El cubriente universal - parte 3 - [Detalles]
En este video construimos con todo detalle el cubriente universal de un espacio arco-conexo, localmente arco-conexo y semi localmente simplemente conexo.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Volvamos a checar un poco las definiciones de un conjunto conexo y compacto mediante algunos ejemplos.
En un espacio arco conexo no importa el punto base - [Detalles]
Probamos que si X es un espacio topológico arco conexo entonces pi_n(X,a) es isomorfo a pi_n(X,b) para cualesquiera a y b en X
Teorema de existencia y unicidad. Dependencia continua de la condición inicial - [Detalles]
Concluimos el estudio al Teorema de existencia y unicidad analizando la dependencia continua de la solución al problema de condición inicial respecto a los valores de la condición inicial
Continuidad de funciones de números reales - [Detalles]
En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.
Unicidad del levantamiento de funciones - [Detalles]
En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).
El cubriente universal - parte 1 - [Detalles]
En este video definimos una condición necesaria para que un espacio tenga cubriente universal: la noción de ser semi-localmente simplemente conexo.
Homología singular - grupo fundamental vs primer grupo de homología: parte 1 - [Detalles]
En este video demostramos algunos lemas preliminares que usaremos para demostrar que el abelianizado del grupo fundamental de X es isomorfo al primer grupo de homología de X, siempre que X sea arco-conexo.
Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]
En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.
Ecuaciones de Bessel, Chebyshev e Hipergeométrica - [Detalles]
Se continua con la resolución de tres ecuaciones diferenciales especiales más
Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos - [Detalles]
Se continua con el segundo caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema son complejos
La homotopía de caminos rel 0,1 es una relación de equivalencia - [Detalles]
En este video se continua preparando el camino para definir el grupo fundamental de un espacio topológico. El objetivo del video es mostrar que la relación de homotopía de caminos rel 0,1 es una relación de equivalencia.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Producto directo de grupos - parte 2 - [Detalles]
Se continúa el estudio del producto directo, se enuncia y demuestra el teorema de factorización.
Grupos simétricos (2) - [Detalles]
Continúa el estudio de la estructura cíclica de permutaciones, se demuestra que los subgrupos normales de Sn son precisamente aquellos que "cerrados" bajo estructura cíclica.
Derivación y continuidad - [Detalles]
En este video se demuestra que toda función derivable en continua.
Diapositivas sobre ejemplos de combinatoria y propiedades del cálculo combinatorio - [Detalles]
Hacemos un ejercicio básico sobre el cálculo combinatorio que son ejercicios sobre un mazo de póker y realizamos unas cálculos con etse material, asimismo demostramos 2 propiedades sobre números combinatorios y se dejan 2 ejercicios para el lector.
Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]
Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.
Bases numéricas, Operadores sobre bits - [Detalles]
Operadores sobre bits – Operadores de JAVA que actúan sobre bits.
Demostración directa y primeros ejemplos - [Detalles]
Explicamos sobre el método de demostración conocido como "Demostración directa". Demostramos un teorema sobre los números pares e impares.
Damos la definición formal de un numero primo. Un entero "p>1" se dice que es primo si sus únicos divisores positivos son 1 y el mismo (1 y "p"). Definimos que es un numero compuesto y hablamos sobre algunas curiosidades sobre los números primos.
Soluciones de una ecuación cuadrática - [Detalles]
Hablamos sobre las posibles soluciones de una ecuación cuadrática (damos un breve recordatorio sobre la formula general o más popularmente conocida como "chicharronera"). Vemos gráficamente cuando una ecuación cuadrática tiene dos, una o ninguna solución real. Definimos el discriminante y haciendo uso de el vemos cuando la ecuación cuadrática tiene una o dos soluciones reales, o cuando su solución es compleja.
Teorema sobre polinomios y números complejos - [Detalles]
Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio.
Dispositivas de conectores: conjunción y disyunción - [Detalles]
Definimos la conjunción y la disyunción sobre una proposición, también mostramos que este tipo de proposiciones están formadas por 2 proposiciones (así formando una gracias a estos conectores) se muestra sobre como este tipo de proposiciones son verdaderas o falsas.
Diapositivas sobre familias de conjuntos - [Detalles]
Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.
Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]
Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.
Diapositivas sobre el principio de inducción - [Detalles]
Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.
Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]
Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.
Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]
En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.
Diapositivas sobre determinantes - [Detalles]
Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.
Diapositivas sobre espacios vectoriales - [Detalles]
Definimos lo que es un espacio vectorial y los elementos que habitan en él (vectores), mostramos que para demostrar por definición que un espacio es vectorial debe de cumplir las 10 propiedades de éste. Se proporcionan ejemplos de espacios vectoriales y las demostraciones sobre estas 10 propiedades de la definición; se proporciona una aplicación de espacios vectoriales que es ver a la fuerza como una magnitud de dirección y magnitud, es decir, como un vector.
Cuestionario sobre matrices - [Detalles]
Ponemos en práctica los primeros conocimientos de lo que es una matriz y sobre este nuevo espacio a estudiar, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ejemplos bases de espacios vectoriales - [Detalles]
En estas diapositivas damos herramientas extras (lemas) sobre como identificar si un conjunto es base de un espacio vectorial o no.
Cuestionario sobre ejemplos bases de espacios vectoriales - [Detalles]
Ponemos en práctica los conocimientos adquiridos respecto a bases y lo que en ello respecta, se pone a prueba la comprensión de la teoría y otro poco la intuición sobre como demostrar que un conjunto cumple con ser base, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre producto triple de vectores - [Detalles]
Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]
Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre planos y distancias en el espacio - [Detalles]
Ponemos en práctica el cálculo de estas dos nuevas métricas en R^3 y también practicamos la identificación de los semiespacios divididos por un plano sobre el mismo espacio, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre lugar geométricos de las cónicas - [Detalles]
Formalizamos el concepto de las cónicas definiédolas como lugares geométricos, por lo cual se surge una definición respecto a los puntos que generan a nuestras figuras cónicas siendo una definición más formas y que más adelante nos ayudará a generar las ecuacioens canónicas de cada una de las cónicas, también hablamos sobre los elementos más importante de cada una de ellas.
Cuestionario sobre las ecuaciones canónicas de las cónicas - [Detalles]
Ponemos en práctica las ecuaciones canónicas para cada una de nuestra cónicas mediante ejercicios muy simples que tratan sobre identificar dada la ecuación de qué tipo de cónica se trata o se trataría, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre parametrización de curvas - [Detalles]
Hacemos un estudio sobre la parametrización de curvas y como es posible hacer esta transformación, este tema es acompañado de varios ejemplos.
Diapositivas sobre parametrización de cónicas - [Detalles]
Ya teniendo nociones sobre la parametrización de curvas ahora nos interesará parametrizar estas figuras que estamos estudiando, estas parametrizaciones solo son posibles con ayuda de nuestro módulo 2 "trigonometría", con ayuda en estas identidades y razones es posible hacer las parametrización de las cónicas.
Coordenadas Polares: El origen, radio negativo y ángulo negativo - [Detalles]
Damos continuación a la explicación sobre las coordenadas polares, hablamos sobre algunas observaciones como radio o ángulo negativo y como interpretarlo.
¿Un punto con muchas coordenadas? - [Detalles]
Hablamos sobre algunas peculiaridades de las coordenadas polares, en concreto, sobre que un mismo punto puede tener varias coordenadas polares diferentes, pero todas representan al mismo punto.
Proyecto: Mecánica cuántica desde álgebra lineal - [Detalles]
En este proyecto de aplicación extendemos lo aprendido sobre producto interior hacia espacios vectoriales sobre los complejos. Hacemos esto para hablar de la notación bra-ket en física y para introducir ideas básicas de mecánica cuántica.
Formas sesquilineales - [Detalles]
En esta entrada veremos los conceptos de formas sesquilineales y formas hermitianas, ambos conceptos extienden (en algunos sentidos) lo que hemos visto sobre formas bilineales a espacios vectoriales sobre los complejos. Los resultados son casi análogos a los del caso real. Sin embargo, hay algunas diferencias importantes en las que haremos énfasis.
Breviario de Lógica y Conjuntos - [Detalles]
En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.
Problemas de producto de matrices y matrices invertibles - [Detalles]
En esta entrada de blog hablamos resolvemos problermas de cómo multiplicar matrices. También hacemos algunos problemas sobre matrices invertibles para aprovechar la teoría desarrollada anteriormente.
¿Qué es una demostración? - [Detalles]
Platicamos sobre las demostraciones, en qué consisten y que herramientas nos pueden ayudar para hacer una demostración. Las matemáticas universales y para siempre.
Como demostrar una implicación. Demostración directa - [Detalles]
Platicamos las características de la demostración directa y damos un ejemplo con una proposición sobre los números enteros múltiplos de 6.
Familias indexadas de conjuntos - [Detalles]
Continuamos con la discusión sobre familias de conjuntos, pero ahora añadimos el concepto de índice, el cual sirve para indexar una familia de conjuntos.
Ejemplo de partición, clases y relación de equivalencia - [Detalles]
Continuamos con la discusión sobre las relaciones de equivalencia, damos un ejemplo y demostramos que es una relación de equivalencia, usamos el ejemplo para ilustrar sus clases de equivalencia y la partición.
Ejemplo de clase de equivalencia y partición - [Detalles]
Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.
Funciones numéricas - [Detalles]
Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.
Funciones iguales - [Detalles]
Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas
Funciones biyectivas - [Detalles]
Damos un repaso a la definición de funciones biyectivas, dando ejemplos con funciones numéricas más complicadas para hablar sobre la biyectividad
Cardinalidad - conjuntos infinitos - los naturales - [Detalles]
Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.
Cardinalidad - los racionales - [Detalles]
Hablamos sobre la cardinalidad del conjunto de los racionales, y demostramos que este conjunto tiene la misma cardinalidad que los naturales.
Cardinalidad - los números reales - [Detalles]
Hablamos sobre la cardinalidad del conjunto de los reales, y demostramos que este conjunto NO tiene la misma cardinalidad que los naturales.
Inducción matemática (2) - [Detalles]
Usamos el Principio de Inducción Matemática (PIM) para demostrar varios ejemplos de propiedades del tipo "P(n)". También hablamos sobre el Principio Generalizado de Inducción Matemática (PGIM) y vemos un ejemplo para mostrar su funcionamiento.
Hablamos un poco sobre la notación que se suele emplear para las sumas o series, así como de a que se refiere la sumatoria.
Propiedades del combinatorio - [Detalles]
Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.
El anillo de los números enteros - [Detalles]
Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior.
Divisibilidad: propiedades básicas - [Detalles]
Demostramos seis propiedades básicas sobre la divisibilidad.
Propiedades del máximo común divisor - [Detalles]
Demostramos algunas propiedades sobre el máximo común divisor, vemos que puede sacar enteros, y varias propiedades más, las cuales demostramos haciendo uso del teorema de combinación lineal anteriormente visto.
Como calcular el máximo común divisor de dos enteros - [Detalles]
Retomamos el teorema anterior sobre el máximo común divisor y el algoritmo de la división. Haciendo uso de estos dos resultados damos un método para calcular el máximo común divisor de dos enteros.
El mínimo común múltiplo - [Detalles]
Definimos el mínimo común múltiplo de "n" enteros. Primero damos la definición de común múltiplo y el más pequeño es aquel que tomamos como mínimo común múltiplo. Definimos la notación para expresar el mínimo común múltiplo y demostración un teorema sobre el mismo.
El teorema fundamental de la aritmética - [Detalles]
Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única!
Divisibilidad y el teorema fundamental de la aritmética - [Detalles]
Usando el teorema fundamental de la aritmética vemos algunas propiedades sobre los exponentes de la descomposición en primos de un divisor y su dividendo. Esto también nos da otro método para obtener el máximo común divisor y el mínimo común múltiplo en términos de la factorización de primos.
Propiedades básicas de congruencias - [Detalles]
Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".
Más propiedades de congruencias - [Detalles]
Continuamos viendo propiedades sobre las congruencias. Vemos que si dos enteros expresados productos: "a*x", "a*y", son congruentes modulo "m", es equivalente a que los enteros "x", "y" sean congruentes modulo "m/MCD(a,m)", dándonos una relación entre el módulo y el máximo común divisor. Igualmente vemos algunas propiedades más que surgen de este teorema.
Congruencias como relación de equivalencia - [Detalles]
En este video vemos que la relación de congruencia es, justo como podríamos sospechar, una relación de equivalencia en los enteros. Mostramos que la congruencia cumple las tres propiedades para ser una relación de equivalencia: Reflexividad, Simetría, Transitividad. Hablamos sobre la partición que genera en los enteros y cuáles son las clases de equivalencia para cada entero.
Propiedades del módulo de un número complejo - [Detalles]
Damos y demostramos varias propiedades sobre el módulo de los complejos. Veremos que el módulo de un complejo es siempre positivo o igual a cero, y que es cero si y solo si el complejo es cero. También mostramos algunas desigualdades importantes.
Conjugado de un número complejo - [Detalles]
Definimos el conjugado de un numero complejo, si un numero complejo es "a+b*i", su conjugado es "a-b*i". También vemos algunas propiedades relevantes sobre el conjugado, y su relación con el módulo de un numero complejo.
Operaciones con polinomios - [Detalles]
Hablamos primero sobre los monomios, los cuales consisten en un término, conformado de un coeficiente, una variable y un exponente. Después vemos la definición de polinomio con una variable, la cual es una expresión algebraica conformada varios monomios.
El grado de un polinomio - [Detalles]
Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo.
Divisibilidad de polinomios - [Detalles]
Damos la definición del grado de un polinomio, el cual es el máximo exponente cuyo coeficiente es distinto de cero. Damos algunos ejemplos de polinomios y obtenemos su grado. También vemos dos propiedades sobre el grado de un polinomio.
División de polinomios - [Detalles]
Definimos la división entre polinomios, dados dos polinomios "a(x), b(x)", decimos que "b(x)" divide a "a(x)" si y solo si "a(x)=b(x)*q(x)" para algún polinomio "q(x)". Vemos algunos ejemplos y también propiedades sobre la divisibilidad.
Teorema del Residuo - [Detalles]
Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios.
Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]
Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo.
Factorización de polinomios, polinomios reducibles y polinomios irreducibles. definición y ejemplos - [Detalles]
Hablamos sobre la factorización de polinomios, mostramos que los binomios lineales (de la forma "x-a") son polinomios irreducibles y vemos varios ejemplos de polinomios reducibles e irreducibles.
Criterio de Eisenstein para verificar que un Polinomio es irreducible - [Detalles]
Presentamos el criterio de Eisenstein, el cual es un teorema que nos dice: Dado un polinomio con coeficientes en los enteros, si existe un numero primo que cumpla cierta propiedad (la cual detallamos en el video), entonces el polinomio es irreducible. Usando este criterio podemos saber si un polinomio es reducible sobre los enteros.
La línea de Simson y la circunferencia de los nueve puntos - [Detalles]
Definimos la proyección de un punto sobre una recta, demostramos el teorema de la línea de Simson y su recíproco y el teorema de la circunferencia de los nueve puntos
Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]
None
Teoremas sobre el límite de funciones - [Detalles]
Revisión de teoremas del límite de una función
Área entre curvas - [Detalles]
Enseñanza sobre el cálculo del area delimitada entre dos funciones.
Longitud de una curva - [Detalles]
Enseñanza sobre el cálculo de la longitud de arco de una función en un intervalo.
Teorema de Pappus-Guldinus - [Detalles]
Enseñanza del teorema de Pappus sobre el centroide, área y volumen de un objeto.
Valores y vectores propios para resolver sistemas lineales - [Detalles]
Se desarrolla la teoría preliminar hacía el método de valores y vectores propios para resolver sistemas lineales homogéneos, así mismo se hace un breve repaso sobre éstos conceptos desde una perspectiva del álgebra lineal
Potencia de un punto - [Detalles]
Presentamos los resultados más básicos sobre potencia de un punto respecto a una circunferencia y mostramos algunos ejemplos.
Teorema de Menelao - [Detalles]
Demostramos el teorema de Menelao, su forma trigonométrica y mostramos su utilidad estableciendo varios resultados sobre colinealidad.
Demostramos el teorema de Ceva y su forma trigonométrica, y derivamos otros resultados sobre concurrencia de rectas.
División armónica - [Detalles]
Veremos algunos resultados básicos sobre división armónica, finalizamos mostrando el teorema de Feuerbach apoyándonos en la división armónica
Veremos que las simedianas de un triángulo son concurrentes y algunos resultados sobre este punto de concurrencia, el punto simediano.
Rectas isogonales - [Detalles]
Estudiamos algunos resultados sobre rectas isogonales, puntos conjugados isogonales y triángulos pedales.
Polinomios de Taylor (Parte 1) - [Detalles]
Estudio de los polinomios de Taylor: su definición formal y un teorema sobre ser una buena aproximación a una función dada.
Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]
Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales
Sistemas autónomos, puntos de equilibrio y su estabilidad - [Detalles]
Se presentan formalmente los conceptos básicos sobre la teoría cualitativa de los sistemas de ecuaciones diferenciales
El plano Traza-Determinante - [Detalles]
Toda la teoría desarrollada sobre los sistemas lineales de dos ecuaciones diferenciales de primer orden se resume en el conocido plano Traza-Determinante
Diapositivas sobre proposiciones - [Detalles]
Definimos lo que es una proposición y la negación de una proposición acompañado de varios ejemplos para fijas los conceptos básicos de las diapositivas presentadas.
Diapositivas sobre los tipos de enunciados en matemáticas - [Detalles]
Mostramos la diferencia entre los diferentes enunciados más recurridos en matemáticas, planteamos algunos ejemplos y la relación que entablan unos tipos de enunciados con otros.
Dispositivas sobre las propiedades de la negación, conjunción y disyunción - [Detalles]
Tomando las definicones pasadas de conjunción y disyunción ahora enunciamos una serie de propiedades que tienen, estas propiedades son demostradas desde el punto de vista de equivalencias de formas proposicionales.
Diapositivas sobre proposiciones condicionales - [Detalles]
Enunciamos otro tipo de proposiciones en matemáticas que son las condicionales o implicaciones que nos dan la relación de causa-efecto dentro del enunciaso, el material es acompañado de una lista de ejemplos.
Diapositivas sobre proposiciones bicondicionales - [Detalles]
Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.
Diapositivas sobre traducciones entre proposiciones - [Detalles]
Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.
Diapositivas sobre reglas para escribir demostraciones - [Detalles]
Mostramos la importancia de escribir demostraciones y entablamos las cuatro reglas usuales para escribir una demostración coherente y lógica.
Diapositivas sobre cómo escribir una demostración directa - [Detalles]
Explicamos las características de hacer una demostración directa de p implica q acompañada de una serie de ejemplos báscios respecto a este tipo de demostraciones.
Diapositivas sobre cómo escribir una demostración por casos - [Detalles]
Mostramos la importancia y los motivos para poder ocupar este tipo de demostraciones por casos.
Diapositivas sobre demostraciones por contrapositiva - [Detalles]
Mostramos la importancia para hacer demostración por contrapositia, lo que se requiere para hacer válida este tipo de demostración matemática, la explicación va acompañada de un ejemplo.
Diapositivas sobre demostraciones por contradicción - [Detalles]
Mostramos la importancia para hacer demostración por contradicción, lo que se requiere para hacer válida este tipo de demostración matemática, explicando la lógica acompañada. La explicación va acompañada de un par de ejemplos.
Diapositivas sobre demostraciones de bicondicionales - [Detalles]
Mostramos las opciones por las cuales podemos demostrar una proposición bicondicional y la explicación lógica del por qué es posible hacerlo, la explicación se acompaña de 2 ejemplos cada uno respecto a las maneras de demostrar una proposición bicondicional.
Diapositivas sobre demostraciones con cuantificadores - [Detalles]
Explicamos como se demuestran proposiciones matemáticas que cuentan con cuantificadores, cómo demostrar que son verdaderos o que son falsos, las diapositivas van acompañadas de ejemplos.
Guía de estudio sobre lógica proposicional - [Detalles]
Se deja una lista de ejercicios respecto a los temas de lógica proposicional y demostraciones para la práctica de los alumnos, refuerzen su estudio, conocimiento y habilidad en estos temas.
Ejemplos sobre lógica proposicional - [Detalles]
Se deja una lista de ejemplos respecto a los temas de lógica proposicional con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.
Diapositivas sobre conjuntos - [Detalles]
Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.
Diapositivas sobre operaciones de conjuntos - [Detalles]
Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.
Diapositivas sobre demostraciones de conjuntos - [Detalles]
Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.
Diapositivas sobre producto cartesiano - [Detalles]
Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.
Diapositivas sobre conjuntos potencia - [Detalles]
Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.
Diapositivas sobre relaciones de conjuntos - [Detalles]
Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,
Diapostivas sobre relaciones de equivalencia - [Detalles]
Partimos de una definición de las diapositivas anteriores y de las definiicones de relaciones reflexivas, simétricas y transitivas, la relación que cumpla con estas 3 se llama una relación de equivalencia y de esta nueva definición se desprende las definiciones de clase de equivalencia y particiones, estas ideas se ilustran con más ejemplos.
Guía de estudio sobre conjuntos y relaciones - [Detalles]
Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre conjuntos - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Ejemplos sobre conjuntos y relaciones - [Detalles]
Se deja una lista de ejemplos respecto a los temas de conjuntos y relaciones con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.
Diapositivas sobre funciones - [Detalles]
Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.
Diapositivas sobre imagen y preimagen de una función - [Detalles]
Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.
Diapositivas sobre composición de funciones y función inversa - [Detalles]
Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.
Diapositivas sobre funciones invertibles y biyectivas - [Detalles]
En este tema se demuestra una de las propiedades más importantes de todo el tema de funciones que es que una función es inversa de otra si la composición por ambos lados da la función identidad y segundo que si está función es biyectiva su inversa cumple que la composición resulta la identidad.
Diapositivas sobre cardinalidad y conjuntos - [Detalles]
Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.
Diapositivas sobre conjuntos infinitos - [Detalles]
Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.
Diapositivas sobre cardinalidad y los racionales - [Detalles]
En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.
Guía de estudio sobre funciones y cardinalidad - [Detalles]
Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre funciones - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a funciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Ejemplos sobre composición de funciones - [Detalles]
El ejercicio pide exhibir 2 funciones, la primera pide que si una es inyectiva y otra no lo es; la segunda pide que una sea inyectiva y otra sea suprayectiva y la composición de estas no sea ni inyectiva ni suprayectiva.
Diapositivas de inducción matemática (videos alternativos) - [Detalles]
Damos continuidad al tema pasado, definimos lo que es un subconjunto inductivo, enunciamos el principio de inducción matemática y el principio de inducción generalizado y se presentan más ejemplos sobre inducción matemática.
Diapositivas sobre ejemplos de inducción - [Detalles]
Demostramos de 2 maneras distintas el teorema de la suma de Gauss y mostramos la manera compacta de externar una suma.
Diapositivas sobre combinatoria - [Detalles]
Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.
Diapositivas sobre el teorema del binomio - [Detalles]
Enunciamos el teorema del binomio de Newton y el triángulo de Pascal, como estas 2 temas involucran combinatoria, se demuestra el teorema del binomio y se muestran ejemplos con el triángulo de Pascal y su relación con el número combinatorio. Finalmente se dejan una lista de ejercicios para practicar estos temas.
Guía de estudio sobre inducción matemática y cálculo combinatorio - [Detalles]
Se deja una lista de ejercicios respecto a los temas combinatia e inducción matemática. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre inducción matemática y cálculo combinatorio - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a inducción matemática y cálculo combinatorio. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Diapositivas sobre matrices y operaciones - [Detalles]
Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.
Guía de estudio sobre sistemas de ecuaciones lineales, matrices y determinantes - [Detalles]
Se deja una lista de ejercicios respecto a los temas de matrices y solución a sistemas de ecuaciones lineales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre sistemas de ecuaciones lineales y espacios vectoriales - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a matrices (operaciones y determinantes) y para solucionar sistemas de ecuaciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Guía de estudio sobre espacios vectoriales - [Detalles]
Se deja una lista de ejercicios respecto a los tema de espacios vectoriales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario de gráfica de funciones - [Detalles]
Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre el plano y espacio cartesiano - [Detalles]
Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.
Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Resolución de guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Diapositivas sobre razones trigonométricas - [Detalles]
Damos la introducción al tema de trigonometría como las razones trigonométricas, la medición en grados o radianes, funciones trigonométricas de ángulos notables, resolución de triángulos basándonos en las razones trigonométricas y leyes de senos cosenos.
Cuestionario sobre razones trigonométricas - [Detalles]
Ponemos en práctica el tema de razones trigonométricas de un triángulo, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre radianes - [Detalles]
Ponemos en práctica el tema de radianes y su relación con los ángulos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre resolución de triángulos rectos - [Detalles]
Ponemos en práctica el tema resolución de un triángulo recto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ángulos notables - [Detalles]
Ponemos en práctica el tema de ángulos notables y la equivalencia de éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ley de senos, ley de cosenos y resolución de triángulos - [Detalles]
Ponemos en práctica el tema de las leyes de los senos y cosenos pra ser aplicadas en la resolución de triángulos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre coordenadas polares - [Detalles]
Mostramos lo que es el plano polar, para qué sirve este plano, cómo se utiliza, cuáles son las entradas de sus coordenadas, definimos lo que es un radián y cómo se utiliza este para utilizar el plano polar. Dejamos algunos ejemplos de funciones graficadas en este nuevo plano.
Cuestionario de coordenadas polares - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares y como se grafica sobre este nuevo plano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar
Actividad 2 Geogebra coordenadas polares - [Detalles]
En esta nueva actividad de geogebra interactiva seguimos planteando como se mueve sobre el plano polar una coordenada pero ahora también lo que se está implementando es el cálculo del punto medio, la intersección con los ejes polares y más propiedades.
Cuestionario sobre funciones en el plano polar - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre coordenadas en el espacio - [Detalles]
Estudiamos el espacio pero con tres diferentes tipos de sistemas coordenados que son: las rectangulares (el espacio euclideano), esféricas y cilíndricas; estudiamos cada entrada de la terna ordenada, y que ocurre cuando cada una de ellas se deja libre. También estudiamos que es posible pasar de un espacio a otro con cambios de variables.
Cuestionario sobre coordenadas en el espacio - [Detalles]
Ponemos en práctica el tema de diferentes tipos de espacios; rectangulares, cilíndrico y esférico y como pasar de uno a otro, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre trigonometría y más sistemas de coordenadas - [Detalles]
Ponemos en práctica el módulo de trigonometría para una mejor preparación al presentar un examen parcial de etse tema. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de autoevaluación sobre trigonometría y más sistemas de coordenadas - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Lista de ejercicios sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Resolución de guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Diapositivas sobre espacios vectoriales - [Detalles]
Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.
Cuestionario sobre espacios vectoriales - [Detalles]
Ponemos en práctica el primer acercamiento que tenemos con lo que es un espacio vectorial, nos centramos en la comprensión de la definición y de las características que cumplen estos espacios, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre matrices - [Detalles]
Definimos lo que es una matriz y definimos el espacio de matrices de "n" renglones por "m" columnas y algunas matrices cuadradas especiales de este espacio.
Diapositivas sobre operaciones matriciales - [Detalles]
Continuamos construyendo la definición de una matriz pero ahora definimos sus operaciones básicas somo la suma y multiplicación de dos matrices también su multiplicación por escalar, también hablamos que una matriz de nx1 o también llamado vector columna es un vector con n entradas que se ocupa para hablar de un elemento de Rn.
Cuestionario sobre operaciones matriciales - [Detalles]
Ponemos en práctica los nuevos conocimientos que tenemos de las matrces y sus operaciones que se realizan entre ellas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre subespacios vectoriales - [Detalles]
Damos una nueva definición que son los subespacios vectoriales que es un subconjunto de un espacio vectorial que heredan las propiedades de este último dando así un nuevo espacio vectorial, mostramos que por ser subespacios no es necesario corroborar todas las propiedades pero mostramos cuáles son las que sí se deben corroborar. Estas diapositivas están acompañadas de bastos ejemplos.
Cuestionario sobre subespacios vectoriales - [Detalles]
Ponemos en práctica el tema de lo que son los subespacios vectoriales, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre dependencia e independencia lineal - [Detalles]
Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.
Cuestionario sobre dependencia e independencia lineal - [Detalles]
Ponemos en práctica las definiciones que se revisaron respecto a la independencia lineal son una serie de afirmaciones las cuáles nos muestran si la definición fue comprendida o no, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre bases de espacios vectoriales - [Detalles]
A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.
Diapositivas sobre producto punto - [Detalles]
Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.
Cuestionario sobre producto punto - [Detalles]
Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre determinantes (*) - [Detalles]
*No existe*
Cuestionario sobre determinantes - [Detalles]
Ponemos en práctica la resolución de problemas que involucren el cálculo de determinantes de una matriz y especialmente en el método de Sarrus, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre producto cruz - [Detalles]
Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.
Cuestionario sobre producto cruz - [Detalles]
Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre producto triple de vectores - [Detalles]
Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.
Ejercicios sobre espacios vectoriales - [Detalles]
Resolvemos un examen que contiene los temas ya vistos para espacios vectoriales.
Guía de estudio sobre espacios vectoriales - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre espacios vectoriales - [Detalles]
Ponemos en práctica todo lo revisado durante el estudio a los espacios vectoriales tales como ejemplos, subespacios, bases y algunas operaciones, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ecuaciones de la recta en el plano - [Detalles]
Damos inicio a un nuevo tema que será de utilidad para toda la carrera que es el tema de ecuaciones de rectas como la paramétrica, la general, la de punto pendiente, entre otras.
Diapositivas sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]
Dando continuidad al tema anterior de las rectas pero ahora hacemos ahora la generalización de este tipo de rectas en más dimensiones (R^n). Vemos la recta paramétrica y como encontrar esta recta si conocemos dos puntos pertenecientes a ella. Las diapositivas se encuentran acompañadas de ejemplos.
Cuestionario sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]
Ponemos en práctica esta extensión respecto a las ecuaciones de las rectas en R^n, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre semiplanos - [Detalles]
Definimos lo que es el segmento de una recta, como este se puede divividir en partes iguales; también definimos lo que son los semiplanos y cómo esta definición tiene que ver con rectas.
Cuestionario sobre semiplanos - [Detalles]
Ponemos en práctica nuestro nuevo tema de semiplanos con dos ejercicios muy sencillos en donde solo hay que clasificar correctamente los semiplanos separados por una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]
Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.
Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]
Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]
Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).
Cuestionario sobre ecuaciones de planos en el espacio - [Detalles]
Ponemos en práctica el tema de los planos en el espacio euclídeo y las ecuaciones de estos tanto de manera paramétrica, cuando conocemos 3 pu tos que forman parte del plano. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre planos y distancias en el espacio - [Detalles]
Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.
Guía de estudio sobre rectas y planos - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este tercer módulo de estudios que es todo lo relacionado a rectas, planos, perpendicularidad, vector normal, y más. Hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre rectas y planos - [Detalles]
Ponemos en práctica todo el conocimiento nuevo que tenemos respecto a los temas de rectas y planos así como sus interacciones entre éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre cónicas - [Detalles]
Damos inicio a un nuevo tema que es el tema de las cónicas, estas surgen a partir de cortar un cono en diferentes ángulos, las cónicas son: circunferencia, parábola, elipse e hipérbola, damos los elementos que distinguen una de la otra tanto en su forma geométrica pero también con su ecuación general es posible diferenciarlas.
Cuestionario sobre cónicas - [Detalles]
Ponemos en práctica las primeras definiciones que tenemos de cónicas y evaluar si el alumno aprendió a diferenciarlas viendo su ecuación general, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre lugar geométricos de las cónicas - [Detalles]
Ponemos en práctica las definiciones de cada una de las cónicas como lugares geométricos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]
Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.
Diapositivas sobre traslación de ejes - [Detalles]
Continuando con el tema de canónicas y ya sabiendo diferenciar cada una de éstas ahora aumentamos un poco la dificultad haciendo una traslación de los ejes, es decir, con cónicas fuera del origen ya teniendo éstas fuera del origen veremos que es muy sencillo calcular sus elementos báscios como el centro, focos y demás.
Cuestionario sobre traslación de ejes - [Detalles]
Ponemos en práctica el tema de las cónicas fuera del origen, el alumno a estas alturas debe ser capaz de identificar la cónica que se está presentando, sus elementos y su construcción dados sus elementos. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre rotación de ejes - [Detalles]
Dando continuidad al tema de cónicas y su traslación de ejes, ahora es natural imaginar la rotación de estos ejes y cómo esta rotación repercute en nuestras figuras cónicas y en sus elementos básicos.
Cuestionario sobre rotación de ejes - [Detalles]
Ponemos en práctica las rotaciones que se les pueden hacer a las figuras cónicas y como esta rotación repercute en su ecuación, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre simetría de las cónicas - [Detalles]
Definimos lo que es una simetría y los tipos que hay de éstas, mostramos que las simetrías están presentes en las figuras que estamos estudiando, teniendo ya sea solo uno o ambas simetrías (axial y central).
Cuestionario sobre simetría de las cónicas - [Detalles]
Ponemos en práctica las simetrías que se pueden presentar en las figuras cónicas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre discriminante y excentricidad - [Detalles]
Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.
Cuestionario sobre discriminante y excentricidad - [Detalles]
Ponemos en práctica estos dos criterios que nos ayudan a saber cuál es la cónica de la cuál se está tratando ocupando el criterio de discriminante o de excentricidad, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre parametrización de curvas - [Detalles]
Ponemos en práctica la parametrización de curvas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre parametrización de cónicas - [Detalles]
Ponemos en práctica las parametrizaciones logradas para las cónicas, en el cuestionario ocupamos que el alumno realice las parametrizaciones (y todavía) que sepa identificar las cónicas pero ahora dada la parametrización, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre cónicas - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este cuarto y último módulo de estudios que es todo lo relacionado a cónicas; ecuación general, ecuación canónica, excentricidad, traslación y rotación de ejes, simetría y parametrización. Hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre cónicas - [Detalles]
Ponemos en práctica todo el conocimiento nuevo que adquirimos en cuanto a todo lo que involucra el gran bloque de las figuras cónicas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta.
Razones trigonométricas - [Detalles]
Hablamos sobre las razones trigonométricas: coseno, seno, tangente, secante, cosecante y cotangente, las cuales están relacionadas con un triángulo rectángulo, escritas en termino de sus catetos e hipotenusa.
Funciones trigonométricas - [Detalles]
Explicamos las funciones trigonométricas: Seno, Coseno y Tangente. Vemos una representación gráfica sobre el circulo unitario de dichas funciones.
Ángulos notables: ¿cuáles son? y ¿por qué son chidos? - [Detalles]
En este video hablamos sobre algunos ángulos que son bastante relevantes, explicamos como están relacionados ciertos triángulos, y por qué esto los hace importantes.
Razones Trigonométricas de los ángulos notables - [Detalles]
En este video hablamos sobre el valor de las razones trigonométricas de los ángulos notables, anteriormente vistos. explicamos como se relación entre si las razones trigonométricas en estos ángulos.
Lugares Geométricos en el plano polar - [Detalles]
Damos una explicación sobre los lugares geométricos en el plano polar. Vemos que las condiciones para representar algunos lugares geométricos son diferentes en el plano polar.
Sistemas de coordenadas en el espacio. Cartesianas, coordenadas cilíndricas y coordenadas esféricas - [Detalles]
Damos una pequeña presentación de los tres principales sistemas de coordenadas tridimensionales: Cartesianas, esféricas y cilíndricas. Igualmente hablamos sobre las ventajas de cada sistema de coordenadas.
Coordenadas cilíndricas - [Detalles]
Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas.
Suma y resta de matrices - [Detalles]
Damos la definición y explicación de la suma de matrices (también sobre la resta). Hacemos algunos ejemplos ilustrativos y vemos en qué casos no es posible restar o sumar matrices.
Lugar Geométrico De Las Cónicas - [Detalles]
Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.
Orden en los números enteros - [Detalles]
Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales.
Homología singular - campos vectoriales en la esfera - el teorema de la bola peluda - [Detalles]
En este video demostramos que las únicas esferas que tienen campos vectoriales que no se hacen cero en ninguna parte son las de dimensión impar. Esto implica el teorema de la bola peluda, es decir, que todo campo vectorial sobre la esfera tienen un cero.
Homología celular - consecuencias de la definición - [Detalles]
En este video vemos algunas consecuencias de la definición de la homología celular. Estas consecuencias nos sirven para ver algunas ventajas que tiene la homología celular sobre la singular.
Proyecto: El sorteo del auto y matrices de transición - [Detalles]
En este proyecto usamos ideas básicas de álgebra lineal para introducir el concepto de procesos estocásticos discretos usando un problema sobre el sorteo de un auto.
Mini-cuestionario: Más sobre formas matriciales de transformaciones lineales - [Detalles]
Otro mini-cuestionario para verificar el entendimiento qué es y cómo se obtiene la forma matricial de una transformación lineal.
Esbozo de construcción de racionales y reales - [Detalles]
Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.
Problemas de conjugación compleja - [Detalles]
Resolvemos ejercicios básicos sobre el conjugado de los complejos.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Problemas de operaciones en el anillo de polinomios - [Detalles]
Resolvemos problemas sobre las operaciones básicas en el anillo de los polinomios con coeficientes reales.
Irreducibilidad en R[x] - [Detalles]
Enunciamos el teorema fundamental del álgebra y el teorema de la factorización única de polinomios sobre los complejos asimismo vemos las raíces complejas de un polinomio y su la irreducibilidad de un polinomio real.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
Raíces de polinomios de grados 3 y 4 - [Detalles]
Mostramos formas para encontrar las raíces de los polinomios de grado tres, cuatro y hablaremos sobre polinomios con grados más altos; para encontrar las raíces de estos polinomios de grado tres ocupamos el método Cardano y para polinomios de grado cuatro el método de Ferrari.
Grupo alternante (1) - [Detalles]
Se estudian las propiedades de los grupos alternantes, un lema sobre el índice de los centralizadores.
Ejemplos de funciones de varias variables - [Detalles]
Se presentan varios ejemplos de funciones de varias variables que cumplen con distintas condiciones sobre ser C_1, tener derivadas parciales, ser continuas, ser derivables, etc.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.
27. Preliminares de series de números complejos - [Detalles]
Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.
Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]
En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.
Nota 8. Imagen directa e inversa de una función. - [Detalles]
En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.
Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]
El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.
Los Elementos de Euclides. Teorema 7 - [Detalles]
En este video cubrimos el Teorema 7 de Los Elementos de Euclides. Aquí se demuestra que no se pueden levantar sobre una misma recta otras dos rectas iguales respectivamente a dos rectas dadas.
Álgebra Moderna I: Cuarto Teorema de Isomorfía - [Detalles]
A partir de ilustraciones con retículas, en esta entrada se introduce al cuarto teorema de Isomorfía. El cual nos encargaremos de demostrar a lo largo de la sección y ejemplificar trabajando sobre el grupo diédrico.
Los Elementos de Euclides: Teorema 13 - [Detalles]
En este video cubrimos el Teorema 13 de Los Elementos de Euclides. Aquí se demuestra que al levantarse una recta sobre otra se forman ángulos tales que cada uno de ellos es de 90° (es decir, cada uno de ellos es recto) o bien son suplementarios (es decir, suman 180°, suman dos rectos)
Los Elementos de Euclides: Teorema 23 - [Detalles]
En este video cubrimos el Teorema 23 de Los Elementos de Euclides. Aquí se realiza la construcción sobre una recta dada y en un punto de ella, de un ángulo rectilíneo igual a un ángulo dado.
Los Elementos de Euclides: Teorema 27 - [Detalles]
En este video cubrimos el Teorema 27 de Los Elementos de Euclides. Este teorema prueba que si al incidir una recta sobre otras dos, hace los ángulos alternos iguales entre sí, entonces las dos últimas rectas son paralelas.
Los Elementos de Euclides: Teorema 28 - [Detalles]
En este video cubrimos el Teorema 28 de Los Elementos de Euclides. Aquí se demuestra que si al incidir una recta sobre otras dos hace los ángulos correspondientes iguales, o los ángulos conjugados internos suplementarios, entonces las dos últimas rectas son paralelas.
Los elementos de Euclides: Teorema 35 - [Detalles]
En este video cubrimos el Teorema 35 de Los Elementos de Euclides. Este teorema demuestra que los paralelogramos que están sobre la misma base y entre las mismas paralelas tienen áreas iguales.
Los Elementos de Euclides: Teorema 37 - [Detalles]
En este video cubrimos el Teorema 37 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que están sobre la misma base y entre las mismas paralelas tienen también áreas iguales.
Los Elementos de Euclides: Teorema 39 - [Detalles]
En este video cubrimos el Teorema 39 de Los Elementos de Euclides. Aquí se demuestra que si triángulos iguales están sobre la misma base y en el mismo lado, entonces también están entre las mismas paralelas.
Los Elementos de Euclides: Teorema 40 - [Detalles]
En este video cubrimos el Teorema 40 de Los Elementos de Euclides. Aquí se demuestra que triángulos iguales, que están sobre bases iguales y en el mismo lado, también están entre las mismas paralelas.
Los Elementos de Euclides: Teorema 44 - [Detalles]
En este video cubrimos el Teorema 44 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo sobre una recta dada, con un ángulo igual a un ángulo dado, y cuya área sea igual al área de un triángulo dado.
Pares ordenados y producto cartesiano - [Detalles]
En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.
Isomorfismos de orden - [Detalles]
En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.
Números naturales - [Detalles]
En esta entrada daremos la definición formal de un número natural. Además probaremos algunos resultados sobre números naturales.
Ejercicio Funciones invertibles por un lado - [Detalles]
En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.
Ejercicio Limite superior de una sucesión - [Detalles]
En este video estudiamos los límites limsup y el liminf. Navegaremos entre secuencias y funciones, descubriendo cómo estas dos nociones nos brindan perspectivas únicas sobre el comportamiento asintótico.
MiniCOMAL: Cimientos Matemáticos - [Detalles]
Cimientos Matemáticos es un texto escrito de matemáticas pre-universitarias hecho por el Dr. Eric Pauli Pérez Contreras. Cubre varios temas importantes que se deben conocer y manejar apropiadamente para facilitar el estudio de las matemáticas a nivel universitario. En este curso podrás consultar el material elaborado en archivos PDF, así como una multitud de mini-cuestionarios para evaluar tus conocimientos sobre los temas que se tratan en cada capítulo.
Algoritmo Alfa-Beta - [Detalles]
Se presenta el algoritmo de búsqueda adversaria Alfa-Beta como una mejora sobre el algoritmo Minimax.
Matrices y transformaciones nilpotentes - [Detalles]
Hemos estudiado varias clases importantes de matrices y transformaciones lineales: diagonales, triangulares superiores, simétricas, ortogonales, normales, etc. Es momento de aprender sobre otro tipo fundamental de matrices y transformaciones lineales: las transformaciones nilpotentes.
Conectores: negaciones, conjunciones y disyunciones - [Detalles]
En esta entrada revisamos algunos fundamentos sobre la lógica matemática, en este caso los conectores lógicos.
Axiomas de los conjuntos. - [Detalles]
En esta entrada hablamos sobre la teoría de conjuntos y sus axiomas.
Relaciones en conjuntos: dominio, codominio y composición - [Detalles]
En esta entrada hablamos sobre relaciones entre conjuntos, el dominio, imagen de una relación así como la composición entre relaciones.
Funciones inyectivas, suprayectivas y biyectivas - [Detalles]
En esta entrada hablamos sobre funciones inyectivas sobreyectivas y biyectivas.
En este video se platica sobre el problema de determinar la recta tangente a una curva en un punto específico.
En este video, se explica un poco sobre el origen y finalidad de los axiomas de los números reales, se presentan los axiomas de campo y se deducen algunas consecuencias de estos.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.
Recursión e inducción - [Detalles]
En este video se comenta sin demasiada formalidad sobre los conceptos de recursión e inducción.
Expresión decimal de los números reales - [Detalles]
En este video se discutirá sobre la expresión decimal de los números reales.
Funciones, Parte 3 - [Detalles]
En este video se formaliza el concepto de composición de funciones y se discute sobre cómo es el dominio de una composición de funciones.
Funciones definidas por casos - [Detalles]
En este video se comenta sobre las funciones de variable real que se definen por casos, en especial, las que se definen por tramos.
En este video platicamos sobre algunos tipos de discontinuidades de funciones de números reales.
Funciones definidas por casos - [Detalles]
En este video comentaremos sobre el modo de definción de funciones por casos, en especial, las funciones que se definen en tramos.
Introducción a las sucesiones de números reales. - [Detalles]
En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.