video

    Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 2) - [Detalles]

    Hablamos un poco del problema de condición inicial para sistemas de ecuaciones de primer orden, así como del Teorema de existencia y unicidad correspondiente, tanto en una versión general como en su versión para sistemas de ecuaciones lineales homogéneas.

  • Blog

    Variables aleatorias mixtas - [Detalles]

    Presentamos la conjunción de los dos tipos de variables aleatorias así como maneras de como hacer una construcción de este tipo de variable aleatoria acompañada de ejemplos para el cálculo de probabilidades.

  • Blog

    Transformaciones de variables aleatorias - [Detalles]

    Establecemos las bases para hacer transformaciones de variables aleatorias así como las hipótesis que deben cumplir como una composición de funciones, además demostramos que las funciones continuas son Borel-medibles y la composición de una función Borel-medible con una variable aleatoria es una variable aleatoria.

  • Cuestionario

    Mini-cuestionario: Matrices como transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo una matriz está asociada a una transformación lineal y viceversa.

  • Cuestionario

    Mini-cuestionario: Multiplicación de matrices y composición de sus transformaciones - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo hacer el producto de matrices y cómo esto se relaciona con la composición de sus transformaciones asociadas.

  • Diapositivas

    Diapositivas sobre demostraciones con cuantificadores - [Detalles]

    Explicamos como se demuestran proposiciones matemáticas que cuentan con cuantificadores, cómo demostrar que son verdaderos o que son falsos, las diapositivas van acompañadas de ejemplos.

  • Diapositivas

    Diapositivas sobre familias de conjuntos - [Detalles]

    Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.

  • Diapositivas

    Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]

    Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.

  • Diapositivas

    Diapositivas sobre el principio de inducción - [Detalles]

    Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.

  • Diapositivas

    Diapositivas sobre matrices y operaciones - [Detalles]

    Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Diapositivas

    Diapositivas sobre espacios vectoriales - [Detalles]

    Definimos lo que es un espacio vectorial y los elementos que habitan en él (vectores), mostramos que para demostrar por definición que un espacio es vectorial debe de cumplir las 10 propiedades de éste. Se proporcionan ejemplos de espacios vectoriales y las demostraciones sobre estas 10 propiedades de la definición; se proporciona una aplicación de espacios vectoriales que es ver a la fuerza como una magnitud de dirección y magnitud, es decir, como un vector.

  • Diapositivas

    Diapositivas sobre coordenadas polares - [Detalles]

    Mostramos lo que es el plano polar, para qué sirve este plano, cómo se utiliza, cuáles son las entradas de sus coordenadas, definimos lo que es un radián y cómo se utiliza este para utilizar el plano polar. Dejamos algunos ejemplos de funciones graficadas en este nuevo plano.

  • Diapositivas

    Diapositivas sobre espacios vectoriales - [Detalles]

    Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.

  • Diapositivas

    Diapositivas sobre semiplanos - [Detalles]

    Definimos lo que es el segmento de una recta, como este se puede divividir en partes iguales; también definimos lo que son los semiplanos y cómo esta definición tiene que ver con rectas.

  • Interactivo

    Actividad Geogebra circunferencia - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la circunferencia, vemos como la ecuación de esta cónica cambia si movemos el centro de posición o al cambiar su radio.

  • Interactivo

    Actividad Geogebra elipse - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la elipse; al mover la posición de los focos cambia la figura de la elpse así como su ecuación canónica, además que nos muestra la propiedad que cumplen los puntos que pertenecen con la propiedad de pertenecer a la elipse.

  • Video

    El espacio cartesiano - [Detalles]

    Describimos el espacio cartesiano como "espacio" de 3 dimensiones: largo ancho y alto. Explicamos sus similitudes al plano cartesiano y como ubicar un punto en el espacio cartesiano. 

  • Video

    Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]

    Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos. 

  • Video

    Coordenadas Polares: El origen, radio negativo y ángulo negativo - [Detalles]

    Damos continuación a la explicación sobre las coordenadas polares, hablamos sobre algunas observaciones como radio o ángulo negativo y como interpretarlo. 

  • Video

    Cambio de coordenadas. esféricas , cilíndricas y rectangulares - [Detalles]

    Explicamos como podemos representar un mismo punto en el espacio tridimensional mediante diferentes coordenadas. También damos el cambio de coordenadas para pasar de coordenadas cartesianas (o rectangulares) a esféricas o cilíndricas, así como para pasar de cilíndricas a cartesianas, y esféricas a cartesianas. 

  • Video

    Ejemplo diferentes formas de la ecuación de la recta - [Detalles]

    En este ejemplo vemos como a partir de la ecuación de la recta en forma de punto pendiente, podemos transformarla a las demás formas. Es decir, dada una misma recta, vemos como representarla en sus demás formas.  

  • Video

    Ecuaciones del plano - [Detalles]

    Vemos la ecuación para un plano en el espacio tridimensional, vemos la forma de la ecuación paramétrica y de la ecuación general del plano. También vemos como dar la ecuación del plano a partir de tres puntos que pasen por el plano y como obtener el vector normal al plano. 

  • Video

    Cónicas - [Detalles]

    Damos una introducción a las secciones cónicas, las cuales son lugares geométricos descritos por la circunferencia, elipse, parábola, hipérbola. También mencionamos algunos elementos importantes como la generatriz, vértice y el eje. Damos la ecuación que define a las secciones cónicas y como diferenciarlas a partir de su ecuación general. 

  • Curso

    COMAL: Álgebra Lineal I - [Detalles]

    Cubrimos el temario oficial de Álgebra Lineal con un fuerte uso de notas de blog y problemas. Hacia el final hacemos énfasis en cómo los temas se aplican en áreas como programación en Python, homología, cuántica, biología matemática, entre otros. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Blog

    El algoritmo de Euclides - [Detalles]

    Explicamos el algoritmo de Euclides con ejemplos. Damos su demostración. Vemos cómo ayuda a poner MCD como combinación lineal entera.

  • Blog

    Construcción de números complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Inmersión de los reales en los complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Algortimo de la división, teorema del factor y del residuo - [Detalles]

    Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.

  • Blog

    6. Lugares geométricos en $\mathbb{C}$ - [Detalles]

    Aplicando nuestros conocimientos de geometría analítica, analizaremos como se describen los lugares geométricos tales como rectas, circunferencias, elipses, etc. pero ahora dando unas nuevas ecuaciones en los complejos.

  • Blog

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.

  • Blog

    26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]

    Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.

  • Blog

    31. Funciones elementales como series de potencias - [Detalles]

    Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.

  • Blog

    32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]

    Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.

  • Cuestionario

    26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]

    Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.

  • Video

    Algoritmos - [Detalles]

    3. Algoritmos - Qué es un algoritmo, cómo funciona, su estructura y características así como un ejemplo muy ilustrativo (triángulo de sierpinski)

  • Video

    Diseño y programación orientada a objetos; Diseño - [Detalles]

    1.3 Diseño: tarjetas de responsabilidad y UML - Diseño de una solución orientada a objetos. Cómo se hace una tarjeta de responsabilidad. ¿Qué es la notación UML? y cómo hacer un diagrama de clases. Se da el primer acercamiento al concepto de herencia o generalización, implementación o realización y contención (agregación y composición). Por último se habla de dependencia y asociación.

  • Video

    Introducción a la programación con Java; Elementos teóricos;Programa en Java - [Detalles]

    1.1. Programa en Java - Empezamos por definir qué es un programa y cómo es que implementan algoritmos. Cómo funciona un programa. ¿Qué es un lenguaje de máquina y un lenguaje de alto nivel.

  • Video

    Introducción a la programación con Java. Elementos teóricos; Tipos de errores - [Detalles]

    1.6 Tipos de errores - Errores sintácticos, semánticos y lógicos. Cómo se ven y cómo resolverlos. De igual manera se presentan los conceptos de tiempo de compilación y tiempo de ejecución

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Blog

    Funciones inversas - [Detalles]

    En esta sección hablaremos acerca de las funciones inversas, para ello introduciremos conceptos como el de inversa derecha y el de inversa izquierda, veremos como se relacionan con los conceptos anteriores de función inyectiva, sobreyectiva y biyectiva.

  • Capítulo del libro

    Los números naturales - [Detalles]

    En este capítulo de Cimientos matemáticos, nos embarcaremos en lo que es la aritmética, explorando los números primos, así como algunas de sus propiedades más importantes. Comenzaremos revisando algunos conceptos básicos, como los números naturales, los múltiplos, el mínimo común múltiplo (MCM) y el máximo común divisor (MCD). Luego, profundizaremos en la noción de divisibilidad, factorización y la clasificación de los números en primos y compuestos.

  • Capítulo del libro

    Ecuaciones de la línea recta - [Detalles]

    En este capitulo de Cimientos Matemáticos abordaremos conceptos clave de geometría analítica, como lugares geométricos y ecuaciones. Exploraremos la forma general de la ecuación de la línea recta y su expresión en la forma pendiente-ordenada al origen. También analizaremos la relación entre la inclinación y la pendiente de una recta, así como las propiedades de rectas paralelas y perpendiculares.

  • Capítulo del libro

    Funciones - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.

  • Video

    La distancia entre dos vértices - [Detalles]

    Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.

  • Práctica

    Satisfacción de restricciones: Sudoku - [Detalles]

    Se presentan los problemas de satisfacción de restricciones y el algoritmo de backtracking como solución a este tipo de problemas utilizando como ejemplo al Sudoku.

  • Blog

    Triangularizar y descomposición de Schur - [Detalles]

    En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.

  • Blog

    Matrices de formas bilineales - [Detalles]

    En esta entrada formalizaremos la relación entre formas bilineales y matrices. Veremos cómo se define la matriz asociada a una forma bilineal y cómo podemos traducir operaciones con la forma bilineal en operaciones con su matriz asociada.

  • Blog

    Matrices positivas y congruencia de matrices - [Detalles]

    En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).

  • Blog

    Ortogonalidad en espacios euclideanos - [Detalles]

    En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.

  • Blog

    Aplicaciones de bases ortogonales en espacios euclideanos - [Detalles]

    En esta entrada daremos un repaso de bases ortogonales y cómo encontrar estas bases, recordaremos conceptos como la descomposición de Fourier y la desigualdad de Bessel.

  • Blog

    Principio de inducción en los números naturales - [Detalles]

    Introducción En esta entrada vamos a hablar de el principio de inducción que se deriva del quinto axioma de Peano. Veremos cómo es que nos ayudará a un nuevo tipo de demostraciones, lo que significa en términos simples y algunos ejemplos de su uso. El efecto dominó Pensemos un poco en cómo funciona la inducción […]

  • Video

    JAVA, Variables y tipos - [Detalles]

    Variables y tipos - Qué son las variables y sus tipos. Cómo se declaran, su sintaxis y definición. Cuáles son los tipos primitivos y derivados así como los operadores en JAVA.

  • Video

    Introducción a las sucesiones de números reales. - [Detalles]

    En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.

  • Video

    Razón de cambio instantáneo y derivada - [Detalles]

    Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.

  • Video

    Arreglos, Arreglos nD en JAVA - [Detalles]

    Arreglos nD en JAVA - Cómo se crean arreglos en más dimensiones así como sus limitantes y excepciones.

  • Video

    Recursividad, recursión en JAVA - [Detalles]

    Recursión en JAVA - Cómo funciona y cómo se implementan/declaran las funciones recursivas en JAVA

  • Video

    Uso de interfaces, Lista en la memoria de Java - [Detalles]

    Lista en la memoria de Java - Cómo se ven las listas y transliteraciones en JAVA. Cómo se van almacenando.

  • Video

    Funciones de orden superior, Pasar una función como parámetro - [Detalles]

    Pasar una función como parámetro - Implementar una interfaz funcional para pasar la función a parámetro. Introducción a las clases anónimas internas y a las LAMBDA

  • Video

    Interfaz gráfica de usuario (IGU), Diseño de la lógica de una calculadora simple - - [Detalles]

    Diseño de la lógica de una calculadora simple - Parte 1/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.

  • Video

    Interfaz gráfica de usuario (IGU), Creación de una GUI con Netbeans - [Detalles]

    Creación de una GUI con Netbeans - Parte 2/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.

  • Video

    Interfaz gráfica de usuario (IGU), Implementación de las transiciones en el código - [Detalles]

    Implementación de las transiciones en el código - Parte 3/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.

  • Video

    Enchufes - [Detalles]

    Enchufes - Cómo trabajar con los enchufes. Definiciones y explicación de cómo trabajar con ellos.

  • Blog

    Introducción al curso, vectores y matrices - [Detalles]

    Definimos escalares, vectores, matrices en álgebra lineal. Vemos cómo sumar matrices/vectores y multiplicar por escalares. Probamos un resultado de bases.

  • Blog

    Matrices como transformaciones lineales - [Detalles]

    Definimos qué es una transformación lineal. Vemos que a cualquier matriz se le puede asociar una transformación lineal, y viceversa.

  • Blog

    Problemas de vectores, matrices y matrices como transformaciones lineales - [Detalles]

    Problemas resueltos de temas básicos de álgebra lineal. Vemos ejemplos de suma de vectores y matrices. Además, hay ejemplos de transformaciones lineales.

  • Blog

    Problemas de producto de matrices y matrices invertibles - [Detalles]

    En esta entrada de blog hablamos resolvemos problermas de cómo multiplicar matrices. También hacemos algunos problemas sobre matrices invertibles para aprovechar la teoría desarrollada anteriormente.

  • Blog

    Forma escalonada reducida - [Detalles]

    Definimos que una matriz esté en forma escalonada reducida. Vemos cómo resolver su sistema lineal asociado. Hablamos de operaciones y matrices elementales.

  • Blog

    Bases y dimensión de espacios vectoriales - [Detalles]

    Definimos espacios vectoriales de dimensión finita. Vemos que es correcto definir dim V como el tamaño de un conjunto generador linealmente independiente.

  • Blog

    Cambio de base de transformaciones lineales - [Detalles]

    Explicamos cómo un cambio de base de transformaciones lineales afecta la forma matricial de la transformación. Definimos el concepto de matrices similares.

  • Blog

    Determinantes de matrices y transformaciones lineales - [Detalles]

    Definimos determinantes de matrices y de transformaciones lineales. Vemos ejemplos de ambos y cómo encontrar determinantes de matrices triangulares.

  • Video

    Pasar de frase a implicación - [Detalles]

    Se muestran ejemplos de cómo traducir una frase común, a una proposición lógica.

  • Video

    Demostración directa y primeros ejemplos - [Detalles]

    Explicamos sobre el método de demostración conocido como "Demostración directa". Demostramos un teorema sobre los números pares e impares.

  • Video

    Como demostrar una implicación. Demostración directa - [Detalles]

    Platicamos las características de la demostración directa y damos un ejemplo con una proposición sobre los números enteros múltiplos de 6.

  • Video

    Demostrar que una proposición es falsa - [Detalles]

    Explicamos como demostrar que una proposición o enunciado es falso, damos un ejemplo usando los números enteros.

  • Video

    Demostración por casos - [Detalles]

    Explicamos como realizar una demostración por casos y las reglas que se deben seguir, damos ejemplos con números enteros.

  • Video

    Demostración de un bicondicional - [Detalles]

    Explicamos cómo demostrar un bicondicional, es decir, un sí y solo sí. Vemos dos posibles estrategias y algunos ejemplos.

  • Video

    Demostración de un cuantificador - [Detalles]

    Explicamos cómo demostrar una proposición o enunciado que involucre cuantificadores. Veremos las estrategias principales y ejemplos que usen los cuantificadores existe, para todo y existe un único.

  • Video

    Como demostrar un bicondicional (si y sólo si) - [Detalles]

    Damos reglas generales para demostrar una proposición con bicondicional (si y solo sí). Particularmente utilizamos una demostración de ida y otra de vuelta.

  • Video

    Demostración de que hay infinitos primos - [Detalles]

    Explicamos cómo demostrar que hay una cantidad infinita de números primos. Para tal fin suponemos ciertos el teorema fundamentar de la aritmética.

  • Video

    Ejemplo Demostración por contradicción - [Detalles]

    Damos un ejemplo de cómo aplicar la demostración por contradicción, la proposición a demostrar incluye al cuantificador existe

  • Video

    Demostraciones con conjuntos - [Detalles]

    Usamos ejemplos para dar tips y métodos para demostrar contenciones e igualdades, así como las reglas para demostrar por casos.

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Video

    Definición de función - [Detalles]

    Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último

  • Video

    Funciones numéricas - [Detalles]

    Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.

  • Video

    Principio de inducción - [Detalles]

    Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.

  • Video

    Sumatoria - [Detalles]

    Hablamos un poco sobre la notación que se suele emplear para las sumas o series, así como de a que se refiere la sumatoria.

  • Video

    Factorial y combinatorio - [Detalles]

    Comenzamos dando la definición de la factorial de un número natural, así como la notación que se emplea para expresarlo. Damos la notación necesaria para entender la combinatoria, y también la fórmula del combinatorio n en k.

  • Video

    Combinatoria: el ejemplo del poker - [Detalles]

    Analizamos el póker como un ejemplo de combinatoria. Usando combinatoria damos un ranking para las diez manos del póker, las cuale son combinaciones de cartas que podemos hacer para ganar. Las manos son: escalera real, escalera de color, poker, full, color, escalera, trio, doble pareja, pareja y carta alta.

  • Video

    Introducción a los sistemas de ecuaciones lineales - [Detalles]

    Damos la definición de una ecuación lineal y damos ejemplos de cuales no son ecuaciones lineales. Definimos un sistema de ecuaciones lineales como un conjunto de ecuaciones lineales. Finalmente se da la definición y un ejemplo de solución al sistema de ecuaciones lineales.

  • Video

    Operaciones elementales renglón - [Detalles]

    Se definen sistemas de ecuaciones lineales equivalentes, y se da un teorema que demuestra que aplicar operaciones elementales a un sistema, resulta en un sistema equivalente. Finalmente explicamos como al usar operaciones elementales se puede resolver un sistema de ecuaciones lineales.

  • Video

    La matriz de coeficientes de un sistema de ecuaciones - [Detalles]

    Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.

  • Video

    Forma escalonada - [Detalles]

    Se define la forma escalonada de una matriz NxM (también se define la forma escalonada reducida), y se dan varios ejemplos de matrices escalonadas, así como ejemplo de matrices que no están en su forma escalonada.

  • Video

    Matrices: que son y notación - [Detalles]

    Explicamos la definición de matrices, y sus características, como numero de renglones y columnas. También se discute la notación de matrices.

  • Video

    Determinante de una matriz de $4 imes 4$ y moraleja final - [Detalles]

    Vemos como calcular el determinante de la matriz de 4x4 mediante el método por cofactores (damos tips para reducir el número de operaciones). También explicamos lo que significa que el determinante de una matriz sea cero.

  • Video

    El anillo de los números enteros - [Detalles]

    Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior. 

  • Video

    Principio de inducción - [Detalles]

    Introducimos el principio de inducción matemática, el cual es un método de demostración para alguna propiedad o proposición P(n), es decir que la propiedad o proposición está relacionada a un número natural. Damos un ejemplo de cómo demostrar usando el principio de inducción, demostrando el caso base y luego el paso inductivo. 

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción. 

  • Video

    Principio del buen orden - [Detalles]

    Enunciamos el principio del buen orden: Todo subconjunto, no vacío, de los naturales tiene un elemento mínimo. Vemos algunos subconjuntos como ejemplos.  

  • Video

    El Principio del Buen Orden y el Principio de Inducción Matemática - [Detalles]

    Enunciamos que: El principio del buen orden es equivalente al Principio de inducción matemática. Indicamos la idea de cómo demostrar este enunciado, el cual se demostrará en los dos videos siguientes. 

  • Video

    Como calcular el máximo común divisor de dos enteros - [Detalles]

    Retomamos el teorema anterior sobre el máximo común divisor y el algoritmo de la división. Haciendo uso de estos dos resultados damos un método para calcular el máximo común divisor de dos enteros.  

  • Video

    El mínimo común múltiplo - [Detalles]

    Definimos el mínimo común múltiplo de "n" enteros. Primero damos la definición de común múltiplo y el más pequeño es aquel que tomamos como mínimo común múltiplo. Definimos la notación para expresar el mínimo común múltiplo y demostración un teorema sobre el mismo. 

  • Video

    Ecuación diofántica lineal en dos variables - [Detalles]

    Definimos la ecuación Diofánticas, como ecuaciones algebraicas para las cuales que buscan soluciones enteras. Nos concentramos en las ecuaciones de la forma "a*x+b*y=n", con a,b,n enteros. Mostramos cuando la ecuación tiene solución entera y cuantas soluciones tiene. 

  • Video

    Ejemplos de cómo resolver una ecuación diofántica - [Detalles]

    Vemos un método para encontrar una solución particular de la ecuación diofántica lineal. En el método hacemos uso del Máximo común divisor y a partir de la solución encontrada podemos generar todas las demás soluciones utilizando las fórmulas del segundo teorema del tema actual. 

  • Video

    Resolviendo un problemacon ecuaciones diofánticas - [Detalles]

    Resolvemos un problema donde podemos hacer uso de las ecuaciones diofánticas para dar la solución al problema. Describimos como abstraer el problema a una ecuación diofántica, y usando lo anteriormente visto, damos la solución. 

  • Video

    Factorización en números primos - [Detalles]

    Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética. 

  • Video

    El teorema fundamental de la aritmética - [Detalles]

    Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única! 

  • Video

    Sistemas de residuos módulo $m$ - [Detalles]

    Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler. 

  • Video

    Operaciones con el número $i$ - [Detalles]

    Definimos la suma de los términos que tienen al número i. Igualmente vemos cómo multiplicar números reales por términos que tengan el número i y por último vemos las potencias del número i. 

  • Video

    El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]

    Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo. 

  • Video

    Forma polar de un número complejo - [Detalles]

    Vemos como escribir un numero complejo en su forma polar (mediante su modulo y su argumento). Para esto hacemos uso de las razones trigonométricas y vemos su representación en el plano complejo. 

  • Video

    Soluciones de una ecuación cuadrática - [Detalles]

    Hablamos sobre las posibles soluciones de una ecuación cuadrática (damos un breve recordatorio sobre la formula general o más popularmente conocida como "chicharronera"). Vemos gráficamente cuando una ecuación cuadrática tiene dos, una o ninguna solución real. Definimos el discriminante y haciendo uso de el vemos cuando la ecuación cuadrática tiene una o dos soluciones reales, o cuando su solución es compleja. 

  • Video

    Cómo calcular las raíces enésimas de un número - [Detalles]

    Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo. 

  • Video

    Propiedades de la suma y multiplicación de los polinomios - [Detalles]

    Vemos como realizar operaciones con polinomios. Definimos la suma de polinomios, el producto de polinomio por un escalar y el producto de polinomios. Damos un ejemplo para cada operación. 

  • Video

    Teorema del Residuo - [Detalles]

    Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios. 

  • Video

    Multiplicidad de una raíz - [Detalles]

    Definimos la multiplicidad de una raíz. La cual es el numero "m" tal que es el mayor entero para el cual "(x-a)^m" divide al polinomio. Damos algunos ejemplos para saber cómo identificar la multiplicidad de alguna raíz. 

  • Video

    ¿Qué es la matemática? - [Detalles]

    Damos varias definiciones de matemáticas y cómo podemos hacer más sencilla su comprensión

  • Video

    Producto de segmentos - [Detalles]

    Demostramos geométricamente cómo determinar el producto de dos segmentos cualesquiera

  • Video

    Campo de pendientes asociado a una ecuación diferencial de primer orden - [Detalles]

    Revisamos cómo asociar un campo de pendientes a una ecuación de la forma dy/dt=f(t,y(t)) mediante varios ejemplos sencillos.

  • Video

    Introducción a las bifurcaciones. Diagrama de bifurcaciones - [Detalles]

    Dibujamos un diagrama que contiene la información de todas las soluciones a una familia uniparamétrica de ecuaciones autónomas, así como los valores de bifurcación, y la naturaleza de las soluciones de equilibrio

  • Video

    Ecuaciones lineales no homogéneas de segundo orden y sus soluciones - [Detalles]

    Demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.

  • Video

    Solución general al sistema lineal no homogéneo. - [Detalles]

    Enunciamos y probamos un teorema que nos dice cómo encontrar la solución general a un sistema lineal no homogéneo con la ayuda del sistema homogéneo asociado.

  • Video

    La exponencial de una matriz y la matriz fundamental de soluciones - [Detalles]

    Relacionamos la exponencial de una matriz A de coeficientes constantes con la matriz fundamental de soluciones al sistema lineal homogéneo que tiene a A como matriz asociada.

  • Blog

    Funciones inyectivas, sobreyectivas y biyectivas. Función inversa. - [Detalles]

    Estudio de los conceptos de función inyectiva, sobreyectiva, biyectiva y de función inversa así cómo de resultados relacionados.

  • Blog

    Funciones crecientes y decrecientes. Funciones acotadas. - [Detalles]

    Estudio de los conceptos de función creciente, decreciente y acotada, así cómo la revisión de ejemplos.

  • Blog

    Funciones trigonométricas (Parte 1) - [Detalles]

    Estudio de algunas identidades trigonométricas más utilizadas. Un primer acercamiento a las funciones seno y coseno, así como la definición de función periódica.

  • Blog

    Funciones exponenciales y logarítmicas - [Detalles]

    Estudio de las funciones exponenciales y logarítmicas, su relación entre ellas. Revisión de resultados importantes como: las leyes de los esponentes, las leyes de los logaritmos y el cambio de base.

  • Blog

    Puntos notables del triángulo - [Detalles]

    Demostramos que las medianas, las mediatrices, las bisectrices tanto internas como externas y las alturas de un triángulo son concurrentes.

  • Blog

    Ecuaciones diferenciales como modelos matemáticos - [Detalles]

    Estudio de problemas reales donde las ecuación diferenciales son el modelo matemático que describe y resuleve al problema

  • Blog

    Ecuaciones diferenciales autónomas - [Detalles]

    Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden en las que no aparece explícitamente la variable independiente, mejor conocidas como ecuaciones autónomas

  • Blog

    Ecuación de Cauchy-Euler - [Detalles]

    Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler

  • Video

    Plano fase para sistemas lineales con cero como valor propio - [Detalles]

    Analizamos el plano fase para sistemas lineales tales que tienen al menos un valor propio igual a cero.

  • Video

    Plano fase para sistemas lineales con cero como valor propio (Ejemplos) - [Detalles]

    Resolvemos y dibujamos el plano fase para algunos sistemas que tienen al menos un valor propio igual a cero.

  • Blog

    Criterio de la divergencia y de acotación - [Detalles]

    Enseñanza a los teoremas de la divergencia y de acotación como criterios de convergencia para las series.

  • Blog

    Criterio de la razón y el criterio de la raiz - [Detalles]

    Estudio del criterio de la raiz y la razoón como criterios de convergencia para las series.

  • Blog

    Criterio de la integral - [Detalles]

    Estudio al criterio de la integral para las series como criterio de convergencia.

  • Blog

    Serie de Taylor y de Maclaurin - [Detalles]

    Estudio de las series de Taylor y de Maclaurin como aproximación a una función.

  • Blog

    Soluciones a sistemas de ecuaciones diferenciales - [Detalles]

    Se estudian las propiedades de las soluciones a los sistemas lineales tanto homogéneos como no homogéneos

  • Blog

    Método de eliminación de variables - [Detalles]

    Se presenta un primer método sencillo para resolver sistemas lineales compuestos de pocas ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas

  • Blog

    Teorema de existencia y unicidad para sistemas lineales - [Detalles]

    Se demuestra el teorema de existencia y unicidad para los casos particulares en los que los sistemas de ecuaciones diferenciales son lineales con coeficientes constantes tanto homogéneos como no homogéneos

  • Blog

    Teorema de existencia y unicidad para sistemas de ecuaciones diferenciales de primer orden - [Detalles]

    Se hace un generalización de la teoría preliminar vista en el teorema de existencia y unicidad de Picar-Lindelöf y se demuestra el teorema de existencia y unicidad para el caso general, es decir, para sistemas de ecuaciones diferenciales de primer orden tanto lineales como no lineales

  • Blog

    Recta de Simson - [Detalles]

    Veremos una condición necesaria y suficiente para que el triángulo pedal de un punto degenere en una recta, conocida como recta de Simson.

  • Blog

    Segmento dirigido y teorema de Stewart - [Detalles]

    El concepto de segmento dirigido nos ayudara a desarrollar temas como los teoremas de Stewart, de Ceva y de Menelao y división armónica.

  • Blog

    Punto de Nagel - [Detalles]

    Estudiamos algunas propiedades del punto de Nagel y las de otros objetos relacionados con este punto, como la circunferencia de Spieker.

  • Blog

    Teorema de Casey - [Detalles]

    Demostraremos el teorema generalizado de Ptolomeo conocido como teorema de Casey y resolveremos algunos ejercicios.

  • Blog

    Aplicaciones en economía - [Detalles]

    Estudio de aplicaciones en economía y de conceptos como: función de costo, función de ingreso, función de utilidad, costo marginal, ingreso marginal y utilidad marginal.

  • Blog

    El enfoque frecuentista de la probabilidad - [Detalles]

    Presentamos el enfoque frecuentista, que corresponde a pensar de la probabilidad de un evento como el límite de su frecuencia relativa.

  • Blog

    Linealización de los puntos de equilibrio de sistemas no lineales - [Detalles]

    Se presenta el proceso de linearización como método para estudiar el plano fase de sistemas no lineales alrededor de los puntos de equilibiro de dichos sistemas

  • Blog

    Las nulclinas en el estudio cualitativo de los sistemas no lineales - [Detalles]

    Se define el concepto de nulclinas y se usan como herramientas para la construcción de un esbozo general del plano fase de los sistemas no lineales

  • Blog

    Variables aleatorias - [Detalles]

    Desarrollamos el concepto de variable aleatoria así como definiciones equivalentes a la primer propuesta, asimismo se presentan unos ejemplos básicos de lo que representa una variable aleatoria.

  • Blog

    Funciones de distribución de probabilidad - [Detalles]

    Definimos la función de distribución probabilística de una variable aleatoria, también demostramos que la función de distribución probabilística es efectivamente una distribución de probabilidad así como mostramos ejemplos de estas funciones.

  • Blog

    Variables aleatorias continuas - [Detalles]

    Presentamos el segundo tipo de variables aleatorias que son las continuas tomando un soporte infinito no numerable así como mostramos la relación de la función de masa con la función de distribución relacionado con el teorema fundamental del cálculo.

  • Cuestionario

    Mini-cuestionario: Forma escalonada reducida - [Detalles]

    Mini-cuestionario para verificar el entendimiento de la noción de que una matriz esté en forma escalonada reducida, y cómo se relaciona con la solución del sistema asociado.

  • Cuestionario

    Mini-cuestionario: Sistemas de ecuaciones lineales no homogéneos - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para resolver sistemas de ecuaciones no homogéneos

  • Cuestionario

    Mini-cuestionario: Matrices invertibles mediante sistemas de ecuaciones - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para encontrar la inversa de una matriz

  • Diapositivas

    Dispositivas de conectores: conjunción y disyunción - [Detalles]

    Definimos la conjunción y la disyunción sobre una proposición, también mostramos que este tipo de proposiciones están formadas por 2 proposiciones (así formando una gracias a estos conectores) se muestra sobre como este tipo de proposiciones son verdaderas o falsas.

  • Diapositivas

    Diapositivas sobre proposiciones bicondicionales - [Detalles]

    Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.

  • Diapositivas

    Diapositivas sobre traducciones entre proposiciones - [Detalles]

    Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.

  • Diapositivas

    Diapositivas sobre cómo escribir una demostración directa - [Detalles]

    Explicamos las características de hacer una demostración directa de p implica q acompañada de una serie de ejemplos báscios respecto a este tipo de demostraciones.

  • Diapositivas

    Diapositivas sobre cómo escribir una demostración por casos - [Detalles]

    Mostramos la importancia y los motivos para poder ocupar este tipo de demostraciones por casos.

  • Diapositivas

    Diapositivas sobre conjuntos - [Detalles]

    Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.

  • Diapositivas

    Diapositivas sobre operaciones de conjuntos - [Detalles]

    Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.

  • Diapositivas

    Diapositivas sobre demostraciones de conjuntos - [Detalles]

    Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Guía de estudio

    Guía de estudio sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Guía de estudio

    Guía de estudio sobre funciones y cardinalidad - [Detalles]

    Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Diapositivas

    Diapositivas sobre el teorema del binomio - [Detalles]

    Enunciamos el teorema del binomio de Newton y el triángulo de Pascal, como estas 2 temas involucran combinatoria, se demuestra el teorema del binomio y se muestran ejemplos con el triángulo de Pascal y su relación con el número combinatorio. Finalmente se dejan una lista de ejercicios para practicar estos temas.

  • Guía de estudio

    Guía de estudio sobre inducción matemática y cálculo combinatorio - [Detalles]

    Se deja una lista de ejercicios respecto a los temas combinatia e inducción matemática. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Diapositivas

    Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]

    Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.

  • Diapositivas

    Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]

    En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.

  • Guía de estudio

    Guía de estudio sobre sistemas de ecuaciones lineales, matrices y determinantes - [Detalles]

    Se deja una lista de ejercicios respecto a los temas de matrices y solución a sistemas de ecuaciones lineales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Guía de estudio

    Guía de estudio sobre espacios vectoriales - [Detalles]

    Se deja una lista de ejercicios respecto a los tema de espacios vectoriales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Diapositivas

    Diapositivas de distancia entre 2 puntos - [Detalles]

    Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.

  • Diapositivas

    Diapositivas sobre razones trigonométricas - [Detalles]

    Damos la introducción al tema de trigonometría como las razones trigonométricas, la medición en grados o radianes, funciones trigonométricas de ángulos notables, resolución de triángulos basándonos en las razones trigonométricas y leyes de senos cosenos.

  • Cuestionario

    Cuestionario de coordenadas polares - [Detalles]

    Ponemos en práctica el tema del sistema de coordenadas polares y como se grafica sobre este nuevo plano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar

  • Interactivo

    Actividad 1 Geogebra coordenadas polares - [Detalles]

    En esta primera actividad de geogebra interactiva nos muestra como en el plano polar se cambian las coordenadas a raíz de su longitud de radio y del grado al que estén puestos.

  • Interactivo

    Actividad 2 Geogebra coordenadas polares - [Detalles]

    En esta nueva actividad de geogebra interactiva seguimos planteando como se mueve sobre el plano polar una coordenada pero ahora también lo que se está implementando es el cálculo del punto medio, la intersección con los ejes polares y más propiedades.

  • Cuestionario

    Cuestionario sobre coordenadas en el espacio - [Detalles]

    Ponemos en práctica el tema de diferentes tipos de espacios; rectangulares, cilíndrico y esférico y como pasar de uno a otro, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Guía de estudio

    Guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.

  • Diapositivas

    Diapositivas sobre ejemplos bases de espacios vectoriales - [Detalles]

    En estas diapositivas damos herramientas extras (lemas) sobre como identificar si un conjunto es base de un espacio vectorial o no.

  • Cuestionario

    Cuestionario sobre ejemplos bases de espacios vectoriales - [Detalles]

    Ponemos en práctica los conocimientos adquiridos respecto a bases y lo que en ello respecta, se pone a prueba la comprensión de la teoría y otro poco la intuición sobre como demostrar que un conjunto cumple con ser base, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre producto punto - [Detalles]

    Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.

  • Diapositivas

    Diapositivas sobre producto cruz - [Detalles]

    Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.

  • Cuestionario

    Cuestionario sobre producto triple de vectores - [Detalles]

    Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Guía de estudio

    Guía de estudio sobre espacios vectoriales - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.

  • Cuestionario

    Cuestionario sobre espacios vectoriales - [Detalles]

    Ponemos en práctica todo lo revisado durante el estudio a los espacios vectoriales tales como ejemplos, subespacios, bases y algunas operaciones, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre ecuaciones de la recta en el plano - [Detalles]

    Damos inicio a un nuevo tema que será de utilidad para toda la carrera que es el tema de ecuaciones de rectas como la paramétrica, la general, la de punto pendiente, entre otras.

  • Diapositivas

    Diapositivas sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]

    Dando continuidad al tema anterior de las rectas pero ahora hacemos ahora la generalización de este tipo de rectas en más dimensiones (R^n). Vemos la recta paramétrica y como encontrar esta recta si conocemos dos puntos pertenecientes a ella. Las diapositivas se encuentran acompañadas de ejemplos.

  • Diapositivas

    Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]

    Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.

  • Diapositivas

    Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]

    Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).

  • Cuestionario

    Cuestionario sobre rectas y planos - [Detalles]

    Ponemos en práctica todo el conocimiento nuevo que tenemos respecto a los temas de rectas y planos así como sus interacciones entre éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]

    Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.

  • Diapositivas

    Diapositivas sobre traslación de ejes - [Detalles]

    Continuando con el tema de canónicas y ya sabiendo diferenciar cada una de éstas ahora aumentamos un poco la dificultad haciendo una traslación de los ejes, es decir, con cónicas fuera del origen ya teniendo éstas fuera del origen veremos que es muy sencillo calcular sus elementos báscios como el centro, focos y demás.

  • Diapositivas

    Diapositivas sobre rotación de ejes - [Detalles]

    Dando continuidad al tema de cónicas y su traslación de ejes, ahora es natural imaginar la rotación de estos ejes y cómo esta rotación repercute en nuestras figuras cónicas y en sus elementos básicos.

  • Cuestionario

    Cuestionario sobre rotación de ejes - [Detalles]

    Ponemos en práctica las rotaciones que se les pueden hacer a las figuras cónicas y como esta rotación repercute en su ecuación, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre discriminante y excentricidad - [Detalles]

    Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.

  • Diapositivas

    Diapositivas sobre parametrización de curvas - [Detalles]

    Hacemos un estudio sobre la parametrización de curvas y como es posible hacer esta transformación, este tema es acompañado de varios ejemplos.

  • Video

    Coordenadas en el plano cartesiano - [Detalles]

    Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas. 

  • Video

    Distancia - [Detalles]

    Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta. 

  • Video

    Gráfica de una función - [Detalles]

    Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales. 

  • Video

    Graficar funciones de dos variables - [Detalles]

    Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano. 

  • Video

    Qué es un radián. Tallercito feliz - [Detalles]

    En este taller nos dedicamos a explicar qué es un radián, durante el taller se realiza una actividad muy divertida que pueden hacer con Arilín desde su casa. Por otro lado, explicamos la relación entre radianes y grados, cómo hacer convenciones de radianes a grados y viceversa. 

  • Video

    Resolución de triángulos rectángulo - [Detalles]

    Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la medida de dos de sus lados, podemos saber las medidas de todos sus ángulos y su otro lado. 

  • Video

    Resolución de triángulos rectángulo, otro ejemplo - [Detalles]

    Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la uno de sus lados y uno de sus ángulos, podemos saber las medidas de todos sus ángulos y lados. 

  • Video

    Ángulos notables: ¿cuáles son? y ¿por qué son chidos? - [Detalles]

    En este video hablamos sobre algunos ángulos que son bastante relevantes, explicamos como están relacionados ciertos triángulos, y por qué esto los hace importantes. 

  • Video

    Razones Trigonométricas de los ángulos notables - [Detalles]

    En este video hablamos sobre el valor de las razones trigonométricas de los ángulos notables, anteriormente vistos. explicamos como se relación entre si las razones trigonométricas en estos ángulos. 

  • Video

    Cambio de coordenadas de polares a cartesianas - [Detalles]

    Explicamos como pasar de coordenadas polares a coordenadas cartesianas, de un punto. Usamos las funciones trigonométricas para dar las coordenadas cartesianas a partir de las coordenadas polares (radio, ángulo). 

  • Video

    Convertir de Coordenadas Cartesianas a Coordenadas Polares - [Detalles]

    Similar al video anterior (pero al inverso). Explicamos como pasar de coordenadas cartesianas a coordenadas polares, de un punto. 

  • Video

    Graficar funciones en coordenadas polares - [Detalles]

    Vemos como graficar una función en el plano polar. Para mostrar un ejemplo tomamos una función del ángulo f(theta), y damos su grafica en el plano polar. 

  • Video

    Graficar funciones en coordenadas polares: otro método - [Detalles]

    Damos un método alternativo para graficar una función en el plano polar. A partir de la gráfica de una función en coordenadas cartesianas, se puede usar como guía para dar la gráfica en coordenadas polares. 

  • Video

    Coordenadas cilíndricas - [Detalles]

    Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas. 

  • Video

    Coordenadas esféricas - [Detalles]

    Explicamos como un punto en el espacio se puede representar por medio de las coordenadas esféricas. Vemos la representación geométrica de los dos ángulos de las coordenadas esféricas. 

  • Video

    Matrices: que son y notación - [Detalles]

    Explicamos la definición de matrices, y sus características, como numero de renglones y columnas. También se discute la notación de matrices. 

  • Video

    Producto punto - [Detalles]

    Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores. 

  • Video

    Producto triple - [Detalles]

    Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores. 

  • Video

    Ecuaciones de la recta - [Detalles]

    Vemos las diferentes formas de representar la ecuación de la recta. Las formas de la ecuación de la recta que vemos son: Punto pendiente, ecuación segmentaria o canónica, ecuación general y paramétrica. También mencionamos algunas partes importantes de la ecuación de la recta, como la pendiente y la ordenada al origen. 

  • Video

    Semiplanos - [Detalles]

    Definimos los semiplanos, los cuales son regiones del plano cartesiano delimitados por una recta. Vemos su representación geométrica y como representarlos por desigualdad relacionada a la ecuación de la recta. 

  • Video

    Ejemplo distancia entre dos rectas - [Detalles]

    Dadas dos rectas descritas por sus respectivas ecuaciones de la resta, calculamos como ejemplo la distancia entre estas dos rectas. Usamos la formula anteriormente deducida. 

  • Video

    Traslaciones - [Detalles]

    Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado. 

  • Video

    Rotación De Ejes Y Figuras - [Detalles]

    Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola. 

  • Video

    Parametrización - [Detalles]

    Vemos en que consiste la parametrización de una curva. Vemos algunos ejemplos y como una parametrización representa una curva, además de que una misma curva puede tener más de una parametrización. 

  • Video

    Parametrización de cónicas - [Detalles]

    Vemos como parametrizar las secciones cónicas. Usamos las razones trigonométricas para dar una parametrización de algunas secciones cónicas. 

  • Video

    Definición del grupo fundamental - [Detalles]

    En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.

  • Video

    R^2 no es homeomorfo a R^n si n es diferente de 2 - [Detalles]

    En este video demostramos que R^2 no es homeomorfo a R^n si n es diferente de 2. Para demostrar esto usamos el cálculo de los grupos fundamentales de las esferas. Este resultado es otro ejemplo de cómo usar nuestros invariantes algebraicos (el grupo fundamental) para resolver problemas en topología.

  • Video

    Homotopias y homomorfismos inducidos - [Detalles]

    En este video demostramos un resultado que tiene que ver con cómo se comportan los homomorfismos inducidos respecto de homotopías que no preservan el punto base.

  • Video

    Homología singular - la homología y las componentes arco-conexas - [Detalles]

    En este video veremos cómo calcular el 0-ésimo grupo de homología singular y su relación con las componentes arco-conexas de nuestro espacio.

  • Video

    Homología singular - homología reducida - [Detalles]

    En este video definiremos una ligera variante de la homología singular, lo que se conoce como homología reducida. Esta homología reducida es, en ocasiones, más conveniente a la hora de hacer cuentas.

  • Video

    Homología singular - el teorema del punto fijo de Brouwer - [Detalles]

    Como aplicación del cálculo de la homología de una esfera demostraremos el teorema del punto fijo de Brouwer en dimensiones arbitrarias. La estrategia es idéntica a la que ya usamos para demostrar el teorema de Brouwer en dimensión 2 con el grupo fundamental.

  • Video

    Complejos CW - productos - [Detalles]

    En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.

  • Video

    Homología celular - una fórmula para el homomorfismo frontera - [Detalles]

    En este video damos una fórmula explícita para el homomorfismo frontera en el complejo de cadenas celular. Esto termina de establecer cómo se comporta el complejo de cadenas celular de un complejo CW.

  • Video

    Homología celular - ejemplo - una cuña de círculos - [Detalles]

    En este video explicamos cómo calcular la homología de una cuña de círculos usando el complejo de cadenas celular.

  • Video

    Homología celular - ejemplo - superficies - [Detalles]

    En este video explicamos cómo calcular la homología de una suma conexa de toros.

  • Video

    Homología celular - ejemplos - espacios proyectivos - [Detalles]

    En este video explicamos cómo calcular la homología de los espacios proyectivos con diferentes coeficientes.

  • Video

    Homología singular - la sucesión de Mayer-Vietoris - [Detalles]

    En este video definimos la sucesión de Mayer-Vietoris de la unión de dos espacios, y damos un pequeño ejemplo de cómo usarla.

  • Proyecto

    Proyecto: Hoyos de gráficas, espacios cociente y homología - [Detalles]

    En este proyecto introducimos las nociones de espacio vectorial cociente, espacio vectorial libre y vemos cómo nos ayudan a definir lo que es la homología.

  • Proyecto

    Proyecto: Modelo de Leslie para explotación animal y eigenvalores - [Detalles]

    Este proyecto de aplicación usa nociones básicas de álgebra lineal para plantear un modelo poblacional para cierta especie, así como una posible expltación responsable de la misma.

  • Proyecto

    Proyecto: Álgebra lineal básica en Python y Jupyter - [Detalles]

    En este proyecto llevamos varios de los conceptos teóricos de álgebra lineal a un lenguaje de programación. Vemos cómo usar las bibliotecas SymPy y NumPy de Python para trabajar con matrices.

  • Cuestionario

    Mini-cuestionario: Introducción a forma matricial de transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.

  • Cuestionario

    Mini-cuestionario: Más sobre formas matriciales de transformaciones lineales - [Detalles]

    Otro mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.

  • Cuestionario

    Mini-cuestionario: Matrices de cambio de base - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo obtener matrices de cambio de base.

  • Cuestionario

    Mini-cuestionario: Cambios de base de transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo realizar cambios a las matrices que representan una transformación lineal al cambiar de base.

  • Cuestionario

    Mini-cuestionario: Bases duales, recetas y una matriz invertible - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué es una base dual y cómo realizar varias operaciones relacionadas con bases duales.

  • Cuestionario

    Mini-cuestionario: Ortogonalidad, ecuaciones e hiperplanos - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo la ortogonalidad está relacionada con los sistemas de ecuaciones y con los hiperplanos en espacios vectoriales.

  • Cuestionario

    Mini-cuestionario: Ortogonalidad y transformación transpuesta - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo se define la transformación transpuesta en términos del espacio dual y qué matriz la representa.

  • Cuestionario

    Mini-cuestionario: Proceso de Gram-Schmidt - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué es y cómo se hace el proceso de Gram-Schmidt.

  • Cuestionario

    Mini-cuestionario: Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo los determinantes ayudan a resolver sistemas de ecuaciones.

  • Cuestionario

    Mini-cuestionario: Determinantes de matrices y transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo se definen los determinantes para matrices y para transformaciones lineales.

  • Cuestionario

    Mini-cuestionario: Matrices reales simétricas y sus eigenvalores - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo son los eigenvalores de las matrices simétricas reales.

  • Blog

    El principio del buen orden - [Detalles]

    Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.

  • Blog

    Introducción a estructuras algebraicas - [Detalles]

    Definimos una serie de estructuras algebraicas así como una lista de propiedades que deben cumplir estas estructuras.

  • Blog

    Construcción de los enteros y su suma - [Detalles]

    Construimos el conjunto de los números enteros a partir de los números naturales, definimos a un número entero como una clase de equivalencia, definimos su operación suma y su inverso; también demostramos algunas propiedades básicas de la operación suma en los enteros.

  • Blog

    La inmersión de los naturales en los enteros - [Detalles]

    Estudiamos a los números enteros pero ahora trabajamos para etiquetarlos como los conocemos comunmente sin perder de vista la construcción y formalidad matemática que se ha trabajado en este tema.

  • Blog

    Problemas de operaciones en complejos - [Detalles]

    Resolvemos problemas de operaciones básicas de complejos como la suma y producto junto con sus operaciones inversas.

  • Blog

    La norma en los complejos - [Detalles]

    Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.

  • Blog

    Ecuaciones cuadráticas complejas - [Detalles]

    Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.

  • Blog

    Sistemas de ecuaciones lineales complejos - [Detalles]

    Motivamos el estudio de la solución de sistemas de ecuaciones lineales pero ahora con números complejos, nuestra inspiración fueron algunos métodos que ya conocemos por el estudio en los reales tales como el determinante, substitución o igualando coeficientes.

  • Blog

    Exponencial, logaritmo y trigonometría en los complejos - [Detalles]

    Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.

  • Blog

    Inmersión de R en R[x], grado y evaluación - [Detalles]

    Damos las definiciones principales y más escenciales del tema de polinomios como los son: raíz, grado, potencia de un polinomio; asimismo demostramos las propiedades más fundamentales de estos nuevos conceptos.

  • Blog

    Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]

    Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.

  • Blog

    Máximo común divisor de polinomios y algortimo de Euclides - [Detalles]

    Definimos lo que es un ideal en los polinomios, proporcionamos un ejemplo y una caracterización de los ideales en los polinomios, al igual que en entradas anteriores tomamos ideas principales de temas que se ocupaban en los enteros pero ahora los adaptamos a los polinomios como lo es el máximo común divisor, el algoritmo de Euclides y demostramos la identidad de Bézout.

  • Blog

    Problemas de continuidad y derivadas de polinomios - [Detalles]

    Resolvemos ejercicios de continuidad y de derivada en los polinomios así como de raíces reales.

  • Video

    Factorización en transposiciones - [Detalles]

    Definimos lo que es una transposición y demostramos que toda permutación se puede factorizar como producto de transposiciones.

  • Video

    Hay tantas clases laterales izquierdas como derechas - [Detalles]

    Se demuestra que hay el mismo número de clases laterales derechas que izquierdas.

  • Video

    Conjugación como relación de equivalencia - [Detalles]

    Se explica la relación de conjugación y se demuestran algunas propiedades, se define el centro de un grupo.

  • Video

    Algunos teoremas de representaciones - [Detalles]

    Se motiva la necesidad de representar a un grupo como subgrupo de otro más conocido y se muestran algunos teoremas de representación incluido el teorema de Cayley.

  • Cuestionario

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    Ahora queremos repasar lo que significa que $\mathbb{C}$ sea un campo y que implica, así como reforzar unas cuantas fórmulas para expresar partes real e imaginaria de un número complejo.

  • Cuestionario

    5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]

    Repasemos un poco acerca de cómo se comportan potencias y raíces en los complejos.

  • Cuestionario

    6. Lugares geométricos en $\mathbb{C}$ - [Detalles]

    Volveremos a echar un vistazo a aspectos importantes de los lugares geométricos en el plano complejo, cómo se describen y algunas propiedades.

  • Blog

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.

  • Blog

    4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.

  • Blog

    5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presenta cómo calcular raíces n-esimas de números complejos partiendo de la fórmula de De Moivre.

  • Evaluación

    Unidad I: Introducción y preliminares - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Cuestionario

    13. Funciones multivaluadas - [Detalles]

    Ahora queremos estudiar estas funciones llamadas multivaluadas, que no son exactamente como las funciones cotidianas, ver ejemplos y alguna propiedad.

  • Cuestionario

    22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]

    Responderemos unas preguntas de senos y cosenos complejos, así como senos y cosenos hiperbólicos.

  • Evaluación

    Unidad I: Introducción y preliminares - Examen - [Detalles]

    En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Blog

    21. Logaritmo complejo y potencias complejas - [Detalles]

    Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".

  • Blog

    24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]

    Ya hablamos bastante acerca de las funciones complejas, su continuidad y derivadas, ahora revisaremos un poco más afondo la geometría, por medio de las transformaciones, veremos varios tipos de estas y como afectan al plano y a subconjuntos de este.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Evaluación

    Unidad III: Series de números complejos - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.

  • Evaluación

    Unidad III: Series de números complejos - Examen - [Detalles]

    En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.

  • Evaluación

    Unidad IV: Integración compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.

  • Evaluación

    Unidad IV: Integración compleja - Examen - [Detalles]

    En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.

  • Evaluación

    Unidad V: Aplicaciones - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.

  • Evaluación

    Unidad V: Aplicaciones - Examen - [Detalles]

    En este examen se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.

  • Blog

    30. Series de potencias y funciones - [Detalles]

    Una vez vistas las series de potencias, metámonos a ver como se relacionan con las funciones complejas y que puede pasar si una función está descrita por una serie de potencias.

  • Blog

    35. Integrales de contorno II - [Detalles]

    En esta entrada veremos teoremas de integrales complejas muy importantes, tales como el Teorema Fundamental del Cálculo para integrales de contorno y el lema de Goursat.

  • Blog

    37. Consecuencias del teorema integral de Cauchy - [Detalles]

    En esta entrada veremos unas cuantas consecuencias del Teorema Integral de Cauchy, tales como el Teorema de Liouville, el Teorema Fundamental del Álgebra, el Teorema de Morera y más.

  • Blog

    38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]

    Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.

  • Blog

    39. Teoremas de Weierstrass - [Detalles]

    Vamos a ver unos cuantos resultados importantes para ver cómo se relacionan las series de funciones, derivadas e integrales de estas y veremos bajo qué condiciones se puede derivar e integrar término a término.

  • Blog

    44. Teorema del residuo y aplicaciones - [Detalles]

    En esta última entrada, definiremos el residuo de una función analítica y veremos el teorema del residuo, mediante el cual nos será posible evaluar integrales reales, tanto impropias como integrales definidas, de una manera sorprendentemente sencilla.

  • Cuestionario

    30. Series de potencias y funciones - [Detalles]

    Repasemos unos cuantos aspectos, un poco más técnicos acerca de las series de potencias, tales como diferenciabilidad.

  • Cuestionario

    31. Funciones elementales como series de potencias - [Detalles]

    Vamos a repasar un par de trucos para los cuales se necesario aplicar las propiedades de series de potencias, de las funciones de las cuales conocemos sus series.

  • Cuestionario

    32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]

    Empezaremos finalmente con la parte de integración, necesitamos repasar unos preliminares importantes, tales como curvas y trayectorias en el plano complejo.

  • Video

    ¿Qué es una gráfica? - [Detalles]

    En este video se presenta la definición formal de gráfica. Se explica cómo las representaciones visuales (o dibujos) nos sirven para entender la combinatoria de estos objetos. Se reconoce la necesidad de identificar gráficas que, aunque no son iguales formalmente, son esencialmente la misma (gráficas isomorfas), y se define isomorfismo entre gráficas.

  • Blog

    Nota 1. Noción de Conjunto - [Detalles]

    En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.

  • Video

    Introducción: ¿Qué son las ciencias de la computación?, Computación - [Detalles]

    1.1 Computación - Breve introducción a la materia y presentación de algunos conceptos clave que serán utilizados a lo largo del curso como computadora, computación y programa.

  • Video

    La Inducción matemática - [Detalles]

    La inducción matemática es una herramienta fundamental para poder demostrar proposiciones que tienen que ver con los números naturales. En este video discutimos cuál es su estructura y como se implementa.

  • Video

    Ejercicio de Tablas de verdad - [Detalles]

    En este video justificamos la equivalencia de proposiciones utilizando las tablas de verdad y como operan con conectores lógicos.

  • Cuestionario

    23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas. - [Detalles]

    Ya repasamos las funciones trigonométricas, repasemos un poco cómo se ven sus funciones inversas, ya que estas también son muy importantes.

  • Blog

    Nota 2. Subconjuntos - [Detalles]

    En esta nota se presenta la idea de subconjunto así como varias propiedades que derivan de ella, se ven un par de demostraciones básicas de conjuntos y subconjuntos y se dan un par de axiomas.

  • Blog

    Nota 3. El complemento de un conjunto. - [Detalles]

    En esta nota se presentan las ideas de conjunto universo y conjunto complemento, así como varias propiedades y ejemplos referentes a estos conceptos. También hay un recurso interactivo de Geogebra que ilustra el concepto de complemento de un conjunto.

  • Blog

    Nota 4. Unión e intersección de Conjuntos. - [Detalles]

    En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.

  • Blog

    Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]

    En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Nota 7. Relaciones y funciones - [Detalles]

    En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.

  • Blog

    Nota 9. Composición de funciones. - [Detalles]

    En esta nota vemos una operación entre funciones llamada composición, así como la prueba de que es una operación asociativa; también vemos varios ejemplos de composiciones y recursos interactivos que nos ayudan a entender mejor el tema, por ultimo introducimos una función muy importante: la función identidad.

  • Blog

    Nota 10. Función inversa - [Detalles]

    En esta nota explicamos el concepto de función inversa, partiendo de los conceptos de función inversa derecha y función inversa izquierda, vemos varios ejemplos relacionados y demostramos que si una función tiene tanto inversa derecha como izquierda entonces esta es la función inversa y además es única.

  • Blog

    Nota 11. Funciones inyectivas, suprayectivas y biyectivas. - [Detalles]

    En esta nota introducimos los conceptos de funcón inyectiva, función suprayectiva y función biyectiva, así como varios ejemplos de estas. También demostramos que es equivalente que una función sea biyectiva a que sea invertible.

  • Blog

    Nota 15. Relaciones de equivalencia y particiones. - [Detalles]

    En esta nota veremos cómo las relaciones de equivalencia generan particiones, y concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia. Con esta nota concluimos la primera unidad del curso.

  • Blog

    Nota 17. El orden en los números naturales. - [Detalles]

    En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.

  • Blog

    Nota 18. El principio de inducción matemática. - [Detalles]

    En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.

  • Blog

    Álgebra Moderna I: Operación binaria asociativa y conmutativa - [Detalles]

    A continuación se manejan dos tipos de operaciones especificas: las operaciones binarias asociativas y las operaciones conmutativas. Dentro de estos conceptos se espera que el lector pueda reconocer cuando una operación binaria recae dentro de alguno de estos dos tipos mencionados o no. En las notas, se da ejemplo de como reconocer la conmutatividad dentro de un arreglo de Tabla.

  • Blog

    Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]

    En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.

  • Blog

    Álgebra Moderna I: Definición de Grupos - [Detalles]

    Dentro de lo que se abordará como tema principal a continuación, es la definición de grupo y se facilitara la compresión de este nuevo concepto a través de varios ejemplos. Un concepto más es el de Grupo abeliano.

  • Blog

    Nota 21. Conteo, ordenaciones con repetición. - [Detalles]

    En esta nota comenzaremos a ver las técnicas de conteo, las cuales son una aplicación de los números naturales; analizaremos la situación conocida como ordenaciones con repetición, que nos dan todas las posibilidades de formar una secuencia ordenada de m posiciones, llenadas con los n objetos de un determinado conjunto.

  • Blog

    Nota 22. Conteo. Ordenaciones. - [Detalles]

    En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.

  • Blog

    Nota 23. Combinaciones. - [Detalles]

    En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.

  • Blog

    Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]

    En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.

  • Blog

    Nota 25. Espacios vectoriales - [Detalles]

    Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.

  • Blog

    Nota 26. Propiedades de $\mathbb{R}^n$ - [Detalles]

    En la siguiente nota veremos algunas propiedades de $\mathbb{R}^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb{R}$ por cualquier vector de $\mathbb{R}^n$ nos da el neutro aditivo del espacio vectorial, y que la multiplicación de cualquier escalar por el neutro aditivo de $\mathbb{R}^n$, es el mismo neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, denotado por $\tilde{v}$ es de hecho $(-1)v$.

  • Blog

    Nota 27. Subespacios vectoriales. - [Detalles]

    En esta nota exploramos el concepto de subespacio vectorial, que no es mas que un subconjunto de un espacio vectorial que se comporta como un espacio vectorial en si, en particular vemos los subespacios de $\mathbb{R}^n$ y probamos que la intersección de subespacios también es un subespacio.

  • Blog

    Nota 29. Subespacio generado - [Detalles]

    En esta nota continuaremos con los subespacios vectoriales, definiremos lo que es el subespacio generado por un conjunto y veremos varías propiedades de este así como diversos ejemplos.

  • Blog

    Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo - [Detalles]

    En primera instancia se definirán propiedades básicas de grupos como en cualquier otra estructura algebraica. En la cual, es de importancia mencionar la existencia de un neutro, asociatividad e inverso. Por ultimo, la definición débil de grupo.

  • Blog

    Álgebra Moderna I: Orden de un grupo - [Detalles]

    Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.

  • Blog

    Álgebra Moderna I: Permutaciones disjuntas - [Detalles]

    A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Blog

    Álgebra Moderna I: Teorema de Lagrange - [Detalles]

    A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H

  • Video

    Introducción: ¿Qué son las Ciencias de la Computación?, Disciplinas semejantes - [Detalles]

    1.5 Disciplinas semejantes - Presentación de la familia de disciplinas altamente relacionadas a ciencias de la computación tales como programación, ingeniería de la computación, cibernética, informática, tecnologías de la información y ciencia de datos además de por qué no son lo mismo.

  • Video

    Lenguajes de programación; Paradigmas - [Detalles]

    2.1 Paradigmas - ¿Cuántos leguajes de programación existen? ¿En qué programa un computólogo? ¿Cómo le hace? ¿Qué es un paradigma y qué describe? Principales paradigmas en la programación.

  • Blog

    Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]

    En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.

  • Blog

    Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]

    El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.

  • Video

    Los Elementos de Euclides: Teorema 30 - [Detalles]

    En este video cubrimos el Teorema 30 de Los Elementos de Euclides, aquí se demuestra que si las paralelas a una misma recta son paralelas entre sí. (También se conoce como la propiedad transitiva del paralelismo de rectas)

  • Blog

    Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]

    Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.

  • Video

    Arquitectura de Von Neumman y el ciclo de acarreo; - [Detalles]

    2.1 Arquitectura de Von Neumman y el ciclo de acarreo - ¿Qué es la arquitectura de Von Neumman? ¿Para qué sirve? y ¿Cómo funciona? Breve presentación de quién fue Neumann y sus contribuciones a la Ciencia y a las Ciencias de la Computación.

  • Video

    Arquitectura de Von Neumman y el ciclo de acarreo; Lenguaje de máquina, ensamblador y diagramas de flujo - [Detalles]

    2.2 Lenguaje de máquina, ensamblador y diagramas de flujo - Continuación de la arquitectura además de conceptos como lenguaje de máquina, lenguaje ensamblador y diagramas de flujo, que serán útiles toda la carrera.

  • Video

    Diseño y programación orientada a objetos; Introducción - [Detalles]

    1.1 Diseño y programación orientada a objetos introducción - Presentación del paradigma así como de las ventajas y características de la POO.

  • Video

    Diseño y programación orientada a objetos; Modelo - [Detalles]

    1.2 Modelo orientado a objetos - ¿Qué es el modelo orientado a objetos? Presentación de las características de este modelo y su composición además de la definición de objeto que usaremos, cómo funciona, su rutina y mensaje además los tipos que existen. De igual forma se nos explica la definición de estado de objeto. y los tipos de métodos. También se nos habla de la programación orientada a objetos con clases, su definición y composición. Por último se presenta la definición de interfaz.

  • Video

    Los Elementos de Euclides: Presentación - [Detalles]

    En este video encontrarás todo lo que puedes aprender con esta serie de videos relativos al libro I de Los Elementos de Euclides. Te explicamos como puedes aprovechar al máximo el material que compartimos en los cuadernillos.

  • Blog

    Relaciones - [Detalles]

    En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.

  • Blog

    Composición de relaciones - [Detalles]

    En esta sección definiremos una nueva relación a partir de dos relaciones con ciertas características y una operación a la que llamaremos composición. Veremos si la operación composición tiene propiedades como la conmutatividad o la asociatividad.

  • Blog

    Funciones (parte II) - [Detalles]

    En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

  • Blog

    Funciones inyectivas - [Detalles]

    En esta sección abordaremos el concepto de función inyectiva, notaremos que la función inyectiva será aquella que mande elementos distintos a elementos distintos bajo una función. Veremos varios ejemplos así como equivalencias a ser inyectiva, por ultimo veremos que pasa con la composición de funciones y la inyectividad.

  • Blog

    Relaciones de equivalencia - [Detalles]

    En esta entrada hablaremos acerca de un tipo de relaciones a las que llamaremos relaciones de equivalencia. Trataremos ejemplos que son relaciones de equivalencia así como ejemplos que no lo son.

  • Blog

    Clases de equivalencia y particiones - [Detalles]

    Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.

  • Blog

    Conjunto cociente - [Detalles]

    En esta entrada definiremos al conjunto cociente, dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.

  • Blog

    Cotas inferiores e ínfimos - [Detalles]

    En esta entrada hablaremos acerca de cotas inferiores e ínfimos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relacionan estos conceptos con el minimo.

  • Blog

    Cotas superiores y supremos - [Detalles]

    En esta entrada hablaremos acerca de cotas superiores y supremos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relaciona este concepto con el máximo de un conjunto.

  • Blog

    Buenos órdenes - [Detalles]

    En esta entrada veremos el concepto de conjunto bien ordenado, en dicho conjunto toma mucha importancia el concepto de minimo. También veremos como se relaciona este nuevo concepto con los conceptos de orden que se han visto anteriormente

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Blog

    Principio de inducción - [Detalles]

    En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

  • Blog

    Teorema de recursión - [Detalles]

    En esta entrada veremos el concepto de calculo de longitud, así como la motivación y prueba del teorema de recursión, el cual nos ayudara a definir la suma en el conjunto de los numeros naturales.

  • Video

    Ejercicio Representación de funciones con función par e impar - [Detalles]

    En este video explicamos cómo descomponer cualquier función en dos compañeras esenciales: una función par y una función impar.

  • Video

    Ejercicio Sucesión monótona acotada - [Detalles]

    En este video exploramos el misterioso comportamiento de la sucesión infinita de raíces: $\sqrt{2\sqrt{2\sqrt{2\cdots}}}$ ¿Cómo es posible que esta enigmática estructura nos conduzca al sencillo número 2?

  • Video

    Ejercicio Limite superior de una sucesión - [Detalles]

    En este video estudiamos los límites limsup y el liminf. Navegaremos entre secuencias y funciones, descubriendo cómo estas dos nociones nos brindan perspectivas únicas sobre el comportamiento asintótico.

  • Video

    Ejercicio Teorema del Sandwich - [Detalles]

    ¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?

  • Video

    Ejercicio Función discontinua en todas partes - [Detalles]

    Embárcate en un viaje por los misterios matemáticos mientras exploramos la famosa función de Dirichlet. En este video, nos sumergiremos en la estructura y propiedades de esta curiosa función, demostrando paso a paso cómo es discontinua en todos los puntos del dominio real.

  • Video

    Ejercicio todo número positivo tiene raíz cuadrada - [Detalles]

    En este video demostraremos que todo número positivo tiene una raíz cuadrada. ¿Cómo lo hacemos? ¡Con la ayuda del poderoso Teorema del Valor Intermedio!

  • Video

    Ejercicio Derivación - [Detalles]

    En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.

  • Video

    Ejercicio Estimación con Teorema del Valor Medio - [Detalles]

    En este video, no solo desentrañaremos el significado y la intuición detrás del teorema del Valor Medio, sino que también lo utilizaremos como herramienta clave para demostrar una desigualdad intrigante.

  • Video

    Todas las gráficas no isomorfas de orden 4 - [Detalles]

    En este video presentamos todas las gráficas no isomorfas de orden 4. A partir de esta pequeña familia, introducimos de manera intuitiva conceptos importantes como: la gráfica completa, ciclos, trayectorias, estrellas, gráficas conexas, árboles y gráficas planares. Todos estos conceptos se definirán de manera formal en video subsecuentes.

  • Video

    Subgráficas y la gráfica complemento - [Detalles]

    En este video definimos la gráfica complemento de una gráfica dada, así como algunas operaciones básicas. Definimos el concepto de subgráfica y distinguimos dos tipos importantes: subgráficas inducidas y subgráficas generadoras.

  • Capítulo del libro

    Las fracciones - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las fracciones: partes iguales de un todo. Aprenderás a simplificarlas, encontrar equivalentes, sumarlas, restarlas, ordenarlas y compararlas. Incluso como realizar la multiplicación y división de fracciones.

  • Capítulo del libro

    Expresiones algebraicas - [Detalles]

    En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.

  • Capítulo del libro

    Ecuaciones y problemas - [Detalles]

    En este capitulo de Cimientos Matemáticos, aprenderemos a resolver ecuaciones de primer grado y sistemas de ecuaciones con dos o más variables. Veremos diferentes métodos de resolución, como sustitución y suma-resta.

  • Capítulo del libro

    Funciones circulares - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos todo lo relacionado con las funciones circulares, como se comportan en cada caso especifico, cuales son los valores que llegan a tomar dependiendo del cuadrando donde se encuentren, para después abordar lo que son las identidades trigonométrica, los diferentes tipos que hay y para podemos utilizarlos.

  • Capítulo del libro

    Funciones circulares de suma y diferencias - [Detalles]

    En este capitulo de Cimientos Matemáticos daremos continuación al tema anterior, mostrando ahora mas propiedades de las funciones circulares, así como realizar el cálculo de la suma y resta de seno, coseno y tangente. Además, abordaremos las funciones circulares del doble de un número y la transformación de productos a sumas y viceversa de estas funciones trigonométricas.

  • Capítulo del libro

    Conjuntos y Lógica - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.

  • Capítulo del libro

    Los números reales - [Detalles]

    En este capitulo de Cimientos Matemáticos exploraremos las propiedades de los números reales, como son estas reglas fundamentales que rigen su manipulación en operaciones matemáticas, mientras que el concepto de valor absoluto añade una capa de comprensión al medir la distancia de un número al cero en la línea numérica.

  • Video

    Caminos, paseos y trayectorias - [Detalles]

    Definimos camino, paseo y trayectoria, así como camino cerrado, circuito y ciclo. Probamos que todo u-v camino contiene una u-v trayectoria.

  • Video

    Paseos Eulerianos y el origen de la Teoría de Gráficas - [Detalles]

    Es este video definimos multigráfica, paseo Euleriano y multigráfica Euleriana. También hablamos de la historia de los siete puentes de Köninsberg, que se reconoce como el origen dela Teoría de Gráficas y probamos un resultado de Euler, de 1736, que nos da un criterio para determinar si una multigráfica es o no es Euleriana.

  • Cuestionario

    Cuestionario de los números naturales - [Detalles]

    Este es un cuestionario para repasar el Módulo 1 del texto "Cimientos Matemáticos". Se cubren temas como números naturales, mcm, MCD, números primos, factorización, etc.

  • Cuestionario

    Cuestionario de los números enteros - [Detalles]

    Este es un cuestionario para repasar el Módulo 2 del texto "Cimientos Matemáticos". Se cubren temas como números enteros, ley de los signos, multiplicación y división de números enteros, etc.

  • Cuestionario

    Cuestionario de las fracciones - [Detalles]

    Este es un cuestionario para repasar el Módulo 3 del texto "Cimientos Matemáticos". Se cubren temas como la suma, multiplicación, división de fracciones, etc.

  • Cuestionario

    Cuestionario de expresiones algebraicas - [Detalles]

    Este es un cuestionario para repasar el Módulo 4 del texto "Cimientos Matemáticos" donde se abarcan temas como: lenguaje algebraico, expresiones algebraicas, jerarquía de operaciones, monomios, polinomios, etc.

  • Cuestionario

    Cuestionario de monomios y polinomios - [Detalles]

    Este es un cuestionario para repasar el Módulo 6 del texto "Cimientos Matemáticos" donde se abarcan temas como: monomios, polinomios, ley de los signos, productos notables, etc.

  • Cuestionario

    Cuestionario de geometría elemental - [Detalles]

    Este es un cuestionario para repasar el Módulo 7 del texto "Cimientos Matemáticos" donde se abarcan temas como: la definición de punto, segmento, línea recta, circunferencia, ángulo, tipos de ángulos, tipos de rectas, etc.

  • Cuestionario

    Cuestionario de nociones de trigonometría - [Detalles]

    Este es un cuestionario para repasar el Módulo 8 del texto "Cimientos Matemáticos" donde se abarcan temas como: convertir ángulos a radianes y viceversa, semejanza de triángulos, distancia entre dos puntos, etc.

  • Cuestionario

    Cuestionario de funciones circulares - [Detalles]

    Este es un cuestionario para repasar el Módulo 9 del texto "Cimientos Matemáticos" donde se abarcan temas como: identidades trigonométricas, valores de las funciones circulares, etc.

  • Cuestionario

    Cuestionario de funciones circulares de suma y diferencia - [Detalles]

    Este es un cuestionario para repasar el Módulo 10 del texto "Cimientos Matemáticos" donde se abarcan temas como: transformación de productos a suma y viceversa, seno, coseno y tangente de sumas y diferencias, etc.

  • Cuestionario

    Cuestionario de ecuaciones de la línea recta - [Detalles]

    Este es un cuestionario para repasar el Módulo 11 del texto "Cimientos Matemáticos" donde se abarcan temas como: lugares geométricos y sus ecuaciones, punto-pendiente de una recta, forma general de la ecuación de la línea recta, etc.

  • Cuestionario

    Cuestionario de ecuaciones de cónicas - [Detalles]

    Este es un cuestionario para repasar el Módulo 12 del texto "Cimientos Matemáticos" donde se abarcan temas como: circunferencia, parábola, elipse, con sus respectivas propiedades cada una, etc.

  • Cuestionario

    Cuestionario de conjuntos y logica - [Detalles]

    Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.

  • Cuestionario

    Cuestionario de conjuntos importantes - [Detalles]

    Este es un cuestionario para repasar el Módulo 14 del texto "Cimientos Matemáticos" donde se abarcan temas como: los números naturales, los números enteros, los números racionales e irracionales, etc.

  • Cuestionario

    Cuestionario de los números reales - [Detalles]

    Este es un cuestionario para repasar el Módulo 15 del texto "Cimientos Matemáticos" donde se abarcan temas como: postulados de campo, postulados de orden, valor absoluto, etc.

  • Cuestionario

    Cuestionario de funciones - [Detalles]

    Este es un cuestionario para repasar el Módulo 16 del texto "Cimientos Matemáticos" donde se abarcan temas como: valor de una función, grafica de una función y su relación, tabulación, etc.

  • Cuestionario

    Cuestionario de funciones algebraicas - [Detalles]

    Este es un cuestionario para repasar el Módulo 17 del texto "Cimientos Matemáticos" donde se abarcan temas como: función lineal, función cuadrática, sus propiedades, funciones polinomiales, etc.

  • Cuestionario

    Cuestionario de funciones trascendentes - [Detalles]

    Este es un cuestionario para repasar el Módulo 18 del texto "Cimientos Matemáticos" donde se abarcan temas como: función seno, coseno y sus respectivas propiedades, función exponencial, función logaritmica, etc.

  • Sitio web

    MiniCOMAL: Cimientos Matemáticos - [Detalles]

    Cimientos Matemáticos es un texto escrito de matemáticas pre-universitarias hecho por el Dr. Eric Pauli Pérez Contreras. Cubre varios temas importantes que se deben conocer y manejar apropiadamente para facilitar el estudio de las matemáticas a nivel universitario. En este curso podrás consultar el material elaborado en archivos PDF, así como una multitud de mini-cuestionarios para evaluar tus conocimientos sobre los temas que se tratan en cada capítulo.

  • Práctica

    Mundo de la aspiradora - [Detalles]

    Se presenta un agente que interactúa en el mundo de la aspiradora, tal como se presenta en Russel & Norvig (2021). Una versión más compleja de este mundo puede encontrarse en https://github.com/rayheberer/AI-A-Modern-Approach/tree/master/Chapter%202%20Intelligent%20Agents.

  • Práctica

    Mundo de laberinto - [Detalles]

    Como introducción a los problemas de búsqueda, se define el problema de recorrer un laberinto para llegar de un punto a otro.

  • Práctica

    Juego de Gato - [Detalles]

    Como introducción a la búsqueda adversaria, se presenta el juego de gato.

  • Práctica

    Algoritmo Alfa-Beta - [Detalles]

    Se presenta el algoritmo de búsqueda adversaria Alfa-Beta como una mejora sobre el algoritmo Minimax.

  • Práctica

    Problema de las 8 reinas - [Detalles]

    Se define el problema de las 8 reinas como introducción a la búsqueda optimizada.

  • Práctica

    Perceptrón - [Detalles]

    Se presenta el modelo del perceptrón como una introducción a las redes neuronales

  • Práctica

    Iteración de política y procesos de decisión markovianos (MDP) - [Detalles]

    Se presentan los procesos de decisión markovianos (MDP) y y el algoritmo de policy iteration para ejemplificar cómo resolver un MDP.

  • Blog

    Introducción al curso - [Detalles]

    Introducción al curso de álgebra lineal II, vemos un repaso general de lo que se vio en el curso anterior así como varios resultados importantes a tener en cuenta, damos una idea general de los temas y resultados que se verán en este nuevo curso.

  • Blog

    Propiedades de eigenvectores y eigenvalores - [Detalles]

    En esta entrada profundizaremos en el estudio de los vectores y valores propios, exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

  • Blog

    Matrices similares y su polinomio característico - [Detalles]

    En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).

  • Blog

    Aplicaciones del teorema de Cayley-Hamilton - [Detalles]

    En esta entrada veremos ejemplos y aplicaciones del teorema de Cayley-Hamilton, como encontrar la inversa de una matriz o su polinomio mínimo.

  • Blog

    Diagonalizar - [Detalles]

    En la entrada anterior estudiamos la triangularización de matrices, que consistía en llevar matrices a una forma triangular superior. En esta fortaleceremos esta idea, y buscaremos maneras de llevar una matriz a una matriz diagonal: a este proceso se le conoce como diagonalizar.

  • Blog

    Espacios euclideanos y espacios hermitianos - [Detalles]

    En esta entrada haremos un breve recordatorio de los conceptos de producto interior y de espacios euclideanos. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

  • Blog

    El teorema de clasificación de transformaciones ortogonales - [Detalles]

    En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

  • Blog

    El teorema espectral real - [Detalles]

    En esta entrada enunciaremos y demostraremos el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

  • Blog

    Aplicaciones de la forma canónica de Jordan - [Detalles]

    En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

  • Blog

    Polinomio característico - [Detalles]

    Hablamos de polinomio característico y cómo ayuda a encontrar eigenvalores y eigenvectores. Vemos que no depende de la base elegida.

  • Blog

    Puntos críticos de campos escalares - [Detalles]

    Desarrollamos cómo entender los valores extremos (máximos y mínimos) de campos escalares en términos del gradiente y la matriz hessiana.

  • Blog

    Condicionales y dobles condicionales - [Detalles]

    En esta entrada introducimos los conceptos de implicación y doble implicación, así como la tautología.

  • Blog

    Problemas de condicionales y cuantificadores - [Detalles]

    Resolvemos ejercicios con los conectores lógicos de implicación y doble implicación, así como con cuantificadores existenciales y universales.

  • Blog

    Negaciones de proposiciones con conectores y cuantificadores - [Detalles]

    Vemos cómo se niegan los cuantificadores lógicos. Repasamos la negación con conectores lógicos.

  • Blog

    Demostración de proposiciones con conectores - [Detalles]

    En esta entrada revisamos algunos ejemplos de las demostraciones matemáticas con conectores como la conjución y disyunción.

  • Blog

    Demostración de proposiciones con cuantificadores - [Detalles]

    En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".

  • Blog

    Conjuntos y elementos - [Detalles]

    Estudiamos las primeras nociones de teoría de conjuntos. Vemos qué significa que un elemento pertenezca a otro y cómo describir conjuntos.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.

  • Blog

    Relaciones en conjuntos: dominio, codominio y composición - [Detalles]

    En esta entrada hablamos sobre relaciones entre conjuntos, el dominio, imagen de una relación así como la composición entre relaciones.

  • Blog

    Órdenes parciales y totales - [Detalles]

    En esta entrada revisamos los conceptos de orden parcial, total. Así como elementos maximales, minimales, máximos y mínimos.

  • Blog

    Introducción a funciones - [Detalles]

    En esta entrada revisamos el concepto de función matemática, así como la igualdad entre funciones.

  • Blog

    Introducción a números naturales - [Detalles]

    En esta entrada revisamos los axiomas de Peano así como la construcción conjuntista de los números naturales.

  • Blog

    Suma y producto de naturales y sus propiedades - [Detalles]

    En esta entrada vemos la definición de suma y multiplicación en términos de los números naturales así como algunas propiedades.

  • Blog

    Determinante de matrices y propiedades - [Detalles]

    Definimos determinantes de matrices de 2x2 y vemos cómo calcularlos recursivamente para tamaños más grandes. Enunciamos algunas propiedades.

  • Blog

    Los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$ - [Detalles]

    Hablamos de R^2 y R^3 como espacios vectoriales. Definimos combinaciones lineales, independencia lineal y bases. Vemos varios ejemplos.

  • Video

    Ingeniería de software, Crisis del software - [Detalles]

    Crisis del software - ¿Cómo surge la ingeniería del software? Antecedentes y precursores. Cuáles eran las limitaciones al crear y replicar software.

  • Video

    Ingeniería de software, Paradigmas procedimental y orientado a objetos - [Detalles]

    Paradigmas procedimental y orientado a objetos – Qué es la programación procedimental y orientada a objetos; y qué lenguajes la usan así como cualidades de estas y los pioneros.

  • Video

    JAVA, Organización de los componentes en Java - [Detalles]

    Organización de los componentes en Java – Inicio en la programación en JAVA, organización y características. Cómo funciona y antecedentes. Se presentan los componentes de java.

  • Video

    JAVA, Poniendo las clases en paquetes - [Detalles]

    • Poniendo las clases en paquetes – Ejemplo de cómo crear clases y paquetes.

  • Video

    HERENCIA, Herencia simple en la memoria y tipos de ancestros - [Detalles]

    Herencia simple en la memoria y tipos de ancestros – Visualización de las herencias, tipos de heredabilidad. Cómo se da la sobreescritura y métodos abstractos.

  • Video

    Valores, referencias y ocultamento, Valores y referencias - [Detalles]

    Valores y referencias – A qué hacen referencia los métodos en JAVA, qué tipo de valores se utilizan dependiendo el contexto ¿qué se manda a llamar? Y cómo se accede a los objetos.

  • Video

    Valores, referencias y ocultamiento, ocultamiento - [Detalles]

    Ocultamiento – Definición de ocultamiento, para qué sirve y características. Definición de atributos y variables locales. Se presentan los bloques y cómo se trabajan en JAVA.

  • Video

    Presentación del curso de Calculo Diferencial e Integral I - [Detalles]

    En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.

  • Video

    Números naturales e induccion - [Detalles]

    En este video veremos a los números naturales como un subconjunto del campo de los números reales. Justificaremos el Principio de Inducción Matemática, que es una herramienta muy poderosa para demostrar proposiciones de tipo universal acerca de los números naturales.

  • Video

    Principio Arquimediano - Análisis Matemático I - [Detalles]

    El Principio Arquimediano. En este video se eununcia y demuestra el Principio Arquimediano, como consecuencia del Axioma del Supremo. Se define la parte entera de un real y se demuestra que los números racionales son densos en los reales.

  • Video

    Funciones, Parte 1 - [Detalles]

    En este video se discute el concepto intuitivo de función, junto con otros conceptos asociados como dominio, codominio, regla de correspondencia y composición. Después se introduce la definición formal de función y se compara con la definición intuitiva. Finalmente se discuten algunos ejemplos.

  • Video

    Funciones, Parte 2 - [Detalles]

    En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.

  • Video

    Funciones, Parte 3 - [Detalles]

    En este video se formaliza el concepto de composición de funciones y se discute sobre cómo es el dominio de una composición de funciones.

  • Video

    Ejemplos demostración de limites - [Detalles]

    En este video se ejemplifica cómo demostrar (épsilon-delta) que el límite cuando x tiende a 2 de f(x)=x^4 es 16, y que el límite cuando x tiende a un número positivo a, de f(x)=1/x es 1/a.

  • Video

    Teorema del Valor Medio - [Detalles]

    En este video demostraremos el Teorema del Valor Medio para derivadas, como consecuencia del Teorema de Rolle, que es demostrado previamente.

  • Video

    Vecindades de números reales - [Detalles]

    En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.

  • Video

    Distancia en R - [Detalles]

    En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.

  • Sitio web

    COMAL: Introducción a Ciencias de la Computación - [Detalles]

    Comenzamos con aspectos históricos y la arquitectura básica de una computadora. Luego, nos centramos en aprender a programar con el paradigma orientado a objetos, usando Java como lenguaje ilustrativo. Explicamos el funcionamiento de compiladores e intérpretes. Hablamos del diseño y programación de algoritmos en un lenguaje imperativo, para lo que se estudian variables, estructuras de control, clases y otros temas avanzados. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.

  • Video

    Elementos del paradigma estructurado - [Detalles]

    Elementos del paradigma estructurado – Qué es la programación estructurada, características, elementos y antecedentes. Qué son las estructuras de control y cómo organizarlas.

  • Video

    Bases numéricas, Base 10 a base b y especificación de algoritmo - [Detalles]

    Base 10 a base b y especificación de algoritmo - Bases numéricas: conversión entre sistemas numéricos; de base 10 a base b. Cómo usar algoritmos para la conversión

  • Video

    Implementación con bits, Bits, la memoria en la computadora - [Detalles]

    Bits, la memoria en la computadora – Representación de los datos en la computadora, qué son los bits, qué representan y cómo se interpretan.

  • Video

    Estructuras de control, Condicionales en JAVA - [Detalles]

    Condicionales en JAVA - ¿Cuáles son las estructuras de control condicionales? sintaxis y cómo usarlas.

  • Video

    Estructuras de control, Ciclos en JAVA - [Detalles]

    Ciclos en Java – estructuras de control condicionales; ciclos. Sintaxis y cómo usarlas.

  • Video

    Arreglos, Arreglos 1D en JAVA - [Detalles]

    Arreglos 1D en JAVA - Arreglos primitivos y arreglos de objetos así como un ejemplo de implementación.

  • Video

    Arreglos, Búsqueda Binaria - [Detalles]

    Búsqueda Binaria - Ejercicio de la aplicación de los arreglos., Cómo se busca en los arreglos ordenados

  • Video

    Recursividad - [Detalles]

    Recursión - Definición de la recursividad y cómo se interpreta a nivel general

  • Video

    Recursividad, Recursión doble; Fibonacci. - [Detalles]

    Recursión doble, Fibonacci - Significado y cómo se ve la recursión doble. Ejemplo del código.

  • Video

    Recursividad, Recursión doble; Pascal. - [Detalles]

    Recursión doble, triángulo de Pascal - Significado y cómo se ve la recursión doble. Ejemplo de código con el triángulo de Pastel.

  • Video

    Recursividad, Recursión doble; torres de Hanoi. - [Detalles]

    Recursión doble, Torres de Hannoi - Significado y cómo se ve la recursión doble. Ejemplo de código con las torres de Hannoi.

  • Video

    Correctez, Gráficas de flujo - [Detalles]

    Gráficas de flujo - Qué son y cómo utilizarlo para analizar código de alto nivel

  • Video

    Correctez, Pruebas unitarias - [Detalles]

    Pruebas unitarias - Cómo realizar las pruebas unitarias a partir de gráficas de flujo.

  • Video

    Complejidad, notación asintótica - [Detalles]

    Notación asintótica - Definición y características de la notación asintótica así como categorías de orden.

  • Video

    Correctez en programas recursivos, Correctez de un algoritmo recursivo - [Detalles]

    Correctez de un algoritmo recursivo - Cómo realizar el análisis de correctez mediante inducción matemática siguiendo el principio del buen orden.

  • Video

    Excepciones - [Detalles]

    Excepciones - Definiciones preliminares. Cómo identificar los errores de ejecución y analizar el origen.

  • Video

    Excepciones, Tipos de errores - [Detalles]

    Tipos de errores - Cómo identificar y diferenciar los tipos de errores. Análisis por jerarquía.

  • Video

    Excepciones, Lanzar y cachar - [Detalles]

    Lanzar y cachar - Cómo usar esta técnica correctamente paso a paso.

  • Video

    Enumeraciones, Ejemplo de excepciones con Números - [Detalles]

    Ejemplo de excepciones con Números y explicación con más detalle así como recomendaciones generales.

  • Video

    Entrada y Salida estructurada, Definición de flujo - [Detalles]

    Definición de flujo - Explicación del concepto, definiciones generales y cómo apliciar filtros

  • Video

    Entrada y Salida estructurada, Protocolo en el uso de flujos - [Detalles]

    Protocolo en el uso de flujos - Cómo seguir dicho protocolo para el uso general de flujos.

  • Video

    Flujos en JAVA, Ejemplos de uso de flujos - [Detalles]

    Ejemplos de uso de flujos - Procesar la entrada con scanner e inputstream y cómo acceder a datos de la red.

  • Video

    Acceso aleatorio a archivos - [Detalles]

    Acceso aleatorio a archivos - Cómo usar filechannel para acceder a archivos.

  • Video

    Implementación con orientación a objetos, TDA lista - [Detalles]

    TDA lista - Cómo aplicar el concepto de Tipo de datos abstracto al concepto de lista y qué operaciones se pueden realizar con las listas.

  • Video

    Implementación con orientación a objetos, Agregar al final - [Detalles]

    Agregar al final - Cómo usar la clase listasimple para agregar objetos al final de las listas.

  • Video

    Implementación con orientación a objetos, Borrar e Equals == - [Detalles]

    Borrar e Equals == - Cómo programar un 'borrar' para hacerlo con el nodo adecuado.

  • Video

    Implementación con orientación a objetos, Lista versión iterativa - [Detalles]

    Lista versión iterativa - Cómo implementar una versión iterativa de lista y nodos para para ahorrar tiempo y espacio (eficiencia).

  • Video

    Funciones de orden superior, Aplicación para listar directorios con java nio - [Detalles]

    Aplicación para listar directorios con java nio - Cómo usar la API de JAVA-nio para listar directorios

  • Video

    Estados, autómatas y autómatas celulares; Estados - [Detalles]

    Estados - Conceptos generales útiles. Características y relevancia así como un ejemplo para comprenderlo mejor.

  • Video

    Estados, autómatas y autómatas celulares; Autómatas - [Detalles]

    Autómatas - Conceptos generales útiles. Características, clasificación y relevancia así como un ejemplo para comprenderlo mejor.

  • Video

    Estados, autómatas y autómatas celulares; Autómatas celulares - [Detalles]

    Autómatas celulares - Conceptos generales útiles. Características, clasificación y relevancia así como un ejemplo para comprenderlo mejor.

  • Video

    Programación orientada a objetos con Java, Clases y atributos - [Detalles]

    Clases y atributos - Cómo se define todo en JAVA; clases, atributos y métodos. Conceptos generales y sintaxis.

  • Video

    Programación orientada a objetos con Java, Métodos - [Detalles]

    Métodos - Cómo se define todo en JAVA; clases, atributos y métodos. Conceptos generales y sintaxis.

  • Video

    Programación orientada a objetos con Java, Tipos de métodos - [Detalles]

    Tipos de métodos - Cómo se define todo en JAVA; clases, atributos y métodos, tipos de métodos. Conceptos generales y sintaxis.

  • Video

    Tipos genéricos, Lo que no se puede (parte 1) - [Detalles]

    Lo que no se puede (parte 1) - Las 7 reglas que se deben seguir al usar genéricos. así como ejemplos

  • Video

    Tipos genéricos, Lo que no se puede (parte 3) - [Detalles]

    Lo que no se puede (parte 3) - Las 7 reglas que se deben seguir al usar genéricos, así como ejemplos.

  • Video

    Implementación de genéricos en Java, Si se quiere actualizar código anterior a los genéricos - [Detalles]

    Si se quiere actualizar código anterior a los genéricos - Cómo mantener la compatibilidad entre código viejo y código nuevo.

  • Video

    Hilos. Implementación, Crear hilos en JAVA - [Detalles]

    Crear hilos en JAVA - Clases de hilos y cómo crearlos

  • Video

    Hilos. Implementación, Interrupciones - [Detalles]

    Interrupciones - Cómo se comunican los hilos entre sí

  • Video

    Hilos. Sincronización, Vitalidad - [Detalles]

    Vitalidad - Cómo crear varios hilos y obtener orden de ejecución.

  • Video

    Enchufes, Introducción a los enchufes - [Detalles]

    Introducción a los enchufes - Definiciones, conceptos y función de los enchufes. Terminología importante así como los protocolos para enviar información.

  • Video

    Redes, URI - [Detalles]

    URI - Uniform resource identifier, identificador de recursos uniformes. Codificación especial para los caracteres especiales en las URLs. Cómo codificar y decodificar URLs

  • Video

    Enchufes, Chat protocolo - [Detalles]

    Chat protocolo - Cómo funciona el protocolo para conectarse al chat comenzando con el constructor.

  • Video

    Modelo Vista Controlador, El patrón Observador Listeners and Events - [Detalles]

    El patrón Observador Listeners and Events - también conocido como publicación-suscripción. Dónde usarlo y para qué

  • Video

    Interfaces gráficas de usuario en JAVA, Bibliotecas para IGUs en JAVA - [Detalles]

    Bibliotecas para IGUs en JAVA - Cómo programar interfaces gráficas de usuario en java; qué bibliotecas preestablecidas existen para esto.

  • Video

    Interfaces gráficas de usuario en JAVA, IGU con Swing - [Detalles]

    IGU con Swing - Cómo programar una una interfaz con JAVA swing.

  • Video

    Interfaces gráficas de usuario en JAVA, IGU con javaFX - [Detalles]

    IGU con javaFX - Cómo programar una interfaz con javaFX

  • Video

    Grupos de homotopía de un espacio H - [Detalles]

    En este video vemos que si X es un espacio H entonces la operación en pi_n es la misma que la operación en X visto como espacio H