Resultados de búsqueda: demostracion del teorema de pitagoras

725 resultados encontrados

  • Video

    Teorema de Pitágoras - [Detalles]

    Bella demostración del teorema de Pitágoras. Se enuncia y se demuestra el teorema de Pitágoras

  • Video

    Teorema de Pitágoras - [Detalles]

    Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. El Teorema de Pitágoras es válido solo para triángulos rectángulos. 

  • Video

    Los Elementos de Euclides: Teorema 48. Recíproco del Teorema de Pitágoras. - [Detalles]

    En este video cubrimos el Teorema 48 de Los Elementos de Euclides. Aquí encontrarás la demostración del recíproco del teorema de Pitágoras.

  • Video

    Los Elementos de Euclides: Teorema 47. Teorema de Pitágoras - [Detalles]

    En este video cubrimos el Teorema 47 de Los Elementos de Euclides. Aquí se realiza la demostración del teorema de Pitágoras

  • Blog

    Teorema de Pitágoras - [Detalles]

    Demostraremos el teorema de Pitágoras y su reciproco, también veremos la ley del paralelogramo y el teorema de Apolonio.

  • Video

    Aplicacioneas del teorema de Pitágoras - [Detalles]

    Damos algunas aplicaciones del teorema de Pitágoras

  • Diapositivas

    Diapositivas de distancia entre 2 puntos - [Detalles]

    Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.

  • Video

    Teorema de Pitágoras - [Detalles]

    Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. Usamos las fórmulas conocidas de un cuadrado para demostrar dicho teorema. 

  • Video

    Teorema de Pitágoras - [Detalles]

    Demostramos el teorema de Pitágoras

  • Video

    Reglas para escribir una demostración - [Detalles]

    Platicamos en que consiste una demostración, y además damos cuatro reglas a seguir para conseguir una demostración coherente y exitosa. Una demostración es una justificación de la veracidad de un teorema.

  • Video

    Leyes de cósenos. Demostración - [Detalles]

    Demostramos la ley de Cosenos, la cual es una generalización del teorema de Pitágoras en los triángulos rectángulos en trigonometría.  

  • Video

    Teorema de la derivada y la multiplicidad. Demostración - [Detalles]

    Damos la demostración del teorema de la derivada y la multiplicidad, el cual vimos en el video anterior. La demostración es relativamente sencilla teniendo en cuenta que sí "a" es de multiplicidad "m" en un polinomio entonces el polinomio es de la forma "(x-a)^m*Q(x)", por lo que podemos obtener su derivada de forma explícita, y demostrar que "a" es raíz de multiplicidad "m-1". 

  • Video

    Demostración del teorema fundamental del álgebra usando el grupo fundamental del círculo - [Detalles]

    En este video damos una demostración hermosa del teorema fundamental del álgebra usando e hecho de que el grupo fundamental del círculo es cíclico infinito.

  • Video

    Demostración directa y primeros ejemplos - [Detalles]

    Explicamos sobre el método de demostración conocido como "Demostración directa". Demostramos un teorema sobre los números pares e impares.

  • Lección

    Razón, semejanza y triángulos semejantes - [Detalles]

    Demostramos el primer y segundo teorema de Thales y sus recíprocos, el teorema de Pitágoras y los criterios de semejanza de triángulos

  • Blog

    Teorema de Rolle y teorema del valor medio - [Detalles]

    Demostración del teorema de Rolle y del teorema del Valor Medio.

  • Video

    Distancia entre dos puntos del plano cartesiano - [Detalles]

    Usamos el Teorema de Pitágoras para deducir la fórmula de la distancia entre dos puntos en el plano cartesiano. Con esta fórmula podemos conocer la distancia entre dos puntos cualesquiera en el plano,  

  • Blog

    Demostración del Teorema de Existencia y Unicidad de Picard-Lindelof - [Detalles]

    Presentación de la demostración del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden

  • Blog

    Algortimo de la división, teorema del factor y del residuo - [Detalles]

    Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.

  • Video

    Demostración por casos - [Detalles]

    Explicamos el método y reglas para realizar una demostración por casos. También se dan recomendaciones para saber cuándo aplicar la demostración por casos.

  • Video

    Distancia entre dos puntos en el espacio cartesiano - [Detalles]

    Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional. 

  • Video

    Trigonometría - [Detalles]

    Damos un repaso a trigonometría, las razones trigonométricas, el teorema de Pitágoras y los elementos más relevantes de un triángulo rectángulo. 

  • Capítulo del libro

    Geometría elemental - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.

  • Video

    Teorema de existencia y unicidad. Demostración de la unicidad - [Detalles]

    Demostramos la parte de unicidad del Teorema de Existencia y Unicidad de Picard, y previamente probamos dos lemas que nos ayudan a la demostración

  • Blog

    Demostración del teorema de Cayley-Hamilton - [Detalles]

    En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.

  • Video

    El enunciado del teorema de van Kampen - [Detalles]

    En este video damos una breve motivación para el enunciado del teorema de van Kampen. El video lo terminamos con el enunciado formal de dicho teorema. En un video posterior daremos la demostración. Espero que lo disfruten.

  • Video

    La demostración del teorema de van Kampen - [Detalles]

    En este video damos la demostación del teorema de van Kampen. Este teorema es la herramienta computacional más poderosa para calcular grupos fundamentales.

  • Blog

    37. Consecuencias del teorema integral de Cauchy - [Detalles]

    En esta entrada veremos unas cuantas consecuencias del Teorema Integral de Cauchy, tales como el Teorema de Liouville, el Teorema Fundamental del Álgebra, el Teorema de Morera y más.

  • Blog

    Teorema del valor intermedio - [Detalles]

    Demostración del teorema del valor intermedio

  • Blog

    Teorema del máximo-mínimo - [Detalles]

    Demostración del teorema del máximo-mínimo

  • Video

    Demostración por contrapositiva 2 - [Detalles]

    Ejemplos ilustrativos del método de demostración por contrapositiva.

  • Video

    Demostración por contradicción 2 - [Detalles]

    Ejemplos ilustrativos del método de demostración por contradicción

  • Video

    Introducción al teorema de existencia y unicidad para sistemas de ecuaciones de primer orden - [Detalles]

    Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden y damos los primeros detalles para la demostración de dicho teorema.

  • Blog

    Teorema de Gauss - [Detalles]

    En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices. Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.

  • Blog

    Teorema de la función implícita y demostración - [Detalles]

    Damos el teorema de la función implícita para campos vectoriales (varias variables). Lo demostramos con el teorema de la función inversa.

  • Video

    ¿Qué es una demostración? - [Detalles]

    Platicamos sobre las demostraciones, en qué consisten y que herramientas nos pueden ayudar para hacer una demostración. Las matemáticas universales y para siempre.

  • Video

    Como demostrar una implicación. Demostración directa - [Detalles]

    Platicamos las características de la demostración directa y damos un ejemplo con una proposición sobre los números enteros múltiplos de 6.

  • Video

    Demostración por casos - [Detalles]

    Explicamos como realizar una demostración por casos y las reglas que se deben seguir, damos ejemplos con números enteros.

  • Video

    Demostración por contradicción - [Detalles]

    Explicamos el método de demostración por contradicción y vemos algunos ejemplos.

  • Video

    Ejemplo Demostración por contradicción - [Detalles]

    Damos un ejemplo de cómo aplicar la demostración por contradicción, la proposición a demostrar incluye al cuantificador existe

  • Diapositivas

    Diapositivas sobre cómo escribir una demostración directa - [Detalles]

    Explicamos las características de hacer una demostración directa de p implica q acompañada de una serie de ejemplos báscios respecto a este tipo de demostraciones.

  • Diapositivas

    Diapositivas sobre demostraciones por contrapositiva - [Detalles]

    Mostramos la importancia para hacer demostración por contrapositia, lo que se requiere para hacer válida este tipo de demostración matemática, la explicación va acompañada de un ejemplo.

  • Diapositivas

    Diapositivas sobre demostraciones por contradicción - [Detalles]

    Mostramos la importancia para hacer demostración por contradicción, lo que se requiere para hacer válida este tipo de demostración matemática, explicando la lógica acompañada. La explicación va acompañada de un par de ejemplos.

  • Diapositivas

    Diapositivas sobre demostraciones de conjuntos - [Detalles]

    Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.

  • Video

    Lema de Burnside: demostración alternativa - [Detalles]

    Se enuncia y demuestra el Lema de Burnside (una demostración alternativa de otra que se dio en otro video que no aparece en el sitio).

  • Blog

    Demostración de condicionales y dobles condicionales - [Detalles]

    En esta entrada vemos ejemplos de demostraciones con doble implicación, algunas convenciones de su redacción y técnicas de demostración.

  • Video

    Combinatoria (4) - [Detalles]

    Damos una demostración alternativa del Teorema del Binomio. También explicamos la relación del binomio con la combinatoria y el triángulo de Pascal.

  • Video

    Hay una cantidad infinita de números primos - [Detalles]

    Para terminar esta sección demostramos un teorema de bastante relevancia, el cual nos dice que existe una cantidad infinita de numero primos. La demostración es sencilla y hacemos uso del teorema fundamental de la aritmética.  

  • Video

    Teorema de existencia y unicidad. Ecuación integral asociada - [Detalles]

    Damos los primeros detalles para la demostración del Teorema de existencia y unicidad de Picard. Encontramos una manera equivalente de resolver un problema de condición inicial, que es resolviendo una ecuación integral asociada.

  • Video

    Teorema de existencia y unicidad. Demostración de la existencia - [Detalles]

    Demostramos la parte de existencia del Teorema de Existencia y Unicidad de Picard, en un intervalo que construimos previamente mediante un lema

  • Video

    Homología singular - escisión - [Detalles]

    En este video enunciaremos en teorema de escisión sin demostración. Este teorema es una de las propiedades fundamentales de la homología y nos dice que siempre que tomemos homología relativa, podemos ignorar lo que pasa adentro del subespacio con el que estamos relativizando.

  • Video

    Los Elementos de Euclides: Teorema 4 - [Detalles]

    En este video cubrimos el Teorema 4 de Los Elementos de Euclides. Aquí se realiza la demostración del criterio de congruencia de triángulos LADO - ÁNGULO - LADO.

  • Blog

    Demostración del teorema de la función inversa - [Detalles]

    Demostramos el teorema de la función inversa para varias variables (campos vectoriales). Damos un ejemplo de su aplicación.

  • Video

    Teorema de la Función Inversa - [Detalles]

    En este video se hace una demostración del Teorema de la Función Inversa.

  • Video

    Los Elementos de Euclides: Teorema 24 - [Detalles]

    En este video cubrimos el Teorema 24 de Los Elementos de Euclides. Este teorema prueba que si dos triángulos tienen dos lados respectivamente iguales pero el ángulo comprendido por estos lados es mayor en el primer triángulo respecto del segundo, entonces el tercer lado del primer triángulo es mayor respecto del tercer lado del segundo triángulo.

  • Video

    Presentación del curso de Calculo Diferencial e Integral I - [Detalles]

    En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.

  • Video

    Secciones locales y caja de flujos - [Detalles]

    Continuamos presentando las herramientas necesarias para la demostración del teorema de Poincaré - Bendixson en el plano. En esta ocasión definimos una sección local en un punto del plano y su caja de flujos.

  • Video

    Álgebra homológica - el lema de la serpiente - [Detalles]

    En este video enunciamos y demostramos el "lema de la serpiente". Este lema será usado en la demostración del teorema fundamental del álgebra homológica.

  • Video

    Homología singular - la homología de un cociente - [Detalles]

    En este video demostraremos que la homología de la (buena) pareja (X,A) es isomorfa a la homología reducida del cociente X/A. La demostración hace uso del teorema de escisión.

  • Video

    Ejercicio Teorema del Sandwich - [Detalles]

    ¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?

  • Video

    Los Elementos de Euclides: Teorema 19 - [Detalles]

    En este video cubrimos el Teorema 19 de Los Elementos de Euclides. Aquí se realiza la demostración de la propiedad de los triángulos que afirma que a mayor ángulo se opone mayor lado.

  • Blog

    Funciones compatibles - [Detalles]

    En esta entrada definiremos las funciones compatibles y veremos varios resultados relacionados a ellos. Este concepto será de gran utilidad en la demostración de nuestro siguiente teorema: el teorema de recursión.

  • Blog

    Introducción al teorema de la función inversa - [Detalles]

    Enunciamos el teorema de la función inversa y lo explicamos. Probamos resultados auxiliares para su demostración.

  • Video

    Teorema para buscar las Raíces enteras y racionales de un polinomio - [Detalles]

    Demostramos un teorema que nos ayuda a encontrar las raíces racionales o enteras de un polinomio cuyos coeficientes son enteros. El teorema nos indica que basta con buscar en los divisores del término independiente ("a_0") y del coeficiente líder del polinomio ("a_n"). 

  • Diapositivas

    Diapositivas sobre el teorema del binomio - [Detalles]

    Enunciamos el teorema del binomio de Newton y el triángulo de Pascal, como estas 2 temas involucran combinatoria, se demuestra el teorema del binomio y se muestran ejemplos con el triángulo de Pascal y su relación con el número combinatorio. Finalmente se dejan una lista de ejercicios para practicar estos temas.

  • Video

    Homología singular - el teorema del punto fijo de Brouwer - [Detalles]

    Como aplicación del cálculo de la homología de una esfera demostraremos el teorema del punto fijo de Brouwer en dimensiones arbitrarias. La estrategia es idéntica a la que ya usamos para demostrar el teorema de Brouwer en dimensión 2 con el grupo fundamental.

  • Video

    Teorema del Valor Medio - [Detalles]

    En este video demostraremos el Teorema del Valor Medio para derivadas, como consecuencia del Teorema de Rolle, que es demostrado previamente.

  • Lección

    Teorema de Menelao - [Detalles]

    Demostramos el teorema de Menelao, la forma trigonométrica del teorema de Menelao y el teorema de la división interna y externa

  • Video

    Correctez en programas recursivos, Técnica del invariante de ciclo - [Detalles]

    Técnica del invariante de ciclo - Diseño y demostración de un algoritmo iterativo mediante la técnica del invariante de ciclo.

  • Blog

    Principio de inducción - [Detalles]

    En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

  • Blog

    Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]

    Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.

  • Video

    Teorema del Factor - [Detalles]

    Explicamos el Teorema del Residuo, el cual nos dice que: El residuo de dividir un polinomio "p(x)" entre "x-a" (con "a" un escalar), es "p(a)", es decir que existe "q(x)" tal que: "p(x)=(x-a)*q(x)+r", con el residuo "r=p(a)". Mostramos algunos ejemplos y demostramos el teorema. 

  • Video

    Álgebra homológica - el teorema fundamental del álgebra homológica - [Detalles]

    En este video enunciamos y demostramos el teorema fundamental del álgebra homológica. Seguramente el teorema más importante en esta área.

  • Video

    Los teoremas de Fermat y de Euler - [Detalles]

    Vemos el pequeño teorema de Fermat y el Teorema de Euler. Primero demostramos el teorema de Euler, el cual nos da una relación de la función de Euler con una congruencia modulo "m", y usando este resultado demostramos el pequeño teorema de Fermat. 

  • Blog

    El teorema espectral real - [Detalles]

    En esta entrada enunciaremos y demostraremos el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

  • Video

    El algoritmo de Euclides: enunciado y demostración. - [Detalles]

    Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor. 

  • Video

    Ejemplo Desigualdad del Triángulo - [Detalles]

    En este video, nos sumergimos en el corazón de una demostración que explora la relación entre $\vert xy - x_0y_0\vert$ y un valor $\varepsilon$ determinado, todo ello haciendo uso de la poderosa Desigualdad del Triángulo.

  • Video

    Correctez en programas recursivos, Correctez de un algoritmo iterativo - [Detalles]

    Correctez de un algoritmo iterativo - Seguimiento de la técnica del invariante del ciclo y demostración de correctez en un algoritmo iterativo.

  • Video

    Demostración de que hay infinitos primos - [Detalles]

    Explicamos cómo demostrar que hay una cantidad infinita de números primos. Para tal fin suponemos ciertos el teorema fundamentar de la aritmética.

  • Video

    El mínimo común múltiplo - [Detalles]

    Definimos el mínimo común múltiplo de "n" enteros. Primero damos la definición de común múltiplo y el más pequeño es aquel que tomamos como mínimo común múltiplo. Definimos la notación para expresar el mínimo común múltiplo y demostración un teorema sobre el mismo. 

  • Video

    Homología singular - invarianza de la dimensión - [Detalles]

    En este video demostraremos que si dos abiertos de ciertos espacios euclideanos son homeomorfos, entonces los espacios tienen la misma dimensión. Este teorema es muy bonito porque es intuitivo el enunciado, la demostración no es nada trivial, pero con toda la herramienta que hemos desarrollado es posible demostrarlo en términos simples.

  • Blog

    Existencia de la forma canónica de Jordan - [Detalles]

    Lo que haremos ahora es mostrar una versión análoga de la forma canónica de Jordan para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración.

  • Blog

    Teorema chino del residuo - [Detalles]

    Motivamos la resolución de sistemas lineales de ecuaciones de congruencias y saber si se tienen solución, esto con ayuda del teorema chino del residuo el cual enunciamos y demostramos.

  • Video

    Los Elementos de Euclides: Teorema 41 - [Detalles]

    En este video cubrimos el Teorema 41 de Los Elementos de Euclides. Aquí se demuestra que si un paralelogramo y un triángulo tienen la misma base y están entre las mismas paralelas, determinadas por la base del triángulo y la paralela que pasa por el vértice opuesto a la base, entonces el área del paralelogramo es el doble que el área del triángulo.

  • Video

    Ejercicio Estimación con Teorema del Valor Medio - [Detalles]

    En este video, no solo desentrañaremos el significado y la intuición detrás del teorema del Valor Medio, sino que también lo utilizaremos como herramienta clave para demostrar una desigualdad intrigante.

  • Blog

    Álgebra Moderna I: Tercer Teorema de Isomorfía - [Detalles]

    "Alguna vez te haz preguntado: ¿Qué ocurre con un cociente de cocientes?" Después de una breve introducción al tercer teorema de isomorfía, comenzaremos enunciándolo y probándolo a partir del primer teorema.

  • Blog

    Introducción al teorema de Cayley-Hamilton - [Detalles]

    En esta entrada introducimos el teorema de Cayley-Hamilton, otro de los teoremas importantes del curso. Intuitivamente este teorema nos dice que «el polinomio característico anula al operador lineal». Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T) = 0$ .

  • Blog

    El teorema espectral y de descomposición polar complejos - [Detalles]

    En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.

  • Video

    Ejemplo de demostración de relación de equivalencia - [Detalles]

    Damos un ejemplo de relación de equivalencia con elementos del plano cartesiano y demostramos que es una relación de equivalencia, es decir, cumple las 3 propiedades

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Video

    Homología singular - invarianza homotópica - [Detalles]

    En este video demostraremos una de las propiedades fundamentales de la homología, es decir, que funciones homotópicas inducen funciones iguales en homología. La demostración es un poco larga e involucra cuentas que están relacionadas con la combinatoria del n-simplejo estándar.

  • Blog

    Diferencia simétrica - [Detalles]

    En esta sección hablaremos de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos, algunos otros los probaremos con el método de demostración habitual.

  • Video

    Cotas y supremos - [Detalles]

    Introduciremos las nociones de cotas superiores e inferiores, y presentaremos el axioma del supremo, finalizando con la demostración de un par de consecuencias de éste.

  • Sitio web

    COMAL: Cálculo Diferencial e Integral I - [Detalles]

    Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Video

    Teorema del binomio - [Detalles]

    Explicamos y demostramos el Teorema del Binomio. La cual es una fórmula que proporciona el desarrollo de la n-ésima potencia de un binomio, hacemos el ejemplo para n=2.

  • Video

    Teorema del binomio ejemplo 1 - [Detalles]

    Vemos un ejemplo usando el teorema del binomio. También damos consejos para calcular coeficientes en los términos que aparecen en la expansión de (a+b).

  • Video

    Teorema del binomio ejemplo 2 - [Detalles]

    Usamos el Teorema del Binomio para demostrar, de forma muy sencilla y directa, que cierta serie es siempre cero.

  • Interactivo

    Recíproco del Teorema de Ptolomeo - [Detalles]

    Demostramos el recíproco del teorema de Ptolomeo

  • Interactivo

    Recíproco del Teorema de la línea de Simson - [Detalles]

    Enunciamos el recíproco del teorema de la línea de Simson

  • Video

    El teorema del punto fijo de Brouwer en dimensión 2 - [Detalles]

    En este video demostramos el teorema del punto fijo de Brouwer.

  • Video

    Consecuencias del teorema de Lagrange - [Detalles]

    Se exploran algunos corolarios y consecuencias del teorema de Lagrange.

  • Video

    Ejemplos del primer teorema de isomorfismo - [Detalles]

    Se muestran algunos ejemplos de aplicación del primer teorema de isomorfismo.

  • Video

    Ejemplo del segundo teorema de isomorfimso - [Detalles]

    Se da un ejemplo de aplicación del segundo teorema de isomorfismo.

  • Video

    Consecuencias del teorema de Cauchy - [Detalles]

    Se muestran algunas aplicaciones y consecuencias del teorema de Cauchy: ser p-grupo es equivalente a tener orden una potencia de p, todo p-grupo no trivial tiene centro no trivial, todo grupo de orden el cuadrado de un primo es abeliano, los subgrupos maximales de un p-grupo son normales y de índice p.

  • Blog

    38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]

    Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.

  • Blog

    44. Teorema del residuo y aplicaciones - [Detalles]

    En esta última entrada, definiremos el residuo de una función analítica y veremos el teorema del residuo, mediante el cual nos será posible evaluar integrales reales, tanto impropias como integrales definidas, de una manera sorprendentemente sencilla.

  • Cuestionario

    37. Consecuencias del Teorema Integral de Cauchy - [Detalles]

    Veamos unos ejercicios sencillos para asentar bases de los teoremas importantes que se siguen del Teorema Integral de Cauchy

  • Cuestionario

    44. Teorema del residuo y aplicaciones - [Detalles]

    Resolvamos integrales aplicando el Teorema del Residuo.

  • Blog

    Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]

    Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.

  • Blog

    Aplicaciones del teorema de Cayley-Hamilton - [Detalles]

    En esta entrada veremos ejemplos y aplicaciones del teorema de Cayley-Hamilton, como encontrar la inversa de una matriz o su polinomio mínimo.

  • Blog

    Teorema del valor medio para campos escalares - [Detalles]

    Demostramos el teorema del valor medio para campos escalares. Con él, vemos que derivadas parciales continuas implican diferenciabilidad.

  • Blog

    Ejemplos e intuición del teorema de la función implícita - [Detalles]

    Damos ejemplos del teorema de la función implícita de varias variables para entenderlo mejor. Hablamos de la intuición detrás.

  • Video

    Factorización en números primos - [Detalles]

    Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética. 

  • Video

    El teorema fundamental de la aritmética - [Detalles]

    Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única! 

  • Video

    Semejanza de triángulos y teorema de Thales - [Detalles]

    Demostramos el primer teorema de Thales y enunciamos el segundo teorema de Thales

  • Blog

    Teorema de Thales - [Detalles]

    Demostramos el teorema de Thales, el teorema de la bisectriz y sus recíprocos. También construimos el producto y cociente de dos segmentos.

  • Blog

    Teorema de existencia y unicidad para sistemas de ecuaciones diferenciales de primer orden - [Detalles]

    Se hace un generalización de la teoría preliminar vista en el teorema de existencia y unicidad de Picar-Lindelöf y se demuestra el teorema de existencia y unicidad para el caso general, es decir, para sistemas de ecuaciones diferenciales de primer orden tanto lineales como no lineales

  • Blog

    Teorema de Casey - [Detalles]

    Demostraremos el teorema generalizado de Ptolomeo conocido como teorema de Casey y resolveremos algunos ejercicios.

  • Blog

    36. Teorema integral de Cauchy - [Detalles]

    El Teorema Integral de Cauchy es un teorema importantísimo en el estudio de la variable compleja, veremos sus diferentes versiones y demostraciones.

  • Blog

    Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]

    El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.

  • Blog

    Álgebra Moderna I: Segundo Teorema de Isomorfía - [Detalles]

    Para esta entrada nos apoyaremos en el diagrama de retícula propuesto anteriormente, con el cual introduciremos el segundo teorema de isomorfía. Posteriormente reforzaremos y daremos una versión mas intuitiva de este teorema.

  • Video

    Los Elementos de Euclides: Teorema 26 - [Detalles]

    En este video cubrimos el Teorema 26 de Los Elementos de Euclides. En este teorema se demuestra el criterio de congruencia de triángulos ÁNGULO - LADO - ÁNGULO.

  • Video

    Los Elementos de Euclides: Teorema 27 - [Detalles]

    En este video cubrimos el Teorema 27 de Los Elementos de Euclides. Este teorema prueba que si al incidir una recta sobre otras dos, hace los ángulos alternos iguales entre sí, entonces las dos últimas rectas son paralelas.

  • Video

    Los elementos de Euclides: Teorema 35 - [Detalles]

    En este video cubrimos el Teorema 35 de Los Elementos de Euclides. Este teorema demuestra que los paralelogramos que están sobre la misma base y entre las mismas paralelas tienen áreas iguales.

  • Video

    Los elementos de Euclides: Teorema 36 - [Detalles]

    En este video cubrimos el Teorema 36 de Los Elementos de Euclides. Este teorema nos dice que los paralelogramos que tienen bases iguales y que además están entre las mismas paralelas, tienen áreas iguales.

  • Blog

    El teorema de descomposición polar real - [Detalles]

    En esta entrada veremos una de las consecuencias de el teorema espectral: el teorema de descomposición polar. Veremos que toda matriz $A$ tendrá una expresión de la forma $A = US$ donde $U$ es una matriz ortogonal y $S$ es una matriz simétrica positiva.

  • Video

    Demostración por contrapositiva - [Detalles]

    Explicamos el método de demostrar una implicación usando su contrapositiva y vemos algunos ejemplos.

  • Video

    Demostración de un bicondicional - [Detalles]

    Explicamos cómo demostrar un bicondicional, es decir, un sí y solo sí. Vemos dos posibles estrategias y algunos ejemplos.

  • Video

    Demostración de un cuantificador - [Detalles]

    Explicamos cómo demostrar una proposición o enunciado que involucre cuantificadores. Veremos las estrategias principales y ejemplos que usen los cuantificadores existe, para todo y existe un único.

  • Video

    Como demostrar un bicondicional (si y sólo si) - [Detalles]

    Damos reglas generales para demostrar una proposición con bicondicional (si y solo sí). Particularmente utilizamos una demostración de ida y otra de vuelta.

  • Video

    Principio de inducción - [Detalles]

    Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.

  • Video

    Inducción matemática (3) - [Detalles]

    En este video demostramos la famosa Suma de Gauss, usamos inducción para demostrarla y damos otra demostración alternativa.

  • Video

    Principio de inducción - [Detalles]

    Introducimos el principio de inducción matemática, el cual es un método de demostración para alguna propiedad o proposición P(n), es decir que la propiedad o proposición está relacionada a un número natural. Damos un ejemplo de cómo demostrar usando el principio de inducción, demostrando el caso base y luego el paso inductivo. 

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción. 

  • Blog

    Regla de la cadena - [Detalles]

    Demostración de la derivada de composición de funciones y la regla de la cadena.

  • Blog

    Reglas de derivación - [Detalles]

    Resumen de las reglas de derivación y demostración de la derivada de funciones frecuentes.

  • Blog

    Derivada de las funciones exponencial y logarítmica - [Detalles]

    Demostración de la derivada de las funciones exponencial y logarímica.

  • Blog

    Derivada de la función inversa - [Detalles]

    Demostración y ejemplos de la derivada de la inversa de una función.

  • Blog

    Derivada de las funciones trigonométricas - [Detalles]

    Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.

  • Diapositivas

    Diapositivas sobre reglas para escribir demostraciones - [Detalles]

    Mostramos la importancia de escribir demostraciones y entablamos las cuatro reglas usuales para escribir una demostración coherente y lógica.

  • Diapositivas

    Diapositivas sobre cómo escribir una demostración por casos - [Detalles]

    Mostramos la importancia y los motivos para poder ocupar este tipo de demostraciones por casos.

  • Diapositivas

    Diapositivas sobre el principio de inducción - [Detalles]

    Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.

  • Blog

    El algoritmo de Euclides - [Detalles]

    Explicamos el algoritmo de Euclides con ejemplos. Damos su demostración. Vemos cómo ayuda a poner MCD como combinación lineal entera.

  • Video

    Factorización en ciclos disjuntos - [Detalles]

    Demostramos que toda permutación de un conjunto finito es una composición de ciclos disjuntos. Además damos un ejemplo para ilustrar la demostración.

  • Video

    ¿Qué son las demostraciones en matemáticas? - [Detalles]

    En este video explicamos con una analogia que es una demostración en matemáticas

  • Blog

    Álgebra de conjuntos - [Detalles]

    En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.

  • Video

    Ejercicio Funciones invertibles por un lado - [Detalles]

    En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.

  • Video

    Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]

    ¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.

  • Blog

    Demostraciones matemáticas (El mundo de los Blorg) - [Detalles]

    En esta entrada introducimos la idea de una demostración matemática, su significado y una de las primeras estrategias para empezar a demostrar.

  • Blog

    Demostraciones por reducción al absurdo - [Detalles]

    Revisaremos la estrategia de reducción al absurdo o demostración por contradicción. Revisamos algunos ejemplos y su significado.

  • Blog

    Demostración de proposiciones con conectores - [Detalles]

    En esta entrada revisamos algunos ejemplos de las demostraciones matemáticas con conectores como la conjución y disyunción.

  • Blog

    Demostración de proposiciones con cuantificadores - [Detalles]

    En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".

  • Blog

    Producto de matrices con matrices - [Detalles]

    Definimos el producto de matrices y vemos casos con pocas entradas. Enunciamos algunas propiedades con demostración y vemos ejemplos.

  • Video

    Ejemplos demostración de limites - [Detalles]

    En este video se ejemplifica cómo demostrar (épsilon-delta) que el límite cuando x tiende a 2 de f(x)=x^4 es 16, y que el límite cuando x tiende a un número positivo a, de f(x)=1/x es 1/a.

  • Video

    Límites Trigonométricos Especiales - Demostración - Ejercicio 1. - [Detalles]

    Suscribirse en: https://www.youtube.com/user/willingtonprofe Twitter: https://twitter.com/WillingtonProfe

  • Video

    Ejemplos de cómo resolver una ecuación diofántica - [Detalles]

    Vemos un método para encontrar una solución particular de la ecuación diofántica lineal. En el método hacemos uso del Máximo común divisor y a partir de la solución encontrada podemos generar todas las demás soluciones utilizando las fórmulas del segundo teorema del tema actual. 

  • Curso

    COMAL: Topología Algebraica I - [Detalles]

    Curso de introducción a la topología algebraica. Comenzamos hablando del grupo fundamental. Luego, estudiamos el teorema de Van Kampen. Continuamos con varios temas de espacios cubrientes. Finalmente hablamos del concepto de homología y varios resultados alrededor de él. Material recopilado en Matemáticas a Distancia con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Video

    Potencias de números complejos - [Detalles]

    Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación). 

  • Video

    Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]

    Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo. 

  • Interactivo

    Teorema de Ceva - [Detalles]

    Demostramos la ida del teorema de Ceva

  • Interactivo

    Teorema de Menelao - [Detalles]

    Demostramos la ida del teorema de Menelao

  • Interactivo

    Teorema de Desargues - [Detalles]

    Demostramos la ida del teorema de Desargues

  • Video

    Teorema de existencia y unicidad. Iteraciones de Picard - [Detalles]

    Construimos las iteraciones de Picard que nos ayudarán a encontrar una solución al problema de condición inicial, bajo ciertas hipótesis que analizamos antes de demostrar la parte de la existencia del Teorema de Picard

  • Blog

    Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad - [Detalles]

    Continuación con el estudio de métodos para resolver ecuaciones diferenciales lineales de primer orden homogéneas y no homogéneas y presentación del teorema de existencia y unicidad para este tipo de ecuaciones diferenciales

  • Blog

    Teorema del valor medio para la integral - [Detalles]

    Teorema valor medio, valor medio generalizado, valor medio integral, valor medio generalizado integral

  • Blog

    Teorema de Pappus-Guldinus - [Detalles]

    Enseñanza del teorema de Pappus sobre el centroide, área y volumen de un objeto.

  • Blog

    Teoremas de Varignon y Van Aubel - [Detalles]

    Demostramos el teorema de Varignon y el teorema de Van Aubel, vemos algunas rectas y puntos importantes del cuadrilátero.

  • Blog

    Cuadrilátero cíclico - [Detalles]

    Tras haber visto el teorema de Ptolomeo ampliamos nuestro estudio del cuadrilátero cíclico con la formula de Brahmagupta y el teorema Japonés

  • Video

    Todo grupo es el grupo fundamental de algún espacio - [Detalles]

    En este video demostraremos que todo grupos es el grupo fundamental de algún espacio. Las herramientas principales para demostrar este teorema es la existencia de una presentación y una aplicación muy directa del teorema de van Kampen.

  • Video

    El teorema de clasificación de cubrientes - parte 3 - [Detalles]

    En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.

  • Cuestionario

    Mini-cuestionario: Aplicaciones del teorema espectral - [Detalles]

    Mini-cuestionario para verificar el entendimiento de algunas aplicaciones que tiene el teorema espectral.

  • Blog

    Irreducibilidad en R[x] - [Detalles]

    Enunciamos el teorema fundamental del álgebra y el teorema de la factorización única de polinomios sobre los complejos asimismo vemos las raíces complejas de un polinomio y su la irreducibilidad de un polinomio real.

  • Blog

    El teorema de derivadas y multiplicidad - [Detalles]

    Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.

  • Cuestionario

    38. Teorema Integral de Cauchy, versión homotópica. - [Detalles]

    Repasaremos los conceptos de homología y homotopía y la reformulación del Teorema de Cauchy para estos aspectos.

  • Blog

    Álgebra Moderna I: Teorema de Lagrange - [Detalles]

    A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H

  • Video

    Los Elementos de Euclides: Teorema 3 - [Detalles]

    En este video cubrimos el Teorema 3 de Los Elementos de Euclides. Dados dos segmentos desiguales, quitamos del mayor un segmento igual al menor.

  • Video

    Los Elementos de Euclides: Teorema 14 - [Detalles]

    En este video cubrimos el Teorema 14 de Los Elementos de Euclides. Aquí demostramos que si dos segmentos de recta forman con una recta y en un punto de ella, ángulos adyacentes iguales a dos rectos, y no están del mismo lado de dicha recta, entonces los segmentos forman parte de una misma recta.

  • Video

    Los Elementos de Euclides: Teorema 20 - [Detalles]

    En este video cubrimos el Teorema 20 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, la suma de las longitudes de dos cualesquiera de sus lados es mayor que la longitud del tercer lado.

  • Video

    Los Elementos de Euclides: Teorema 21 - [Detalles]

    En este video cubrimos el Teorema 21 de Los Elementos de Euclides. Aquí demostramos que si desde los extremos de uno de los lados de un triángulo se construyen dos rectas que se encuentren en el interior de él, las rectas construidas serán menores que los lados restantes del triángulo pero el ángulo comprendido por las rectas construidas será mayor.

  • Video

    Los Elementos de Euclides: Teorema 22 - [Detalles]

    En este video cubrimos el Teorema 22 de Los Elementos de Euclides. Aquí se estudia la construcción de un triángulo a partir de tres segmentos dados que cumplen la condición de que la suma de las longitudes de dos cualesquiera de los segmentos es mayor que la longitud del tercer lado.

  • Video

    Los Elementos de Euclides: Teorema 25 - [Detalles]

    En este video cubrimos el Teorema 25 de Los Elementos de Euclides. Aquí se demuestra que si dos triángulos tienen dos lados respectivamente iguales y en el primer triángulo el tercer lado es mayor que el tercer lado del segundo triángulo, entonces el ángulo comprendido por los lados iguales en el primer triángulo es mayor que el ángulo respectivo en el segundo triángulo.

  • Video

    Los Elementos de Euclides: Teorema 30 - [Detalles]

    En este video cubrimos el Teorema 30 de Los Elementos de Euclides, aquí se demuestra que si las paralelas a una misma recta son paralelas entre sí. (También se conoce como la propiedad transitiva del paralelismo de rectas)

  • Video

    Los Elementos de Euclides: Teorema 32 - [Detalles]

    En este video cubrimos el Teorema 32 de Los Elementos de Euclides, el cual trata la propiedad que en todo triángulo la suma de los ángulos interiores es igual a 180° (es decir dos rectos); y la propiedad que en todo triángulo la medida de un ángulo exterior del triángulo es igual a la suma de los dos ángulos interiores no adyacentes a él.

  • Blog

    Teorema de recursión - [Detalles]

    En esta entrada veremos el concepto de calculo de longitud, así como la motivación y prueba del teorema de recursión, el cual nos ayudara a definir la suma en el conjunto de los numeros naturales.

  • Blog

    Teorema de Sylvester - [Detalles]

    En esta entrada introduciremos la noción de la signatura de una matriz. A grandes rasgos, esta noción nos dice «qué tan positiva» es una matriz simétrica. Para definir esta noción, lo haremos primero para las matrices diagonales. Luego lo definiremos para todas las matrices simétricas a través del teorema que demostramos la entrada anterior.

  • Blog

    Metodos numéricos de integración: Regla del punto medio y del trapecio - [Detalles]

    Enseñanza al metodo numérico de integración por regla del punto medioa y regla del trapecio.

  • Blog

    Propiedades del valor esperado - [Detalles]

    Enunciamos y demostramos una serie de propiedades del valor esperado de una variable aleatoria, entre estas propiedades una muy importante en el desarrollo del curso la cual es la Ley del Estadístico Inconsciente.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Video

    Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]

    Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos. 

  • Video

    El grupo fundamental del círculo - parte 2 - [Detalles]

    En este video terminamos el estudio del grupo fundamental del círculo. Concretamente, demostramos que el grupo fundamental del círculo es cíclico infinito.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Video

    Ingeniería de software, Crisis del software, Ciclo del software - [Detalles]

    Ciclo del software – Explicación de las etapas del ciclo de software.

  • Video

    Propiedades del máximo común divisor - [Detalles]

    Demostramos algunas propiedades sobre el máximo común divisor, vemos que puede sacar enteros, y varias propiedades más, las cuales demostramos haciendo uso del teorema de combinación lineal anteriormente visto. 

  • Video

    Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 2) - [Detalles]

    Hablamos un poco del problema de condición inicial para sistemas de ecuaciones de primer orden, así como del Teorema de existencia y unicidad correspondiente, tanto en una versión general como en su versión para sistemas de ecuaciones lineales homogéneas.

  • Blog

    Otros teoremas de funciones continuas - [Detalles]

    Estudio de teoremas derivados del teorema del valor intermedio

  • Blog

    Teorema del valor medio para integrales - [Detalles]

    Introducción al concepto del valor medio para integrales.

  • Blog

    Problemas de MCD, algortimo de Euclides e irreducibilidad en R[x] - [Detalles]

    Resolvemos problemas propuestos que involucran los temas del máximo compun divisor en los polinomios mediante el algortimo de Euclides y la factorización de polinomios ocupando el teorema del factor.

  • Evaluación

    Unidad V: Aplicaciones - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.

  • Evaluación

    Unidad V: Aplicaciones - Examen - [Detalles]

    En este examen se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.

  • Blog

    Buenos órdenes para cualquier conjunto - [Detalles]

    En esta entrada veremos mas equivalencias del axioma de elección, en particular veremos el teorema del buen orden.

  • Video

    Ejercicio todo número positivo tiene raíz cuadrada - [Detalles]

    En este video demostraremos que todo número positivo tiene una raíz cuadrada. ¿Cómo lo hacemos? ¡Con la ayuda del poderoso Teorema del Valor Intermedio!

  • Video

    Ley del sándwich y límites en situaciones indeterminadas - [Detalles]

    En este video demostramos la ley del sándwich y probamos un útil teorema que nos permite calcular y demostrar límites en situaciones indeterminadas.

  • Blog

    Teorema de reducción gaussiana - [Detalles]

    Demostarmos el teorema de reducción gaussiana, mostrando algoritmicamente que toda matriz puede ser llevada a una equivalente en forma escalonada reducida.

  • Blog

    Formas cuadráticas, propiedades, polarización y teorema de Gauss - [Detalles]

    Retomamos las formas bilineales y cuadráticas. Mostramos la identidad de polarización y sus consecuencias. Enunciamos el teorema de clasificación de Gauss.

  • Blog

    Teorema espectral para matrices simétricas reales - [Detalles]

    Enunciamos y demostramos el teorema espectral para transformaciones y matrices simétricas reales. Lo aplicamos a la clasificación de matrices positivas.

  • Video

    El maximo común divisor como combinación lineal entera - [Detalles]

    Demostramos un teorema que nos afirma que el máximo común divisor se puede escribir como una combinación lineal de sus dividendos. Hacemos uso de las propiedades de divisibilidad anteriormente vistas y después generalizamos el teorema para el máximo común divisor de un numero arbitrario de enteros. 

  • Video

    El mínimo común múltiplo y el máximo común divisor - [Detalles]

    Demostramos un teorema que relaciona el máximo común divisor (MCD) y el mínimo común múltiplo (MCM) de dos enteros "a", "b". El teorema nos dice que MCD(a,b)*MCM(a,b)=|a*b| 

  • Video

    Divisibilidad y el teorema fundamental de la aritmética - [Detalles]

    Usando el teorema fundamental de la aritmética vemos algunas propiedades sobre los exponentes de la descomposición en primos de un divisor y su dividendo. Esto también nos da otro método para obtener el máximo común divisor y el mínimo común múltiplo en términos de la factorización de primos. 

  • Video

    Teorema sobre polinomios y números complejos - [Detalles]

    Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio. 

  • Interactivo

    Primer Teorema de Thales - [Detalles]

    Demostramos el primer teorema de Thales

  • Interactivo

    Segundo Teorema de Thales - [Detalles]

    Demostramos el segundo teorema de Thales

  • Lección

    Caracterización de cuadriláteros cíclicos y teorema de Ptolomeo - [Detalles]

    Demostramos que por tres puntos no colineales pasa una única circunferencia, demostramos algunas propiedades de los cuadriláteros convexos, el teorema de Ptolomeo y su recíproco

  • Interactivo

    Teorema de Ptolomeo - [Detalles]

    Demostramos el teorema de Ptolomeo

  • Lección

    La línea de Simson y la circunferencia de los nueve puntos - [Detalles]

    Definimos la proyección de un punto sobre una recta, demostramos el teorema de la línea de Simson y su recíproco y el teorema de la circunferencia de los nueve puntos

  • Interactivo

    Teorema de la línea de Simson - [Detalles]

    Enunciamos el teorema de la línea de Simson

  • Lección

    Teorema de la bisectriz - [Detalles]

    Demostramos el teorema de la bisectriz

  • Interactivo

    Teorema de la bisectriz generalizada - [Detalles]

    Demostramos el teorema de la bisectriz generalizada

  • Lección

    Teorema de Ceva - [Detalles]

    Demostramos el teorema de Ceva y su forma trigonométrica

  • Interactivo

    Teorema de Pascal - [Detalles]

    Demostramos el teorema de Pascal

  • Video

    Teorema de existencia y unicidad para ecuaciones lineales de primer orden - [Detalles]

    Demostramos el Teorema de existencia y unicidad en su versión para ecuaciones lineales de primer orden

  • Video

    Teorema de existencia y unicidad. Dependencia continua de la condición inicial - [Detalles]

    Concluimos el estudio al Teorema de existencia y unicidad analizando la dependencia continua de la solución al problema de condición inicial respecto a los valores de la condición inicial

  • Video

    Teorema de existencia y unicidad para sistemas lineales homogéneos con coeficientes constantes - [Detalles]

    Probamos el teorema de existencia y unicidad para sistemas lineales homogéneos con coeficientes constantes.

  • Video

    Teorema de existencia y unicidad para sistemas lineales no homogéneos con coeficientes constantes - [Detalles]

    Probamos el teorema de existencia y unicidad para sistemas lineales NO homogéneos con coeficientes constantes.

  • Blog

    Teorema de Existencia y Unicidad - Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall - [Detalles]

    Se desarrolla una teoría preliminar necesaria para demostrar el teorema de existencia y unicidad, en dicha teoría se presentan las ecuaciones integrales, las funciones lipschitzianas y el lema de Gronwall

  • Blog

    Teorema de Existencia y Unicidad - Iterantes de Picard y Convergencia - [Detalles]

    Continuación con el desarrollo de una teoría preliminar para demostrar el teorema de existencia y unicidad, en este caso se presentan las iterantes de Picard y se hace un breve repaso de convergencia de series y sucesiones

  • Blog

    Teorema de existencia y unicidad para sistemas lineales - [Detalles]

    Se demuestra el teorema de existencia y unicidad para los casos particulares en los que los sistemas de ecuaciones diferenciales son lineales con coeficientes constantes tanto homogéneos como no homogéneos

  • Blog

    Teorema de Ptolomeo - [Detalles]

    Demostramos el teorema de Ptolomeo y con ayuda de este construimos al cuadrilátero cíclico, también resolveremos ejercicios.

  • Blog

    Teorema de Menelao - [Detalles]

    Demostramos el teorema de Menelao, su forma trigonométrica y mostramos su utilidad estableciendo varios resultados sobre colinealidad.

  • Blog

    Teorema de Ceva - [Detalles]

    Demostramos el teorema de Ceva y su forma trigonométrica, y derivamos otros resultados sobre concurrencia de rectas.

  • Blog

    Teorema de probabilidad total - [Detalles]

    Demostramos el teorema de probabilidad total, que es una herramienta muy útil a la hora de calcular probabilidades.

  • Blog

    Teorema de Bayes - [Detalles]

    Demostramos el teorema de Bayes, el cual relaciona distintas probabilidades condicionales y permite el cálculo de probabilidades de eventos que no son tan inmediatas.

  • Blog

    Teorema de Poincaré-Bendixson en el plano - [Detalles]

    Se enuncia el teorema de Poincaré-Bendixson cuyo resultado permite deducir si los sistemas no lineales estudiados presentan o no soluciones periódicas

  • Video

    Teorema de Poincaré - Bendixson en el plano - [Detalles]

    Enunciamos y demostramos el Teorema de Poincaré - Bendixson en el plano.

  • Video

    El teorema de Borsuk-Ulam en dimensión 2 - [Detalles]

    En este video demostramos el teorema de Borsuk-Ulam en dimensión 2.

  • Video

    Homología singular - campos vectoriales en la esfera - el teorema de la bola peluda - [Detalles]

    En este video demostramos que las únicas esferas que tienen campos vectoriales que no se hacen cero en ninguna parte son las de dimensión impar. Esto implica el teorema de la bola peluda, es decir, que todo campo vectorial sobre la esfera tienen un cero.

  • Cuestionario

    Mini-cuestionario: Teorema espectral para matrices simétricas reales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de lo que dice el teorema espectral para matrices simétricas reales.

  • Blog

    Principios de inducción y teoremas de recursión - [Detalles]

    Demostramos el princicipio de inducción y el teorema de recursión débil, por otro lado enunciamos el teorema de recursión fuerte y el principio de buen orden.

  • Blog

    Teorema fundamental de la aritmética e infinidad de números primos - [Detalles]

    Enunciamos y demostramos el teorema fundamental de la aritmética. Luego, lo usamos para ver que el conjunto de primos es infinito.

  • Blog

    Raíces de números complejos y raíces de la unidad - [Detalles]

    Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.

  • Blog

    Continuidad y diferenciabilidad de polinomios reales - [Detalles]

    Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.

  • Video

    El teorema de Lagrange - [Detalles]

    Se enuncia y demuestra el teorema de Lagrange.

  • Video

    El primer teorema de isomorfismo - [Detalles]

    Se enuncia y demuestra el primer teorema de isomorfismo de grupos.

  • Video

    El segundo teorema de isomorfismo - [Detalles]

    Se enuncia y demuestra el segundo teorema de isomorfismo de grupos.

  • Video

    El tercer teorema de isomorfismo - [Detalles]

    Se enuncia y demuestra el tercer teorema de isomorfismo de grupos.

  • Video

    El teorema de la correspondencia - [Detalles]

    Se enuncia y demuestra el teorema de la correspondencia.

  • Video

    Teorema de Cauchy - [Detalles]

    Se define la noción de p-grupo y se demuestra el Teorema de Cauchy.

  • Video

    Elementos de Euclides: Teorema 1 - [Detalles]

    En este video cubrimos el Teorema 1 de Los Elementos de Euclides. Aquí se realiza la construcción de un triángulo equilátero.

  • Video

    Los Elementos de Euclides: Teorema 1 - [Detalles]

    En este video cubrimos el Teorema 1 de Los Elementos de Euclides. Aquí se realiza la construcción de un triángulo equilátero.

  • Video

    Los Elementos de Euclides: Teorema 2 - [Detalles]

    En este video cubrimos el Teorema 2 de Los Elementos de Euclides. Aquí se realiza la construcción de un segmento en un punto dado, igual a un segmento dado.

  • Video

    Los Elementos de Euclides: Teorema 5 - [Detalles]

    En este video cubrimos el Teorema 5 de Los Elementos de Euclides. Aquí se prueba que en todo triángulo isósceles, los ángulos en la base son iguales entre sí, y además si prolongamos los lados iguales, los ángulos situados bajo la base también son iguales entre sí.

  • Video

    Los Elementos de Euclides: Teorema 6 - [Detalles]

    En este video cubrimos el Teorema 6 de Los Elementos de Euclides. Aquí se demuestra que si en un triángulo dos de sus ángulos son iguales, entonces los lados opuestos a dichos ángulos son iguales entre sí.

  • Video

    Los Elementos de Euclides. Teorema 7 - [Detalles]

    En este video cubrimos el Teorema 7 de Los Elementos de Euclides. Aquí se demuestra que no se pueden levantar sobre una misma recta otras dos rectas iguales respectivamente a dos rectas dadas.

  • Video

    Los Elementos de Euclides: Teorema 8 - [Detalles]

    En este video cubrimos el Teorema 8 de Los Elementos de Euclides. Aquí se demuestra el criterio de congruencia de triángulos LADO - LADO - LADO.

  • Video

    Los Elementos de Euclides: Teorema 9 - [Detalles]

    En este video cubrimos el Teorema 9 de Los Elementos de Euclides. Aquí se realiza la construcción de la bisectriz.

  • Video

    Los Elementos de Euclides: Teorema 10 - [Detalles]

    En este video cubrimos el Teorema 10 de Los Elementos de Euclides. Aquí realizamos la construcción de la mediatriz.

  • Video

    Los Elementos de Euclides: Teorema 11 - [Detalles]

    En este video cubrimos el Teorema 11 de Los Elementos de Euclides. Aquí se realiza la construcción de la recta perpendicular a una recta dada y en un punto de ella.

  • Video

    Los Elementos de Euclides: Teorema 12 - [Detalles]

    En este video cubrimos el Teorema 12 de Los Elementos de Euclides. Aquí se realiza la construcción de la perpendicular a una recta dada, por un punto no perteneciente a la recta dada

  • Blog

    Álgebra Moderna I: Cuarto Teorema de Isomorfía - [Detalles]

    A partir de ilustraciones con retículas, en esta entrada se introduce al cuarto teorema de Isomorfía. El cual nos encargaremos de demostrar a lo largo de la sección y ejemplificar trabajando sobre el grupo diédrico.

  • Video

    Los Elementos de Euclides: Teorema 13 - [Detalles]

    En este video cubrimos el Teorema 13 de Los Elementos de Euclides. Aquí se demuestra que al levantarse una recta sobre otra se forman ángulos tales que cada uno de ellos es de 90° (es decir, cada uno de ellos es recto) o bien son suplementarios (es decir, suman 180°, suman dos rectos)

  • Video

    Los Elementos de Euclides: Teorema 15 - [Detalles]

    En este video cubrimos el Teorema 15 de Los Elementos de Euclides. Aquí se demuestra que los ángulos opuestos por el vértice son iguales.

  • Video

    Los Elementos de Euclides: Teorema 16 - [Detalles]

    En este video cubrimos el Teorema 16 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, un ángulo externo es mayor que cada uno de los internos y opuestos a él.

  • Video

    Los Elementos de Euclides: Teorema 17 - [Detalles]

    En este video cubrimos el Teorema 17 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo la suma de dos cualesquiera de sus ángulos es menor que dos rectos (es decir, es menor a 180°).

  • Video

    Los Elementos de Euclides: Teorema 18 - [Detalles]

    En este video cubrimos el Teorema 18 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, a mayor lado se opone mayor ángulo.

  • Video

    Los Elementos de Euclides: Teorema 23 - [Detalles]

    En este video cubrimos el Teorema 23 de Los Elementos de Euclides. Aquí se realiza la construcción sobre una recta dada y en un punto de ella, de un ángulo rectilíneo igual a un ángulo dado.

  • Video

    Los Elementos de Euclides: Teorema 28 - [Detalles]

    En este video cubrimos el Teorema 28 de Los Elementos de Euclides. Aquí se demuestra que si al incidir una recta sobre otras dos hace los ángulos correspondientes iguales, o los ángulos conjugados internos suplementarios, entonces las dos últimas rectas son paralelas.

  • Video

    Los Elementos de Euclides: Teorema 29 - [Detalles]

    En este video cubrimos el Teorema 29 de Los Elementos de Euclides. Aquí se demuestra la congruencia de los ángulos alternos internos y de los ángulos correspondientes. Además, que los ángulos conjugados internos son suplementarios.

  • Video

    Los Elementos de Euclides: Teorema 31 - [Detalles]

    En este video cubrimos el Teorema 31 de Los Elementos de Euclides. Aquí se realiza la construcción de la recta paralela a una recta dada, por un punto dado.

  • Video

    Los Elementos de Euclides: Teorema 33 - [Detalles]

    En este video cubrimos el Teorema 33 de Los Elementos de Euclides. Aquí se demuestra que las rectas que unen por los extremos y en el mismo lado, rectas iguales y paralelas, son también iguales y paralelas.

  • Video

    Los Elementos de Euclides: Teorema 34 - [Detalles]

    En este video cubrimos el Teorema 34 de Los Elementos de Euclides. Aquí se demuestra que en todo paralelogramo, los lados opuestos son iguales, los ángulos opuestos son iguales; y además que cualquier diagonal divide al paralelogramo en dos triángulos iguales.

  • Blog

    Álgebra Moderna I: Teorema de Cayley - [Detalles]

    A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley

  • Video

    Los Elementos de Euclides: Teorema 37 - [Detalles]

    En este video cubrimos el Teorema 37 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que están sobre la misma base y entre las mismas paralelas tienen también áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 38 - [Detalles]

    En este video cubrimos el Teorema 38 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que tienen bases iguales y que están entre las mismas paralelas tienen áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 39 - [Detalles]

    En este video cubrimos el Teorema 39 de Los Elementos de Euclides. Aquí se demuestra que si triángulos iguales están sobre la misma base y en el mismo lado, entonces también están entre las mismas paralelas.

  • Video

    Los Elementos de Euclides: Teorema 40 - [Detalles]

    En este video cubrimos el Teorema 40 de Los Elementos de Euclides. Aquí se demuestra que triángulos iguales, que están sobre bases iguales y en el mismo lado, también están entre las mismas paralelas.

  • Video

    Los Elementos de Euclides: Teorema 42 - [Detalles]

    En este video cubrimos el Teorema 42 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, en un ángulo dado y con un área igual al área de un triángulo dado.

  • Video

    Los Elementos de Euclides: Teorema 43 - [Detalles]

    En este video cubrimos el Teorema 43 de Los Elementos de Euclides. Aquí trabajamos con una propiedad de los complementos de los paralelogramos.

  • Video

    Los Elementos de Euclides: Teorema 44 - [Detalles]

    En este video cubrimos el Teorema 44 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo sobre una recta dada, con un ángulo igual a un ángulo dado, y cuya área sea igual al área de un triángulo dado.

  • Video

    Los Elementos de Euclides: Teorema 45 - [Detalles]

    En este video cubrimos el Teorema 45 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, que tenga un área igual al área de un cuadrilátero dado y con un ángulo igual a un ángulo dado.

  • Video

    Los Elementos de Euclides: Teorema 46 - [Detalles]

    En este video cubrimos el Teorema 46 de Los Elementos de Euclides. Aquí se realiza la construcción de un cuadrado cuyo lado es igual a un segmento dado.

  • Video

    Ejercicio Intervalos anidados - [Detalles]

    En este video exploramos el Teorema de los Intervalos Anidados. Este teorema, una joya en el análisis real, nos habla de la intersección de una sucesión de intervalos cerrados y su misterioso comportamiento.

  • Video

    Ejercicio Teorema de la Función Inversa - [Detalles]

    En este video, aplicaremos el teorema de la función Inversa para demostrar que, si una función $f$ posee una primitiva, entonces su función inversa también la tiene.

  • Blog

    Teorema de Cantor-Schröder-Bernstein - [Detalles]

    Se enuncia y demuestar el teorema de Cantor-Schröder-Bernstein

  • Blog

    Problemas de formas bilineales, cuadráticas y teorema de Gauss - [Detalles]

    En esta entrada veremos un par de problemas para seguir repasando formas bilineales y cuadráticas y luego veremos al teorema de Gauss en acción.

  • Blog

    Introducción a forma canónica de Jordan - [Detalles]

    En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.

  • Blog

    Existencia de la forma canónica de Jordan para nilpotentes - [Detalles]

    Enunciaremos el teorema de la forma canónica de Jordan para matrices nilpotentes. Este es un teorema de existencia y unicidad. En esta entrada demostraremos la parte de la existencia.

  • Blog

    Valor absoluto. Desigualdad del triángulo - [Detalles]

    Estudio del concepto valor absoluto y la desigualdad del triángulo con algunas de sus consecuencias.

  • Blog

    Axioma del supremo y sus aplicaciones - [Detalles]

    Estudio del concepto de completitud en los números reales, el axioma del supremo y sus consecuencias.

  • Diapositivas

    Diapositivas de subconjuntos del plano y espacio cartesiano - [Detalles]

    En estas diapositivas sirve de retroalimentación respecto a los temas 2 temas anteriores, son un repaso de esteos subconjuntos generados por una condición dentro del plano cartesiano o dentor del espacio cartesiano.

  • Diapositivas

    Diapositivas sobre producto punto - [Detalles]

    Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.

  • Video

    Producto triple - [Detalles]

    Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores. 

  • Video

    Ecuaciones del plano - [Detalles]

    Vemos la ecuación para un plano en el espacio tridimensional, vemos la forma de la ecuación paramétrica y de la ecuación general del plano. También vemos como dar la ecuación del plano a partir de tres puntos que pasen por el plano y como obtener el vector normal al plano. 

  • Curso

    COMAL: Álgebra Moderna I - [Detalles]

    Cubrimos el temario oficial de la materia Álgebra Moderna I. Tenemos notas del curso, videos y cuestionarios para práctica. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522..

  • Video

    El grupo fundamental del círculo - parte 1 - [Detalles]

    En este video comenzamos el estudio del grupo fundamental del círculo.

  • Video

    El número de hojas de un cubriente y su grupo fundamental - [Detalles]

    En este video demostramos que el número de hojas de un cubriente (con espacio base y espacio cubriente arco-conexos) está en correspondencia con el número de clases laterales de la imagen del grupo fundamental del espacio cubriente, en el grupo fundamental del espacio base.

  • Blog

    Algebra Moderna I: Operación binaria - [Detalles]

    El objetivo de esta nota es definir el concepto de "operación binaria" dentro del Algebra Moderna. Así mismo, dejar definida la notación del concepto que se adoptará a lo largo de las notas del curso. Y por ultimo se ejemplifican algunas formas de construir este tipo de operaciones.

  • Blog

    Nota 26. Propiedades de $\mathbb{R}^n$ - [Detalles]

    En la siguiente nota veremos algunas propiedades de $\mathbb{R}^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb{R}$ por cualquier vector de $\mathbb{R}^n$ nos da el neutro aditivo del espacio vectorial, y que la multiplicación de cualquier escalar por el neutro aditivo de $\mathbb{R}^n$, es el mismo neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, denotado por $\tilde{v}$ es de hecho $(-1)v$.

  • Blog

    Propiedades del producto cartesiano (parte II) - [Detalles]

    En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

  • Video

    El cuello y la circunferencia - [Detalles]

    Descripción: Definimos el cuello y la circunferencia de una gráfica. A modo de ejemplo calculamos dichos parámetros para la gráfica de Petersen. También probamos una cota inferior de la circunferencia en términos del grado mínimo, y una cota superior del cuello en términos del diámetro.

  • Práctica

    Q-learning en el ambiente del Frozen Lake - [Detalles]

    Se presenta el algoritmo de aprendizaje por refuerzo Q-learning y se aplica al ambiente del Frozen Lake del gimansio OpenAI.

  • Video

    Ingeniería de software, Crisis del software - [Detalles]

    Crisis del software - ¿Cómo surge la ingeniería del software? Antecedentes y precursores. Cuáles eran las limitaciones al crear y replicar software.

  • Video

    Área de Figuras Irregulares - [Detalles]

    En este video (basado en el libro de Tom Apostol) se comenta un ejemplo elocuente del cálculo del área de cierta figura geométrica irregular, considerando aproximaciones por defecto y por exceso. Este video será exhibido y comentado en la clase del lunes 20 de septiembre de 2021.

  • Blog

    Aplicaciones del teorema espectral, bases ortogonales y más propiedades de transformaciones lineales - [Detalles]

    None

  • Video

    Propiedades del combinatorio - [Detalles]

    Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.

  • Video

    División sintética - [Detalles]

    Primero vemos un teorema que nos ayudara para entender la división de polinomios, ya que nos dice que dados los polinomios "a(x), b(x)", existen polinomios únicos tal que "a(x)=b(x)*q(x)+r(x)" (los detalles los vemos en el video). Después vemos el algoritmo de la división para polinomios, hacemos un ejemplo usando los pasos del algoritmo de la división y obtenemos los polinomios "q(x), r(x)". 

  • Video

    Teorema del Residuo - [Detalles]

    Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios. 

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 2) - [Detalles]

    Definimos el Wronskiano de un subconjunto de soluciones a un sistema lineal homogéneo. Además definimos cuándo este subconjunto de soluciones es linealmente dependiente o independiente. Finalmente demostramos un teorema que relaciona estos dos conceptos.

  • Video

    Solución general al sistema lineal no homogéneo. - [Detalles]

    Enunciamos y probamos un teorema que nos dice cómo encontrar la solución general a un sistema lineal no homogéneo con la ayuda del sistema homogéneo asociado.

  • Blog

    Semejanza de triángulos - [Detalles]

    Demostramos los criterios de semejanza para triángulos con la ayuda del teorema de Thales y resolvemos algunos ejercicios.

  • Blog

    Criterio de comparación y comparación en el limite - [Detalles]

    Estudio del teorema de comparación y el criterio de comparación en el limite para series.

  • Blog

    Sistemas lineales homogéneos con coeficientes constantes – Valores propios repetidos - [Detalles]

    Se finaliza el método de valores y vectores propios con el caso en el que los valores propios de la matriz del sistema son algunos repetidos y se presenta el teorema de Cayley-Hamilton

  • Blog

    Variables aleatorias continuas - [Detalles]

    Presentamos el segundo tipo de variables aleatorias que son las continuas tomando un soporte infinito no numerable así como mostramos la relación de la función de masa con la función de distribución relacionado con el teorema fundamental del cálculo.

  • Video

    El homomorfismo inducido por un cubriente - [Detalles]

    En este video demostramos que el homomorfismo inducido en grupos fundamentales por una proyección cubriente es inyectivo. Este resultado es una consecuencia del teorema de levantamiento de homotopías.

  • Video

    El teorema de clasificación de cubrientes - parte 1 - [Detalles]

    En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un cubriente tal que su grupo fundamental es isomorfo a H.

  • Video

    El teorema de clasificación de cubrientes - parte 2 - [Detalles]

    En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un único cubriente tal que su grupo fundamental es isomorfo a H.

  • Video

    Transformaciones de cubierta - parte 2 - [Detalles]

    En este video demostramos el teorema que relaciona el grupo de transformaciones de cubierta de un cubriente con el grupo fundamental del espacio base.

  • Video

    Homología singular - la sucesión exacta de la tercia - [Detalles]

    En este video deducimos una sucesión exacta larga que involucra grupos de homología relativas de tres espacios Z contenido en Y y Y contenido en X. Esta sucesión es muy parecida a la sucesión exacta larga de la pareja y se deduce usando el teorema fundamental del álgebra homológica.

  • Blog

    Problemas de ecuaciones en congruencias y teorema chino del residuo - [Detalles]

    Resolvemos una serie de ejercicios de ecuaciones lineales de congruencias.

  • Blog

    Ecuaciones cuadráticas complejas - [Detalles]

    Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.

  • Blog

    Desigualdades de polinomios - [Detalles]

    Desarrollamos herramientas para poder resolver problemas del orden en el anillo de los polinomios y para que valores se cumplen estas relaciones de orden asimismo se da el teorema de la factorización de polinomios reales.

  • Video

    Producto directo de grupos - parte 2 - [Detalles]

    Se continúa el estudio del producto directo, se enuncia y demuestra el teorema de factorización.

  • Blog

    35. Integrales de contorno II - [Detalles]

    En esta entrada veremos teoremas de integrales complejas muy importantes, tales como el Teorema Fundamental del Cálculo para integrales de contorno y el lema de Goursat.

  • Cuestionario

    35. Integrales de contorno II - [Detalles]

    Continuaremos con integrales de contorno, y haciendo camino hacia el Teorema Fundamental del Cálculo para funciones complejas.

  • Cuestionario

    36. Teorema Integral de Cauchy - [Detalles]

    Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.

  • Video

    Ejercicio Teorema del Valor Intermedio - [Detalles]

    Si $f$ valuada en $0$ es igual a $f$ valuada en $1$, entonces debe existir un valor $x$ tal que $f$ valuada en $x$ es igual a $f$ valuada en $x$ más $1/n$.

  • Video

    El grado de un vértice - [Detalles]

    En este video se definen la vecindad, el grado de un vértice y el grado promedio de una gráfica. Se prueba el primer teorema en Teoría de Gráficas, a saber, que la suma de todos los grados en una gráfica es el doble del número de aristas. Se definen y estudian también las gráficas regulares y la secuencia de grados de una gráfica.

  • Blog

    Polinomio mínimo de transformaciones lineales y matrices - [Detalles]

    En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar

  • Blog

    Formas cuadráticas hermitianas - [Detalles]

    El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades. Al final enunciaremos una versión compleja del teorema de Gauss.

  • Blog

    Unicidad de la forma de Jordan para nilpotentes - [Detalles]

    En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan, en este caso será un poco más cómodo trabajar con la forma matricial del teorema.

  • Blog

    Unicidad de la forma canónica de Jordan - [Detalles]

    En esta entrada enunciamos la versión para matrices del teorema de la forma canónica de Jordan (totalmente equivalente a la de transformaciones lineales) y nos enfocamos en mostrar la unicidad de la forma canónica de Jordan.

  • Blog

    Aplicaciones de la forma canónica de Jordan - [Detalles]

    En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

  • Video

    Derivación implícita - [Detalles]

    En este video se explica en método de derivación implícita, se muestra una justificación intuitiva del teorema que la respalda, y se ejemplifica en el cálculo de la pendiente de rectas tangentes.

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Video

    Combinatoria: el ejemplo del poker - [Detalles]

    Analizamos el póker como un ejemplo de combinatoria. Usando combinatoria damos un ranking para las diez manos del póker, las cuale son combinaciones de cartas que podemos hacer para ganar. Las manos son: escalera real, escalera de color, poker, full, color, escalera, trio, doble pareja, pareja y carta alta.

  • Video

    Principio del buen orden - [Detalles]

    Enunciamos el principio del buen orden: Todo subconjunto, no vacío, de los naturales tiene un elemento mínimo. Vemos algunos subconjuntos como ejemplos.  

  • Video

    El Principio del Buen Orden y el Principio de Inducción Matemática - [Detalles]

    Enunciamos que: El principio del buen orden es equivalente al Principio de inducción matemática. Indicamos la idea de cómo demostrar este enunciado, el cual se demostrará en los dos videos siguientes. 

  • Video

    El principio del buen orden implica el principio de inducción matemática - [Detalles]

    Siguiendo con lo visto anteriormente, demostramos que: El principio del buen orden (PBO) es equivalente al Principio de inducción matemática (PIM). En este video demostramos que PBO implica PIM. 

  • Video

    El principio de inducción implica el principio del buen orden - [Detalles]

    Siguiendo con lo visto anteriormente, demostramos que: El principio del buen orden (PBO) es equivalente al Principio de inducción matemática (PIM). En este video demostramos que PIM implica PBO. 

  • Video

    El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]

    Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo. 

  • Lección

    Algunas propiedades del triángulo - [Detalles]

    Demostramos el recíproco del quinto postulado y las expresiones para calcular el área de un triángulo rectángulo y un triángulo cualquiera

  • Lección

    Otros puntos y rectas notables del triángulo - [Detalles]

    Demostramos que la suma de los tres ángulos internos de un triángulo suman dos ángulos rectos y que las bisectrices de dos ángulos exteriores de un triángulo y la del ángulo interior no adyacente son concurrentes por tercias

  • Blog

    Cortaduras de Dedekind - [Detalles]

    Revisión del concepto de cortadura de Dedekind y su relación con el Axioma del supremo.

  • Blog

    Desigualdad del triángulo y lugar geométrico - [Detalles]

    Mostramos la desigualdad del triángulo y su reciproco y que la bisectriz de un ángulo y la mediatriz de un segmento son lugares geométricos.

  • Video

    Sistemas de dos ecuaciones de primer orden. Campo vectorial asociado - [Detalles]

    Asociamos un campo vectorial a un sistema de ecuaciones de primer orden con coeficientes constantes, y analizamos su relación con las curvas del plano fase del sistema.

  • Blog

    Integrales impropias del primer tipo - [Detalles]

    Introducción a las integrales impropias y del primer tipo.

  • Blog

    Integrales impropias del segundo tipo - [Detalles]

    Enseñanza a las integrales impropias del segundo tipo.

  • Blog

    Cálculo de volumenes por secciones transversales y por rotación alrededor de un eje - [Detalles]

    Cálculo del volumen de un solido de revolución a traves del metodo de secciones transversales.

  • Blog

    Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos - [Detalles]

    Se estudia el primer caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema lineal son todos reales y distintos

  • Blog

    Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos - [Detalles]

    Se continua con el segundo caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema son complejos

  • Blog

    Puntos de Brocard - [Detalles]

    Estudiamos algunas de las propiedades del primer y segundo punto de Brocard que son otro par de puntos conjugados isogonales del triangulo.

  • Blog

    Cuadrilátero circunscrito - [Detalles]

    Estudiamos algunas propiedades del cuadrilátero circunscrito, aquel cuyos lados son tangentes a una circunferencia dentro del cuadrilátero.

  • Video

    Volumen de un sólido de revolución - [Detalles]

    Se aborda el tema del cálculo del volumen de un sólido de revolución y se dan tres ejemplos.

  • Cuestionario

    Cuestionario de plano cartesiano y espacios geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.

  • Cuestionario

    Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de subconjuntos del plano y espacio cartesiano - [Detalles]

    Ponemos en práctica los temas de lugares geométricos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre funciones en el plano polar - [Detalles]

    Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre producto cruz - [Detalles]

    Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Interactivo

    Actividad Geogebra parábola - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la parábola, nos muestra como la parábola cambia al mover la recta directriz o el foco también como se modifica su ecuación, además de mostrarnos visualmente (y algebraicamente) que los puntos que forman a la parábola son efectivamente equidistantes de la directriz y del foco.

  • Diapositivas

    Diapositivas sobre traslación de ejes - [Detalles]

    Continuando con el tema de canónicas y ya sabiendo diferenciar cada una de éstas ahora aumentamos un poco la dificultad haciendo una traslación de los ejes, es decir, con cónicas fuera del origen ya teniendo éstas fuera del origen veremos que es muy sencillo calcular sus elementos báscios como el centro, focos y demás.

  • Video

    Coordenadas polares - [Detalles]

    Explicamos en que consiste el plano polar y las coordenadas polares. Damos la representación geométrica del radio y del ángulo en el plano polar. 

  • Video

    Cambio de coordenadas. La superficie del cono en coordenadas esféricas cilíndricas y cartesianas - [Detalles]

    Damos la representación para la superficie de un cono en los tres sistemas de coordenadas que hemos estudiado: cartesianas, cilíndricas y esféricas. Vemos que en algunos sistemas de coordenadas es más facil o sencillo representar la superficie del cono. 

  • Video

    Ejercicios Producto Triple - [Detalles]

    Realizamos varios ejercicios del producto triple, vemos en que caso el producto triple es cero, algunos ejercicios para obtener el volumen del paralelepípedo formado por los factores, y que significa que el producto triple sea cero, lo cual está relacionado a que los factores sean linealmente dependientes o independientes. 

  • Video

    Distancia punto recta - [Detalles]

    Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta. 

  • Video

    Ejercicios ecuación del plano - [Detalles]

    Hacemos ejercicios para obtener la ecuación de un plano. A partir de un punto en el plano y su vector normal, damos la ecuación paramétrica y general del plano. 

  • Video

    Semiespacios - [Detalles]

    Damos una breve definición de los semiespacio, los cuales son regiones del espacio separadas por un plano. Los semiespacios están caracterizados por una desigualdad relacionada a la ecuación del plano que los separa. 

  • Video

    Cambio de punto base para el grupo fundamental - [Detalles]

    En este video estudiamos la (in)dependencia del grupo fundamental respecto del punto base.

  • Video

    Álgebra homológica - naturalidad del homomorfismo de conexión - [Detalles]

    En este video demostramos la naturalidad del homomorfismo de conexión. Dicha naturalidad es en el sentido de la teoría de categorías.

  • Cuestionario

    Mini-cuestionario: Lema del intercambio de Steinitz - [Detalles]

    Mini-cuestionario para verificar el entendimiento del lema de intercambio de Steinitz y sus apliaciones.

  • Cuestionario

    Mini-cuestionario: Propiedades del polinomio característico - [Detalles]

    Mini-cuestionario para verificar el entendimiento de varias propiedades del polinomio característico.

  • Blog

    El principio del buen orden - [Detalles]

    Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.

  • Video

    Multiplicatividad del signo. Parte 1 - [Detalles]

    Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.

  • Blog

    Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]

    En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.

  • Blog

    Nota 22. Conteo. Ordenaciones. - [Detalles]

    En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.

  • Blog

    Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]

    En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.

  • Blog

    Álgebra Moderna I: Orden de un grupo - [Detalles]

    Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.

  • Blog

    Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]

    En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Blog

    Sucesor - [Detalles]

    En esta nueva sección hablaremos acerca del sucesor de un número natural. Este nuevo concepto nos permitirá definir a los conjuntos inductivos e iniciar a descubrir el concepto del infinito desde la perspectiva de la teoría de conjuntos.

  • Blog

    El lema de Zorn - [Detalles]

    En esta nueva sección veremos algunas otras equivalencias del axioma de elección, pero éstas en particular no son tan evidentes e incluso resultan sorprendentes. En muchas ramas de las matemáticas se apela a las formas equivalentes del axioma de elección que veremos en esta sección, es por ello que es importante tratarlas.

  • Capítulo del libro

    Expresiones algebraicas - [Detalles]

    En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.

  • Práctica

    Mundo del laberinto con tráfico - [Detalles]

    Se modifica el mundo del laberinto para introducir los algoritmos de búsqueda informada y problemas de búsqueda con una función de costo.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.

  • Video

    Principio Arquimediano - Análisis Matemático I - [Detalles]

    El Principio Arquimediano. En este video se eununcia y demuestra el Principio Arquimediano, como consecuencia del Axioma del Supremo. Se define la parte entera de un real y se demuestra que los números racionales son densos en los reales.

  • Video

    Funciones, Parte 2 - [Detalles]

    En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.

  • Sitio web

    COMAL: Inteligencia Artificial - [Detalles]

    Este curso revisa las principales áreas de la Inteligencia Artificial desde un enfoque teórico y práctico, que permita el diseño y la implementación de sistemas inteligentes para problemas específicos. Se busca abarcar una perspectiva general del área. El enfoque está basado en agentes racionales. Los temas que se abordan son algoritmos de búsqueda, métodos probabilísticos y modelos basados en aprendizaje estadístico. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.

  • Sitio web

    COMAL: Introducción a Ciencias de la Computación - [Detalles]

    Comenzamos con aspectos históricos y la arquitectura básica de una computadora. Luego, nos centramos en aprender a programar con el paradigma orientado a objetos, usando Java como lenguaje ilustrativo. Explicamos el funcionamiento de compiladores e intérpretes. Hablamos del diseño y programación de algoritmos en un lenguaje imperativo, para lo que se estudian variables, estructuras de control, clases y otros temas avanzados. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.

  • Video

    Elementos del paradigma estructurado - [Detalles]

    Elementos del paradigma estructurado – Qué es la programación estructurada, características, elementos y antecedentes. Qué son las estructuras de control y cómo organizarlas.

  • Video

    Elementos del paradigma estructurado, Ejemplo de diseño con Warnier Orr - [Detalles]

    Ejemplo de diseño con Warnier Orr – Breve ejemplo general del diseño de un problema con metodología Warnier Orr  Metodología, Warnier, Orr, Warnier Orr, paradigma, paradigma estructurado, JAVA, POO, estructuras de datos, estructuras de control, programación estructurada

  • Video

    Elementos del paradigma estructurado, Ejemplo de Warnier Orr a Java - [Detalles]

    Ejemplo de Warnier Orr a Java – Implementación del ejemplo con JAVA

  • Video

    Implementación de genéricos en Java, Contaminación del montículo - [Detalles]

    Contaminación del montículo - Regla Gólem. Qué hacer cuando se contamina el montículo.

  • Blog

    Problemas de rango de transformaciones y matrices - [Detalles]

    Resolvemos problemas de rango de matrices y transformaciones lineales usando sus propiedades, el teorema de rango nulidad y la desigualdad de Sylvester.

  • Blog

    Ortogonalidad y espacio ortogonal - [Detalles]

    Definimos y damos ejemplos de ortogonalidad y espacio ortogonal para subconjuntos de un espacio vectorial. Enunciamos y demostramos un teorema de dualidad.

  • Blog

    Proceso de Gram-Schmidt - [Detalles]

    Mostramos el teorema de Gram-Schmidt, que cambia un conjunto de vectores linealmente independientes a uno ortonormal. Vemos ejemplos de su aplicación.

  • Blog

    Matrices simétricas reales y sus eigenvalores - [Detalles]

    Enunciamos el teorema espectral para matrices simétricas reales. Mostramos que estas matrices tienen eigenvalores reales y otros dos resultados auxiliares.

  • Video

    Logica proposicional - Proposiciones condicionales - [Detalles]

    Se estudia el conector condicional. Definimos la implicación contrapositiva y la conversa. Se finaliza con un teorema que demuestra algunas equivalencias entre formas proposicionales.

  • Video

    Lógica Proposicional - Proposiciones Bicondicionales - [Detalles]

    Se estudia el conector bicondicional, se muestran ejemplos y se demuestra un teorema con varias equivalencias de formas proposicionales.

  • Video

    Composición de inyectivas es inyectiva - [Detalles]

    Usando el concepto de inyectividad, demostramos el teorema: Si dos funciones son inyectivas, entonces su composición es inyectiva.

  • Video

    Composición de suprayectivas es suprayectiva - [Detalles]

    Usando el concepto de suprayectividad, demostramos el teorema: Si dos funciones son suprayectivas, entonces su composición es inyectiva.

  • Video

    Operaciones elementales renglón - [Detalles]

    Se definen sistemas de ecuaciones lineales equivalentes, y se da un teorema que demuestra que aplicar operaciones elementales a un sistema, resulta en un sistema equivalente. Finalmente explicamos como al usar operaciones elementales se puede resolver un sistema de ecuaciones lineales.

  • Video

    Como calcular el máximo común divisor de dos enteros - [Detalles]

    Retomamos el teorema anterior sobre el máximo común divisor y el algoritmo de la división. Haciendo uso de estos dos resultados damos un método para calcular el máximo común divisor de dos enteros.  

  • Video

    Más propiedades de congruencias - [Detalles]

    Continuamos viendo propiedades sobre las congruencias. Vemos que si dos enteros expresados productos: "a*x", "a*y", son congruentes modulo "m", es equivalente a que los enteros "x", "y" sean congruentes modulo "m/MCD(a,m)", dándonos una relación entre el módulo y el máximo común divisor. Igualmente vemos algunas propiedades más que surgen de este teorema. 

  • Video

    Sistemas de residuos módulo $m$ - [Detalles]

    Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler. 

  • Video

    Cuantas soluciones tiene una congruencia lineal - [Detalles]

    Usando un ejemplo vemos cuantas soluciones llega a tener una ecuación lineal modulo "m", esto nos lleva a buscar un método para conocer el número de soluciones de una ecuación lineal. Haciendo uso de un teorema que demostramos durante el video, llegamos a un corolario el cual nos dice que una ecuación lineal modulo "m", tiene MCD(a,m) soluciones. 

  • Video

    Cómo calcular las raíces enésimas de un número - [Detalles]

    Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo. 

  • Video

    Criterio de Eisenstein para verificar que un Polinomio es irreducible - [Detalles]

    Presentamos el criterio de Eisenstein, el cual es un teorema que nos dice: Dado un polinomio con coeficientes en los enteros, si existe un numero primo que cumpla cierta propiedad (la cual detallamos en el video), entonces el polinomio es irreducible.  Usando este criterio podemos saber si un polinomio es reducible sobre los enteros. 

  • Interactivo

    Proposición I.5 - [Detalles]

    Demostramos el primer teorema de Thales

  • Interactivo

    Potencia de un punto - [Detalles]

    Enunciamos y demostramos el teorema de la potencia de un punto

  • Lección

    Ejercicios de segmentos dirigidos - [Detalles]

    Generalizamos la fórmula de Chasles para n puntos, demostramos el teorema de Euler y algunos resultados al respecto

  • Lección

    Rectas armónicas - [Detalles]

    Demostramos el teorema de la bisectriz generalizada, definimos cuándo dos rectas son armónicas conjugadas y demostramos algunos resultados que involucran este concepto

  • Lección

    Teorema de Desargues - [Detalles]

    Demostramos cuándo dos triángulos están en perspectiva

  • Video

    Ecuaciones diferenciales exactas - [Detalles]

    Comenzamos el estudio de las ecuaciones exactas, y demostramos un teorema que nos dice cuándo una ecuación es exacta y tiene solución

  • Video

    Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de existencia - [Detalles]

    Demostramos la existencia de una solución al problema de condición inicial para sistemas de ecuaciones de primer orden.

  • Video

    Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de unicidad - [Detalles]

    Demostramos la unicidad de la solución al problema de condición inicial para sistemas de ecuaciones de primer orden.

  • Blog

    Puntos de Fermat y triángulos de Napoleón - [Detalles]

    Demostramos el teorema de Napoleón y mostramos la relación que hay entre los triángulos de Napoleón y los puntos de Fermat.

  • Blog

    Segmento dirigido y teorema de Stewart - [Detalles]

    El concepto de segmento dirigido nos ayudara a desarrollar temas como los teoremas de Stewart, de Ceva y de Menelao y división armónica.

  • Blog

    Triángulos en perspectiva - [Detalles]

    Estudiamos algunos teoremas relacionados con triángulos en perspectiva, el principal de ellos, el teorema de Desargues.

  • Blog

    División armónica - [Detalles]

    Veremos algunos resultados básicos sobre división armónica, finalizamos mostrando el teorema de Feuerbach apoyándonos en la división armónica

  • Blog

    Polinomios de Taylor (Parte 1) - [Detalles]

    Estudio de los polinomios de Taylor: su definición formal y un teorema sobre ser una buena aproximación a una función dada.

  • Blog

    Teorema de continuidad de la probabilidad - [Detalles]

    Demostramos la propiedad de continuidad de la probabilidad, un resultado teórico que será útil en otras demostraciones.

  • Blog

    Transformaciones de variables aleatorias continuas - [Detalles]

    Mostramos dos métodos para realizar transformaciones de variables aleatorias. El primero es manipular directamente la función de distribución y la para el segundo método demostramos el teorema de cambio de variable, ambos métodos acompañados de ejemplos.

  • Diapositivas

    Diapositivas sobre ejemplos de inducción - [Detalles]

    Demostramos de 2 maneras distintas el teorema de la suma de Gauss y mostramos la manera compacta de externar una suma.

  • Video

    La propiedad de levantamiento de homotopías para cubrientes - [Detalles]

    En este video demostramos una de las propiedades más importantes de los espacio cubrientes: el teorema de levantamiento de homotopías. En videos posteriores veremos algunas consecuencias de este enunciado.

  • Cuestionario

    Mini-cuestionario: Formas cuadráticas, propiedades, polarización y teorema de Gauss - [Detalles]

    Mini-cuestionario para verificar el entendimiento de la teoría básica de formas cuadráticas, sus propiedades y la identidad de polarización

  • Blog

    Ideales en los enteros - [Detalles]

    Definimos a los ideales en los enteros. Vemos ejemplos, una definición alternativa, propiedades y un teorema de caracterización.

  • Blog

    Números primos y sus propiedades - [Detalles]

    Damos la definición de que un entero sea primo. Vemos dos equivalencias y propiedades para preparar el teorema fundamental de la aritmética.

  • Blog

    Problemas que usan teoremas de Fermat y Wilson - [Detalles]

    Resolvemos un ejercicio de congruencias, un ejercicio ocupando el teorema de Wilson y otro para aplicar el teorama de Fermat.

  • Blog

    Problemas de fórmula de De Moivre y raíces n-ésimas - [Detalles]

    Resolvemos problemas que ocupan el teorema de De Moivre para potencias de un número complejo y el cálculo de la raíz de un número complejo.

  • Video

    Grupo alternante (3) - [Detalles]

    Se demuestra el teorema principal de la sección: An es simple para todo n>=5. Para ello se prueban lemas preliminares.

  • Video

    Algunos teoremas de representaciones - [Detalles]

    Se motiva la necesidad de representar a un grupo como subgrupo de otro más conocido y se muestran algunos teoremas de representación incluido el teorema de Cayley.

  • Evaluación

    Unidad IV: Integración compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.

  • Blog

    42. Series de Taylor y series de Laurent - [Detalles]

    En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.

  • Blog

    Álgebra Moderna I: Asociatividad Generalizada y Leyes de los Exponentes - [Detalles]

    Dentro de las operaciones básicas de un grupo, podemos encontrar la asociatividad. La cual es tratada dentro de esta sección, además de algunas de sus consecuencias inmediatas y un teorema generalizando.

  • Blog

    Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]

    El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.

  • Cuestionario

    39. Teoremas de Weierstrass - [Detalles]

    Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.

  • Blog

    Suma en los naturales - [Detalles]

    En esta nueva entrada presentaremos la definición formal de la suma, veremos que, gracias al teorema de recursión, es única y demostraremos algunas de las propiedades que satisface usando el principio de inducción.

  • Video

    Ejercicio Ejemplos de L'Hôpital - [Detalles]

    En este video, nos sumergiremos en la aplicación de este teorema para resolver dos límites esenciales: el límite de \( \frac{\tan(x)}{x} \) y el límite de \( \frac{\cos^2(x) - 1}{x} \) cuando \( x \) tiende a 0.

  • Blog

    Caracterizaciones de diagonalizar - [Detalles]

    En esta entrada enunciaremos y demostraremos un teorema de caracterización de matrices diagonalizables, el cual nos ayudará a entender con más profundidad la diagonalizabilidad.

  • Blog

    Dualidad y representación de Riesz en espacios euclideanos - [Detalles]

    En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

  • Blog

    Proceso de Gram-Schmidt en espacios euclideanos - [Detalles]

    En esta entrada recordaremos el teorema de Gram-Schmidt el cual nos ayuda a encontrar una base ortonormal en un espacio euclidiano, y veremos ejemplos de su aplicación

  • Blog

    El teorema de clasificación de transformaciones ortogonales - [Detalles]

    En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

  • Blog

    Derivadas parciales de orden superior - [Detalles]

    Definimos qué son las derivadas parciales de orden superior para campos escalares. Damos ejemplos y un teorema de conmutatividad.

  • Blog

    Formas cuadráticas - [Detalles]

    Hacemos un repaso de lo que son las formas cuadráticas. Vemos la identidad de polarización, el teorema de Gauss y hablamos de positividad.

  • Blog

    Multiplicadores de Lagrange - [Detalles]

    Enunciamos y demostramos el teorema de multiplicadores de Lagrange para optimizar campos escalares bajo restricciones. Damos ejemplos de uso.

  • Blog

    Reducción de Gauss-Jordan - [Detalles]

    Hablamos de operaciones elementales, forma escalonada reducida y el teorema de reducción de Gauss-Jordan. Complementamos con ejemplos.

  • Blog

    Producto de matrices y composición de sus transformaciones - [Detalles]

    Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.

  • Blog

    El lema del intercambio de Steinitz - [Detalles]

    En un espacio vectorial los conjuntos independientes son "chicos" y los generadores son "grandes". El lema de intercambio de Steinitz formaliza esto.

  • Blog

    Introducción a espacio dual - [Detalles]

    Introducimos el concepto de espacio dual de un espacio vectorial. Hablamos de bases duales, del emparejamiento canónico y de la bidualidad canónica.

  • Blog

    Bases duales, recetas y una matriz invertible - [Detalles]

    Probamos que las formas coordenadas de una base son base del espacio dual. Vemos problemas prácticos de bases duales y una relación con matrices invertibles

  • Blog

    Propiedades del polinomio característico - [Detalles]

    Retomamos la definición de polinomio característico y vemos sus propiedades principales. Enunciamos dos teoremas fundamentales de matrices que lo usan.

  • Video

    Complemento de un conjunto - [Detalles]

    Damos la definición del conjunto complemento de un conjunto, y algunos ejemplos

  • Video

    Ejemplo de clase de equivalencia y partición - [Detalles]

    Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.

  • Video

    Funciones iguales - [Detalles]

    Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas

  • Video

    Cardinalidad - conjuntos infinitos - los naturales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.

  • Video

    Cardinalidad - los racionales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los racionales, y demostramos que este conjunto tiene la misma cardinalidad que los naturales.

  • Video

    Cardinalidad - los números reales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los reales, y demostramos que este conjunto NO tiene la misma cardinalidad que los naturales.

  • Video

    Inducción matemática (2) - [Detalles]

    Usamos el Principio de Inducción Matemática (PIM) para demostrar varios ejemplos de propiedades del tipo "P(n)". También hablamos sobre el Principio Generalizado de Inducción Matemática (PGIM) y vemos un ejemplo para mostrar su funcionamiento.

  • Video

    Factorial y combinatorio - [Detalles]

    Comenzamos dando la definición de la factorial de un número natural, así como la notación que se emplea para expresarlo. Damos la notación necesaria para entender la combinatoria, y también la fórmula del combinatorio n en k.

  • Video

    Triángulo de Pascal - [Detalles]

    Vemos cómo utilizar el triángulo de Pascal y explicamos como deducir sus coeficientes. También comparamos las propiedades del combinatorio con los coeficientes en el triángulo de Pascal. Todo esto nos ayuda para calcular la n-ésima potencia de un binomio.

  • Video

    La matriz de coeficientes de un sistema de ecuaciones - [Detalles]

    Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.

  • Video

    Divisibilidad algoritmo de la división (versión corregida) - [Detalles]

    Mostramos el algoritmo de la división: Un algoritmo mediante el cual podemos obtener el cociente y el residuo de una división, esto también nos sirve para expresar un entero (dividendo) en términos del divisor, cociente y residuo: (dividendo = cociente*divisor + residuo). 

  • Video

    Cuáles son todas las soluciones enteras de una ecuación diofántica - [Detalles]

    Demostramos que todas las soluciones de una ecuación lineal Diofántica tienen una forma en particular (expresada en términos de una solución particular y del MCD). Por lo que basta con conocer una solución particular para dar todas las posibles soluciones. 

  • Video

    i, el número imaginario - [Detalles]

    Presentamos el numero imaginario "i", el cual nos permite definir la raíz cuadrada de un numero negativo. Hablamos brevemente de sus propiedades, y lo más importante, que se cumple que el cuadrado del número imaginario es menos uno: "i^2=-1". 

  • Video

    Operaciones con el número $i$ - [Detalles]

    Definimos la suma de los términos que tienen al número i. Igualmente vemos cómo multiplicar números reales por términos que tengan el número i y por último vemos las potencias del número i. 

  • Video

    Propiedades del módulo de un número complejo - [Detalles]

    Damos y demostramos varias propiedades sobre el módulo de los complejos. Veremos que el módulo de un complejo es siempre positivo o igual a cero, y que es cero si y solo si el complejo es cero. También mostramos algunas desigualdades importantes. 

  • Video

    El grado de un polinomio - [Detalles]

    Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo. 

  • Video

    Divisibilidad de polinomios - [Detalles]

    Damos la definición del grado de un polinomio, el cual es el máximo exponente cuyo coeficiente es distinto de cero. Damos algunos ejemplos de polinomios y obtenemos su grado. También vemos dos propiedades sobre el grado de un polinomio. 

  • Video

    Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]

    Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias. 

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 1 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 1 del COMAL de Álgebra Lineal 1

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 2 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 2 del COMAL de Álgebra Lineal 1

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 3 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 3 del COMAL de Álgebra Lineal 1

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 4 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 4 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 1 - [Detalles]

    Examen de práctica de la Unidad 1 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 2 - [Detalles]

    Examen de práctica de la Unidad 2 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 3 - [Detalles]

    Examen de práctica de la Unidad 3 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 4 - [Detalles]

    Examen de práctica de la Unidad 4 del COMAL de Álgebra Lineal 1

  • Interactivo

    Proposición I.1 - [Detalles]

    Demostramos la proposición 1 del libro I de los Elementos de Euclides

  • Interactivo

    Proposición I.2 - [Detalles]

    Demostramos la proposición 2 del libro I de los Elementos de Euclides

  • Interactivo

    Proposición I.3 - [Detalles]

    Demostramos la proposición 3 del libro I de los Elementos de Euclides .

  • Interactivo

    Proposición I.7 - [Detalles]

    Demostramos la proposición 7 del libro I de los Elementos de Euclides

  • Interactivo

    Proposición I.12 - [Detalles]

    Demostramos la proposición 12 del libro I de los Elementos de Euclides

  • Interactivo

    Proposición I.16 - [Detalles]

    Demostramos la proposición 16 del libro I de los Elementos de Euclides

  • Lección

    Medianas, bisectrices, mediatrices y alturas - [Detalles]

    Damos las definiciones de varios puntos y rectas notables del triángulo y demostramos algunas de sus propiedades

  • Lección

    La recta de Euler - [Detalles]

    Demostramos algunas propiedades del circuncentro, centroide, incentro y ortocentro

  • Video

    Ángulos interiores - [Detalles]

    Definimos los conceptos de ángulo inscrito, ángulo semi-inscrito y ángulo interior en una circunferencia y demostramos que el ángulo semi-inscrito mide la mitad del ángulo central que subtiende el mismo arco

  • Lección

    Más de puntos armónicos y circunferencias ortogonales - [Detalles]

    Definimos el conjugado armónico del punto medio de un segmento, el ángulo de intersección de dos circunferencias y cuándo dos circunferencias son ortogonales y demostramos algunos resultados que involucran estos conceptos

  • Video

    Construcción de armónicos - [Detalles]

    Damos la construcción geométrica del cuarto armónico

  • Video

    Curvas integrales asociadas a un campo de pendientes - [Detalles]

    Definimos las curvas integrales del campo de pendientes asociado a nuestra ecuación diferencial dy/dt=f(t,y).

  • Video

    Curvas integrales y soluciones a una ecuación diferencial de primer orden - [Detalles]

    Revisamos la relación existente entre las curvas integrales del campo asociado a la ecuación de primer orden dy/dt=f(t,y) y sus soluciones.

  • Video

    Ecuaciones diferenciales no exactas. Método del factor integrante - [Detalles]

    Resolvemos el problema que surge cuando una ecuación no cumple con la definición de ser exacta.

  • Video

    Ecuaciones diferenciales no exactas. Método del factor integrante (Ejemplos) - [Detalles]

    Resolvemos un par de ecuaciones diferenciales no exactas por el método de factor integrante.

  • Video

    El oscilador armónico forzado - [Detalles]

    Resolvemos un ejemplo del oscilador armónico por el método de coeficientes indeterminados.

  • Video

    Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]

    Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero

  • Video

    Ecuación de Hermite - [Detalles]

    Resolvemos la ecuación diferencial de Hermite alrededor del punto ordinario t=0

  • Video

    Ecuación de Laguerre - [Detalles]

    Encontramos una solución a la ecuación diferencial de Laguerre cerca del punto singular regular t=0.

  • Video

    Ecuación de Bessel (Parte 1) - [Detalles]

    Hallamos la ecuación indicial para la ecuación de Bessel de orden lambda alrededor del punto singular regular t=0. Posteriormente encontramos una solución a la ecuación de Bessel de orden cero.

  • Video

    Ecuación de Legendre - [Detalles]

    Resolvemos la ecuación de Legendre alrededor del punto ordinario t=0, y hacemos mención de la relación que guarda esta ecuación con los polinomios que llevan el mismo nombre.

  • Video

    Ecuación de Chebyshev - [Detalles]

    Encontramos la solución general a la ecuación de Chebyshev alrededor del punto ordinario t=0.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]

    Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.

  • Video

    El oscilador armónico simple - [Detalles]

    Mediante un sistema de ecuaciones resolvemos la ecuación del oscilador armónico simple.

  • Blog

    Repaso Inducción matemática - [Detalles]

    Repaso del principio de inducción matemática y resolución de ejemplos.

  • Blog

    Propiedades de orden y sus consecuencias - [Detalles]

    Estudio del orden en los números reales y algunos resultados relacionados.

  • Blog

    Raíz cuadrada y desigualdades - [Detalles]

    Estudio del concepto de raíz cuadrada, algunos resultados y resolución de desigualdades con raíz cuadrada en los reales.

  • Blog

    Conjuntos infinitos - [Detalles]

    Revisión del concepto de cardinalidad de un conjunto, conjunto infinito y numerable.

  • Blog

    Concepto de función - [Detalles]

    Estudio del concepto de función y algunos ejemplos.

  • Blog

    El número de Euler - [Detalles]

    Estudio del número de Euler motivado mediante interés compuesto

  • Blog

    Definición intuitiva de límite de una función - [Detalles]

    Presentación de la idea intuitiva del límite de una función

  • Blog

    Definición formal de límite de una función - [Detalles]

    Definición formal del límite de una función

  • Blog

    Límite de una función a través de sucesiones - [Detalles]

    Estudio del límite de una función a través de sucesiones

  • Blog

    Teoremas sobre el límite de funciones - [Detalles]

    Revisión de teoremas del límite de una función

  • Blog

    Postulados de Euclides - [Detalles]

    Exponemos los postulados y las nociones comunes que Euclides enunció y las consecuencias del quinto postulado.

  • Blog

    Paralelogramos - [Detalles]

    Estudiaremos propiedades de los paralelogramos, también hablaremos de rectángulos, rombos, cuadrados y el segmento medio del triangulo.

  • Blog

    Puntos notables del triángulo - [Detalles]

    Demostramos que las medianas, las mediatrices, las bisectrices tanto internas como externas y las alturas de un triángulo son concurrentes.

  • Blog

    Ecuaciones diferenciales exactas - [Detalles]

    Desarrollo del método de resolución de las ecuaciones diferenciales exactas

  • Blog

    Ecuaciones diferenciales homogéneas con coeficientes constantes - [Detalles]

    Se estudia un método para resolver ecuaciones diferenciales homogéneas de segundo orden con coeficientes constantes de acuerdo al valor del discriminante de la ecuación auxiliar

  • Blog

    Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros - [Detalles]

    Se hace una generalización del método de variación de parámetros para resolver de manera general ecuaciones diferenciales no homogéneas de segundo orden

  • Blog

    Ecuaciones del Hermite, Laguerre y Legendre - [Detalles]

    Se aplican los métodos anteriores para resolver tres de seis ecuaciones diferenciales especiales

  • Video

    Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]

    Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.

  • Video

    Plano fase para sistemas lineales con valores propios reales distintos no nulos - [Detalles]

    Analizamos el plano fase para sistemas lineales con valores propios reales distintos no nulos, dependiendo del signo de los valores propios.

  • Video

    Plano fase para sistemas lineales con valores propios complejos - [Detalles]

    Analizamos el plano fase para sistemas lineales con valores propios complejos, dependiendo del signo de la parte real de los valores propios.

  • Blog

    Área entre curvas - [Detalles]

    Enseñanza sobre el cálculo del area delimitada entre dos funciones.

  • Blog

    Cálculo de volúmenes por medio de casquillos cilindricos - [Detalles]

    Cálculo del volumen de un solido de revolución por medio de casquillos cilindricos.

  • Blog

    Áreas de superficies de revolución - [Detalles]

    Enseñanza al calculo del área de una superficie de revolución.

  • Blog

    Criterio de la razón y el criterio de la raiz - [Detalles]

    Estudio del criterio de la raiz y la razoón como criterios de convergencia para las series.

  • Blog

    Criterio de la convergencia absoluta - [Detalles]

    Estudio del criterio de la convergencia absoluta.

  • Blog

    Área en coordenadas polares - [Detalles]

    Enseñanza al cálculo del área en coordenadas polares

  • Blog

    Valores y vectores propios para resolver sistemas lineales - [Detalles]

    Se desarrolla la teoría preliminar hacía el método de valores y vectores propios para resolver sistemas lineales homogéneos, así mismo se hace un breve repaso sobre éstos conceptos desde una perspectiva del álgebra lineal

  • Blog

    Sistemas lineales no homogéneos – Método de variación de parámetros - [Detalles]

    Se presenta una generalización del método de variación de parámetros para resolver sistemas de ecuaciones diferenciales lineales de primer orden no homogéneas con coeficientes constantes

  • Blog

    Triángulo medial y recta de Euler - [Detalles]

    Estudiamos propiedades del triángulo medial que nos permitirán deducir que el ortocentro, el centroide y el circuncentro son colineales.

  • Blog

    Triángulo ortico - [Detalles]

    Veremos que los ángulos del triangulo órtico son bisecados por los lados y las alturas de su triángulo de referencia y el problema de Fagnano

  • Blog

    Cuadrángulo ortocéntrico - [Detalles]

    Estudiamos algunas propiedades del cuadrángulo ortocéntrico, conjunto formado por los vértices de un triángulo y su ortocentro.

  • Blog

    Punto de Nagel - [Detalles]

    Estudiamos algunas propiedades del punto de Nagel y las de otros objetos relacionados con este punto, como la circunferencia de Spieker.

  • Blog

    Cuadrilátero ortodiagonal - [Detalles]

    Estudiaremos caracterizaciones y propiedades del cuadrilátero ortodiagonal y que pasa cuando este es cíclico.

  • Blog

    Localización de máximos y mínimos. Regiones de convexidad y puntos de inflexión. - [Detalles]

    Revisión del Criterio de la segunda derivada para encontrar máximos y mínimos de una función. Estudio de los conceptos convexidad, concavidad y puntos de inflexión.

  • Blog

    Problemas de optimización - [Detalles]

    Solución de algunos problemas de optimización haciendo uso del los criterios para hallar máximos y mínimos de una función.

  • Blog

    Polinomios de Taylor (Parte 2) - [Detalles]

    Estudio del residuo de los polinomios de Taylor, la forma de Lagrange y de Cauchy.

  • Blog

    Diferenciales - [Detalles]

    Estudio del concepto de diferencial de una función y algunas aplicaciones.

  • Blog

    Construcción de σ-álgebras - [Detalles]

    Desarrollamos el concepto de sigma-álgebra generado por una familia de subconjuntos del espacio muestral. Con este se construye el sigma-álgebra de los borelianos.

  • Blog

    Axioma del par y axioma de unión - [Detalles]

    None

  • Video

    Área bajo la curva - [Detalles]

    Se aborda el tema del concepto de la integral con las sumas de Riemann y se dan tres ejemplos de su aplicación.

  • Blog

    Las nulclinas en el estudio cualitativo de los sistemas no lineales - [Detalles]

    Se define el concepto de nulclinas y se usan como herramientas para la construcción de un esbozo general del plano fase de los sistemas no lineales

  • Video

    El péndulo con fricción - [Detalles]

    Revisamos el sistema de ecuaciones que modela el movimiento de un péndulo con fricción y estudiamos las diferencias que existen con el péndulo simple. Además esbozamos el plano fase del el sistema.

  • Video

    Mapeo de Poincaré - [Detalles]

    Hablamos un poco acerca del mapeo de primer retorno de Poincaré y relacionamos las secciones locales en un punto con las órbitas cerradas de un sistema de ecuaciones.

  • Cuestionario

    Mini-cuestionario: Forma escalonada reducida - [Detalles]

    Mini-cuestionario para verificar el entendimiento de la noción de que una matriz esté en forma escalonada reducida, y cómo se relaciona con la solución del sistema asociado.

  • Cuestionario

    Mini-cuestionario: Reducción gaussiana - [Detalles]

    Mini-cuestionario para verificar el entendimiento del procedimiento de reducción gaussiana

  • Diapositivas

    Diapositivas sobre proposiciones condicionales - [Detalles]

    Enunciamos otro tipo de proposiciones en matemáticas que son las condicionales o implicaciones que nos dan la relación de causa-efecto dentro del enunciaso, el material es acompañado de una lista de ejemplos.

  • Diapositivas

    Diapositivas sobre traducciones entre proposiciones - [Detalles]

    Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.

  • Diapositivas

    Diapositivas sobre demostraciones de bicondicionales - [Detalles]

    Mostramos las opciones por las cuales podemos demostrar una proposición bicondicional y la explicación lógica del por qué es posible hacerlo, la explicación se acompaña de 2 ejemplos cada uno respecto a las maneras de demostrar una proposición bicondicional.

  • Diapositivas

    Diapositivas sobre producto cartesiano - [Detalles]

    Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.

  • Diapositivas

    Diapositivas sobre composición de funciones y función inversa - [Detalles]

    Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.

  • Diapositivas

    Diapositivas sobre cardinalidad y conjuntos - [Detalles]

    Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.

  • Ilustración

    Ejemplo de funciones inyectivas, suprayectivas y biyectivas - [Detalles]

    Se deja un ejemplo para demostrar que una función es inyectiva, suprayectiva y biyectiva; y otro en donde no lo es para mayor comprensión del tema para el alumno.

  • Diapositivas

    Diapositivas sobre combinatoria - [Detalles]

    Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.

  • Diapositivas

    Diapositivas sobre ejemplos de combinatoria y propiedades del cálculo combinatorio - [Detalles]

    Hacemos un ejercicio básico sobre el cálculo combinatorio que son ejercicios sobre un mazo de póker y realizamos unas cálculos con etse material, asimismo demostramos 2 propiedades sobre números combinatorios y se dejan 2 ejercicios para el lector.

  • Diapositivas

    Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]

    Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.

  • Diapositivas

    Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]

    Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Diapositivas

    Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]

    Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.

  • Cuestionario

    Cuestionario de distancia - [Detalles]

    Ponemos en práctica el tema de distancia entre 2 puntos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de coordenadas polares - [Detalles]

    Ponemos en práctica el tema del sistema de coordenadas polares y como se grafica sobre este nuevo plano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar

  • Interactivo

    Actividad 1 Geogebra coordenadas polares - [Detalles]

    En esta primera actividad de geogebra interactiva nos muestra como en el plano polar se cambian las coordenadas a raíz de su longitud de radio y del grado al que estén puestos.

  • Interactivo

    Actividad 2 Geogebra coordenadas polares - [Detalles]

    En esta nueva actividad de geogebra interactiva seguimos planteando como se mueve sobre el plano polar una coordenada pero ahora también lo que se está implementando es el cálculo del punto medio, la intersección con los ejes polares y más propiedades.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Cuestionario

    Cuestionario sobre producto punto - [Detalles]

    Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre producto triple de vectores - [Detalles]

    Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.

  • Cuestionario

    Cuestionario sobre producto triple de vectores - [Detalles]

    Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre ecuaciones de planos en el espacio - [Detalles]

    Ponemos en práctica el tema de los planos en el espacio euclídeo y las ecuaciones de estos tanto de manera paramétrica, cuando conocemos 3 pu tos que forman parte del plano. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Interactivo

    Actividad Geogebra circunferencia - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la circunferencia, vemos como la ecuación de esta cónica cambia si movemos el centro de posición o al cambiar su radio.

  • Interactivo

    Actividad Geogebra elipse - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la elipse; al mover la posición de los focos cambia la figura de la elpse así como su ecuación canónica, además que nos muestra la propiedad que cumplen los puntos que pertenecen con la propiedad de pertenecer a la elipse.

  • Interactivo

    Actividad Geogebra hipérbola - [Detalles]

    Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la hipérbola, nos muestra como al cambiar de posición alguno de sus focos, asimismo nos muestra como cambia su ecuación y nos muestra de forma visual como éstos cumplen con la propiedad de la hipérbola.

  • Cuestionario

    Cuestionario sobre traslación de ejes - [Detalles]

    Ponemos en práctica el tema de las cónicas fuera del origen, el alumno a estas alturas debe ser capaz de identificar la cónica que se está presentando, sus elementos y su construcción dados sus elementos. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Simetría axial - [Detalles]

    Explicamos en que consiste la simetría axial, alrededor de un eje E. La cual describe que dado un punto Q, siempre existe otro punto P, tal que el eje E es la mediatriz del segmento PQ. Describimos esto de forma geométrica con imágenes en un plano. 

  • Video

    Simetría en el plano cartesiano - [Detalles]

    Extendemos la noción de simetría central y axial. Ahora definimos la simetría central y axial para un subconjunto F de puntos en el plano cartesiano, es decir, describimos lo que significa que un subconjunto del plano cartesiano tenga simetría central o axial. 

  • Video

    Ley de senos - [Detalles]

    Demostramos la Ley de Senos, la cual da una relación entre los lados y ángulos de triángulos no rectángulos. La ley de senos nos da una relación de la longitud de un lado de un triángulo al seno del ángulo opuesto. 

  • Video

    Graficar funciones en coordenadas polares - [Detalles]

    Vemos como graficar una función en el plano polar. Para mostrar un ejemplo tomamos una función del ángulo f(theta), y damos su grafica en el plano polar. 

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo. 

  • Video

    Ejemplo 3 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que el subconjunto de funciones constantes, que es subconjunto del conjunto de funciones, es un subespacio vectorial.  

  • Video

    Ejercicio 1 dependencia o independencia lineal - [Detalles]

    Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente. 

  • Video

    Producto punto - [Detalles]

    Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores. 

  • Video

    Producto cruz ( producto vectorial) - [Detalles]

    Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores. 

  • Video

    Semiplanos - [Detalles]

    Definimos los semiplanos, los cuales son regiones del plano cartesiano delimitados por una recta. Vemos su representación geométrica y como representarlos por desigualdad relacionada a la ecuación de la recta. 

  • Video

    Distancia entre dos rectas en el espacio - [Detalles]

    Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula. 

  • Video

    Distancia entre un plano y un punto - [Detalles]

    Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades. 

  • Curso

    COMAL: Álgebra Lineal I - [Detalles]

    Cubrimos el temario oficial de Álgebra Lineal con un fuerte uso de notas de blog y problemas. Hacia el final hacemos énfasis en cómo los temas se aplican en áreas como programación en Python, homología, cuántica, biología matemática, entre otros. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Curso

    COMAL: Álgebra Superior I - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior I viendo varios videos, ejemplos y presentaciones en el camino. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Curso

    COMAL: Álgebra Superior II - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior II viendo varios videos, ejemplos y presentaciones en el camino. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Curso

    COMAL: Geometría Moderna I - [Detalles]

    Cubrimos el temario oficial de Geometría Moderna I con el uso de notas, videos e interactivos de GeoGebra. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE103320.

  • Curso

    COMAL: Geometría Moderna I - [Detalles]

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Curso

    COMAL: Cálculo Diferencial e Integral I - [Detalles]

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Curso

    COMAL: Ecuaciones Diferenciales Notas - [Detalles]

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Curso

    COMAL: Ecuaciones Diferenciales Videos - [Detalles]

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Curso

    COMAL: Geometría Analítica I - [Detalles]

    Cubrimos el temario oficial de la materia Geometría Analítica I. Tenemos notas, videos y cuestionarios para cada tema. Además, en cada unidad hay guías de estudio y actividades de autoevaluación. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Curso

    COMAL: Álgebra Lineal II - [Detalles]

    Cubrimos el temario oficial de Álgebra Lineal II con un fuerte uso de notas de blog y problemas. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Video

    La homotopía de caminos rel 0,1 es una relación de equivalencia - [Detalles]

    En este video se continua preparando el camino para definir el grupo fundamental de un espacio topológico. El objetivo del video es mostrar que la relación de homotopía de caminos rel 0,1 es una relación de equivalencia.

  • Video

    Definición del grupo fundamental - [Detalles]

    En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.

  • Video

    El grupo fundamental de la n-esfera - [Detalles]

    En este video demostramos que el grupo fundamental de las esferas de dimensión al menos 2 es trivial. Este cálculo nos sigue dando herramientas para desarrollar intuición acerca del grupo fundamental.

  • Video

    Unicidad del levantamiento de funciones - [Detalles]

    En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).

  • Video

    El cubriente universal - parte 2 - [Detalles]

    En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.

  • Video

    Álgebra homológica - el lema de los cinco - [Detalles]

    En este video enunciamos y demostramos "el lema del cinco", el cual es un resultado fundamental y elemental en álgebra homológica. Este lema nos será muy útil más adelante.

  • Video

    Homología - el complejo de cadenas singulares - [Detalles]

    En este video definiremos el complejo de cadenas singulares usando funciones del n-simplejo estándar a un espacio topológico X.

  • Video

    Homología singular - el 0-ésimo grupo de homología - [Detalles]

    En este video veremos que el 0-ésimo grupo de homología singular es la suma de copias de los coeficientes, una por cada componente arco-conexa del espacio.

  • Video

    Homología singular - grupo fundamental vs primer grupo de homología: parte 1 - [Detalles]

    En este video demostramos algunos lemas preliminares que usaremos para demostrar que el abelianizado del grupo fundamental de X es isomorfo al primer grupo de homología de X, siempre que X sea arco-conexo.

  • Video

    Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]

    En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.

  • Video

    Homología singular - la homología de una esfera - [Detalles]

    En este video calcularemos la homología de una esfera. Este cálculo hará uso de la sucesión exacta del cociente, la cual, a su vez es consecuencia de muchos de los teoremas que ya hemos visto.

  • Curso

    COMAL: Álgebra Superior II - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior II con un fuerte uso de notas de blog y problemas. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Proyecto

    Proyecto: El sorteo del auto y matrices de transición - [Detalles]

    En este proyecto usamos ideas básicas de álgebra lineal para introducir el concepto de procesos estocásticos discretos usando un problema sobre el sorteo de un auto.

  • Cuestionario

    Mini-cuestionario: Combinaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento del concepto de combinaciones lineales.

  • Cuestionario

    Mini-cuestionario: Transformaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento del concepto y propiedades de transformaciones lineales.

  • Cuestionario

    Mini-cuestionario: Introducción al espacio dual - [Detalles]

    Mini-cuestionario para verificar el entendimiento del concepto de formas lineales y de espacio dual.

  • Cuestionario

    Mini-cuestionario: Ortogonalidad y espacio ortogonal - [Detalles]

    Mini-cuestionario para verificar el entendimiento del concepto de ortogonalidad relacionado con la dualidad.

  • Cuestionario

    Mini-cuestionario: Ortogonalidad y transformación transpuesta - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo se define la transformación transpuesta en términos del espacio dual y qué matriz la representa.

  • Cuestionario

    Mini-cuestionario: Ángulos, norma, distancia y desigualdad de Minkowski - [Detalles]

    Mini-cuestionario para verificar el entendimiento de varias nociones geométricas que salen a partir del producto interior.

  • Cuestionario

    Mini-cuestionario: Determinantes de vectores e independencia lineal - [Detalles]

    Mini-cuestionario para verificar el entendimiento de qué sucede en términos del determinante y la dependencia lineal.

  • Blog

    Introducción al curso y números naturales - [Detalles]

    Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.

  • Blog

    Definición del producto y sus propiedades básicas - [Detalles]

    Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Blog

    Problemas del orden en $\mathbb{N}$ - [Detalles]

    Descripción pendiente

  • Blog

    Compatibilidad del orden con las operaciones de los naturales - [Detalles]

    Proporcionamos una definición de orden equivalente relacionada a la operación suma en el conjunto de los números naturales.

  • Blog

    Problemas de compatibilidad del orden de los naturales con sus operaciones - [Detalles]

    Descripción pendiente

  • Blog

    Teoremas de Fermat y de Wilson - [Detalles]

    Motivamos, enunciamos y demostramos los teoremas de Fermat y de Wilson con problemas del tipo saber si una potencia de un número es congruente con otro o encontrar el residuo de una congruencia,

  • Blog

    La conjugación de números complejos - [Detalles]

    Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.

  • Blog

    La norma en los complejos - [Detalles]

    Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.

  • Blog

    Inmersión de R en R[x], grado y evaluación - [Detalles]

    Damos las definiciones principales y más escenciales del tema de polinomios como los son: raíz, grado, potencia de un polinomio; asimismo demostramos las propiedades más fundamentales de estos nuevos conceptos.

  • Blog

    Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]

    Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.

  • Video

    Permutaciones - un primer ejemplo - [Detalles]

    Pequeña motivación del concepto de permutación que definiremos formalmente en el siguiente video.

  • Video

    Multiplicatividad del signo. Parte 2 - [Detalles]

    Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.

  • Video

    Unicidad del elemento neutro y de inversos - [Detalles]

    Se demuestra que en un grupo, el elemento neutro es único, y para cada elemento, su inverso también es único.

  • Video

    Demostrando propiedades de subgrupos - [Detalles]

    Se presentan algunas propiedades que cumplen los subgrupos de un grupo: todo grupo es subgrupo de sí mismo, el unitario del neutro es subgrupo, todo subgrupo es un grupo.

  • Video

    Subgrupo generado por un subconjunto - parte 2 - [Detalles]

    Se da una caracterización del subgrupo generado por un conjunto en términos de palabras.

  • Video

    Grupos cíclicos - parte 1 - [Detalles]

    Se da la definición de grupo cíclico y se exploran algunas de sus propiedades, se demuestra que todos los subgrupos de un grupo cíclico son cíclicos y que hay subgrupos para cada divisor del orden de un grupo cíclico.

  • Video

    Producto directo de grupos - [Detalles]

    Se da la definición del producto directo de grupos y se demuestran algunas propiedades.

  • Video

    Producto directo de grupos - parte 3 - [Detalles]

    Se demuestra que el producto de subgrupos normales es subgrupo normal del producto y que el cociente es isomorfo a un producto de cocientes.

  • Video

    G-conjuntos - [Detalles]

    Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.

  • Cuestionario

    8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]

    Revisemos un poco del concepto de sucesión en los complejos mediante un ejemplo concreto.

  • Blog

    1. Introducción a los números complejos - [Detalles]

    En esta entrada de blog se presentan problemas que motivan la necesidad del sistema de números complejos, en particular los problemas de solucionar ecuaciones de segundo, tercer y cuarto grado.

  • Blog

    8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]

    Estudiaremos las sucesiones de números complejos, el cual resulta un objeto fundamental para el estudio del concepto de las aproximaciones, utilizando los conceptos de distancia que definimos en la entrada anterior e introducimos el "límite de una sucesión" y cuando puede o no existir.

  • Blog

    9. Continuidad en un espacio métrico - [Detalles]

    Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.

  • Blog

    11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]

    Finalizando la unidad, vamos a estudiar el concepto del $\infty$, la manera será construyendo lo que llamaremos el "Plano Complejo Extendido" y analizando sus propiedades.

  • Evaluación

    Unidad I: Introducción y preliminares - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Cuestionario

    21. Logaritmo complejo y potencias complejas - [Detalles]

    Veamos unas preguntitas acerca de la definición del logaritmo complejo y un poco de potencias también.

  • Cuestionario

    24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]

    Revisemos ahora aspectos geométricos acerca de las funciones, o transformaciones $T:\mathbb{C} \longrightarrow \mathbb{C}$.

  • Evaluación

    Unidad I: Introducción y preliminares - Examen - [Detalles]

    En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Video

    Introducción al Cálculo - [Detalles]

    Se habla de la historia del cálculo y una noción intuitiva de límite

  • Blog

    12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]

    Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.

  • Blog

    24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]

    Ya hablamos bastante acerca de las funciones complejas, su continuidad y derivadas, ahora revisaremos un poco más afondo la geometría, por medio de las transformaciones, veremos varios tipos de estas y como afectan al plano y a subconjuntos de este.

  • Evaluación

    Examen final - [Detalles]

    En este examen se evalúan temas de las cinco unidades del curso.

  • Guía de estudio

    Examen final - Soluciones - [Detalles]

    Se presentan las soluciones detalladas al examen final del curso.

  • Video

    Introducción: ¿Qué son las ciencias de la computación?, Computación - [Detalles]

    1.1 Computación - Breve introducción a la materia y presentación de algunos conceptos clave que serán utilizados a lo largo del curso como computadora, computación y programa.

  • Cuestionario

    26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]

    Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.

  • Video

    Ejercicio Inducción (Suma de impares) - [Detalles]

    En este video, utilizaremos el poderoso principio de inducción matemática para desvelar la verdad detrás de esta intrigante serie. Paso a paso, te guiaremos a través del razonamiento y la lógica necesarios, permitiéndote entender no sólo el resultado final, sino también el proceso que lleva a él.

  • Blog

    Nota 15. Relaciones de equivalencia y particiones. - [Detalles]

    En esta nota veremos cómo las relaciones de equivalencia generan particiones, y concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia. Con esta nota concluimos la primera unidad del curso.

  • Blog

    Nota 18. El principio de inducción matemática. - [Detalles]

    En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.

  • Blog

    Nota 25. Espacios vectoriales - [Detalles]

    Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.

  • Blog

    Álgebra Moderna I: Palabras. - [Detalles]

    Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.

  • Blog

    Álgebra Moderna I: Factorización Completa - [Detalles]

    Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Blog

    Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]

    En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.

  • Blog

    Álgebra Moderna I: Acciones - [Detalles]

    Para esta sección, necesitamos tomar el concepto de acción. Hemos estado usando el verbo actuar para referirnos a esta transformación que sucede al operar un a en G y otro elemento, sea del mismo G o de las clases laterales. La realidad es que ya usar actuar da una idea de lo que estamos queriendo decir. Estamos usando un elemento de un grupo para transformar un elemento de otro.

  • Video

    Diseño y programación orientada a objetos; Introducción - [Detalles]

    1.1 Diseño y programación orientada a objetos introducción - Presentación del paradigma así como de las ventajas y características de la POO.

  • Video

    Introducción a la programación con Java. Elementos teóricos; Análisis de código - [Detalles]

    1.5 Análisis de código - Qué significan las fases del análisis de código (léxico, sintáctico y semántico) y pasos a seguir.

  • Video

    Los Elementos de Euclides: Definiciones - [Detalles]

    En este video cubrimos las Definiciones del libro I de Los Elementos de Euclides.

  • Video

    Los Elementos de Euclides: Nociones comunes - [Detalles]

    En este video cubrimos las Nociones Comunes del libro I de Los Elementos de Euclides.

  • Blog

    El complemento de un conjunto - [Detalles]

    En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

  • Blog

    Órdenes totales - [Detalles]

    En esta sección hablaremos acerca de ordenes totales, retomaremos el concepto de orden parcial y orden parcial estricto y añadiremos el concepto de ser comparable. Además hablaremos acerca del orden lexicográfico vertical y horizontal.

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Blog

    Producto en los naturales - [Detalles]

    Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.

  • Blog

    Conjuntos finitos (parte II) - [Detalles]

    En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.

  • Video

    Ejercicio Función discontinua en todas partes - [Detalles]

    Embárcate en un viaje por los misterios matemáticos mientras exploramos la famosa función de Dirichlet. En este video, nos sumergiremos en la estructura y propiedades de esta curiosa función, demostrando paso a paso cómo es discontinua en todos los puntos del dominio real.

  • Video

    Ejercicio Derivación - [Detalles]

    En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.

  • Capítulo del libro

    Monomios y polinomios - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.

  • Capítulo del libro

    Nociones de trigonometría - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.

  • Capítulo del libro

    Funciones circulares - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos todo lo relacionado con las funciones circulares, como se comportan en cada caso especifico, cuales son los valores que llegan a tomar dependiendo del cuadrando donde se encuentren, para después abordar lo que son las identidades trigonométrica, los diferentes tipos que hay y para podemos utilizarlos.

  • Capítulo del libro

    Funciones circulares de suma y diferencias - [Detalles]

    En este capitulo de Cimientos Matemáticos daremos continuación al tema anterior, mostrando ahora mas propiedades de las funciones circulares, así como realizar el cálculo de la suma y resta de seno, coseno y tangente. Además, abordaremos las funciones circulares del doble de un número y la transformación de productos a sumas y viceversa de estas funciones trigonométricas.

  • Capítulo del libro

    Ecuaciones de las cónicas - [Detalles]

    En este capitulo de Cimientos Matemáticos exploraremos cuatro figuras importantes en este modulo: la circunferencia, la parábola, la elipse y la hipérbola, cada una con su propia identidad matemática. Estas ecuaciones son clave para comprender y modelar fenómenos diversos, enriqueciendo nuestra percepción del mundo.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 1 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 2 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 4, 5 y 6 del curso. Los conceptos que requieres saber son: Secuencia de grados. Algunas familias especiales: gráfica r-regular; gráfica de lineas; gráfica bipartita. Conceptos no totalmente formales: Operaciones: unión disjunta; suma de Zykov; producto cartesiano de G_1 □ G_2; producto directo de G_1 x G_2.

  • Cuestionario

    Cuestionario de los números naturales - [Detalles]

    Este es un cuestionario para repasar el Módulo 1 del texto "Cimientos Matemáticos". Se cubren temas como números naturales, mcm, MCD, números primos, factorización, etc.

  • Cuestionario

    Cuestionario de los números enteros - [Detalles]

    Este es un cuestionario para repasar el Módulo 2 del texto "Cimientos Matemáticos". Se cubren temas como números enteros, ley de los signos, multiplicación y división de números enteros, etc.

  • Cuestionario

    Cuestionario de las fracciones - [Detalles]

    Este es un cuestionario para repasar el Módulo 3 del texto "Cimientos Matemáticos". Se cubren temas como la suma, multiplicación, división de fracciones, etc.

  • Cuestionario

    Cuestionario de expresiones algebraicas - [Detalles]

    Este es un cuestionario para repasar el Módulo 4 del texto "Cimientos Matemáticos" donde se abarcan temas como: lenguaje algebraico, expresiones algebraicas, jerarquía de operaciones, monomios, polinomios, etc.

  • Cuestionario

    Cuestionario de ecuaciones y problemas - [Detalles]

    Este es un cuestionario para repasar el Módulo 5 del texto "Cimientos Matemáticos" donde se abarcan temas como: problemas que dan lugar a ecuaciones, solución de ecuaciones de primer grado, sistemas de ecuaciones 2x2 y 3x3, etc.

  • Cuestionario

    Cuestionario de monomios y polinomios - [Detalles]

    Este es un cuestionario para repasar el Módulo 6 del texto "Cimientos Matemáticos" donde se abarcan temas como: monomios, polinomios, ley de los signos, productos notables, etc.

  • Cuestionario

    Cuestionario de geometría elemental - [Detalles]

    Este es un cuestionario para repasar el Módulo 7 del texto "Cimientos Matemáticos" donde se abarcan temas como: la definición de punto, segmento, línea recta, circunferencia, ángulo, tipos de ángulos, tipos de rectas, etc.

  • Cuestionario

    Cuestionario de nociones de trigonometría - [Detalles]

    Este es un cuestionario para repasar el Módulo 8 del texto "Cimientos Matemáticos" donde se abarcan temas como: convertir ángulos a radianes y viceversa, semejanza de triángulos, distancia entre dos puntos, etc.

  • Cuestionario

    Cuestionario de funciones circulares - [Detalles]

    Este es un cuestionario para repasar el Módulo 9 del texto "Cimientos Matemáticos" donde se abarcan temas como: identidades trigonométricas, valores de las funciones circulares, etc.

  • Cuestionario

    Cuestionario de funciones circulares de suma y diferencia - [Detalles]

    Este es un cuestionario para repasar el Módulo 10 del texto "Cimientos Matemáticos" donde se abarcan temas como: transformación de productos a suma y viceversa, seno, coseno y tangente de sumas y diferencias, etc.

  • Cuestionario

    Cuestionario de ecuaciones de la línea recta - [Detalles]

    Este es un cuestionario para repasar el Módulo 11 del texto "Cimientos Matemáticos" donde se abarcan temas como: lugares geométricos y sus ecuaciones, punto-pendiente de una recta, forma general de la ecuación de la línea recta, etc.

  • Cuestionario

    Cuestionario de ecuaciones de cónicas - [Detalles]

    Este es un cuestionario para repasar el Módulo 12 del texto "Cimientos Matemáticos" donde se abarcan temas como: circunferencia, parábola, elipse, con sus respectivas propiedades cada una, etc.

  • Cuestionario

    Cuestionario de conjuntos y logica - [Detalles]

    Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.

  • Cuestionario

    Cuestionario de conjuntos importantes - [Detalles]

    Este es un cuestionario para repasar el Módulo 14 del texto "Cimientos Matemáticos" donde se abarcan temas como: los números naturales, los números enteros, los números racionales e irracionales, etc.

  • Cuestionario

    Cuestionario de los números reales - [Detalles]

    Este es un cuestionario para repasar el Módulo 15 del texto "Cimientos Matemáticos" donde se abarcan temas como: postulados de campo, postulados de orden, valor absoluto, etc.

  • Cuestionario

    Cuestionario de funciones - [Detalles]

    Este es un cuestionario para repasar el Módulo 16 del texto "Cimientos Matemáticos" donde se abarcan temas como: valor de una función, grafica de una función y su relación, tabulación, etc.

  • Cuestionario

    Cuestionario de funciones algebraicas - [Detalles]

    Este es un cuestionario para repasar el Módulo 17 del texto "Cimientos Matemáticos" donde se abarcan temas como: función lineal, función cuadrática, sus propiedades, funciones polinomiales, etc.

  • Cuestionario

    Cuestionario de funciones trascendentes - [Detalles]

    Este es un cuestionario para repasar el Módulo 18 del texto "Cimientos Matemáticos" donde se abarcan temas como: función seno, coseno y sus respectivas propiedades, función exponencial, función logaritmica, etc.

  • Blog

    Introducción - [Detalles]

    Introducción del curso de Inteligencia Artificial

  • Práctica

    Perceptrón - [Detalles]

    Se presenta el modelo del perceptrón como una introducción a las redes neuronales

  • Blog

    Matrices similares y su polinomio característico - [Detalles]

    En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).

  • Blog

    Formas sesquilineales - [Detalles]

    En esta entrada veremos los conceptos de formas sesquilineales y formas hermitianas, ambos conceptos extienden (en algunos sentidos) lo que hemos visto sobre formas bilineales a espacios vectoriales sobre los complejos. Los resultados son casi análogos a los del caso real. Sin embargo, hay algunas diferencias importantes en las que haremos énfasis.

  • Blog

    Polinomio de Taylor para campos escalares - [Detalles]

    Hablamos del polinomio de Taylor para campos escalares. Justificamos su existencia y damos un ejemplo totalmente desarrollado de grado 3.

  • Blog

    Puntos críticos de campos escalares - [Detalles]

    Desarrollamos cómo entender los valores extremos (máximos y mínimos) de campos escalares en términos del gradiente y la matriz hessiana.

  • Blog

    Parejas ordenadas y producto cartesiano de conjuntos - [Detalles]

    En esta entrada introducimos el concepto de parejas ordenadas y del producto cartesiano entre conjuntos.

  • Blog

    Principio de inducción en los números naturales - [Detalles]

    Introducción En esta entrada vamos a hablar de el principio de inducción que se deriva del quinto axioma de Peano. Veremos cómo es que nos ayudará a un nuevo tipo de demostraciones, lo que significa en términos simples y algunos ejemplos de su uso. El efecto dominó Pensemos un poco en cómo funciona la inducción […]

  • Video

    Enumeraciones, Ejemplo, código de la aplicación con Números - [Detalles]

    Ejemplo, código de la aplicación con Números – código de la aplicación con números del ejemplo pasado.

  • Video

    Números naturales e induccion - [Detalles]

    En este video veremos a los números naturales como un subconjunto del campo de los números reales. Justificaremos el Principio de Inducción Matemática, que es una herramienta muy poderosa para demostrar proposiciones de tipo universal acerca de los números naturales.

  • Video

    Limites de funciones - [Detalles]

    En este video se expone la definición del límite cuando x tiende a p de f(x).

  • Video

    Álgebra de límites - [Detalles]

    En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.

  • Video

    Continuidad en intervalos cerrados - [Detalles]

    En este video se explica el concepto de continuidad en intervalos cerrados y se demuestran los teoremas de Bolzano y del Valor Intermedio.

  • Video

    Introducción a las sucesiones de números reales. - [Detalles]

    En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.

  • Video

    Vecindades de números reales - [Detalles]

    En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.

  • Video

    Distancia en R - [Detalles]

    En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.

  • Sitio web

    COMAL: Cálculo Diferencial e Integal II - [Detalles]

    Curso de Cálculo Diferencial e Integral II en notas tipo blog. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Sitio web

    COMAL: Cálculo Diferencial e Integal III - [Detalles]

    Curso de Cálculo Diferencial e Integral III en notas tipo blog. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Sitio web

    COMAL: Álgebra Superior I - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior I con un fuerte uso de notas de blog y problemas. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Sitio web

    COMAL: Teoría de los Conjuntos - [Detalles]

    En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Video

    Elementos del paradigma estructurado, Metodología Warnier Orr - [Detalles]

    Metodología Warnier Orr - Explicación de la metodología Warnier Orr y diseño de algoritmo. Metodología, Warnier, Orr, Warnier Orr, paradigma, paradigma estructurado, JAVA, POO, estructuras de datos, estructuras de control, programación estructurada

  • Video

    Elementos del paradigma estructurado, Expresiones, enunciados y estructuras de control en Java - [Detalles]

    Expresiones, enunciados y estructuras de control en Java – Estructuras de control en JAVA, qué son los enunciados y expresiones.

  • Video

    Recursividad, Recursión doble; Fibonacci. - [Detalles]

    Recursión doble, Fibonacci - Significado y cómo se ve la recursión doble. Ejemplo del código.

  • Video

    Correctez en programas recursivos, Correctez de un algoritmo recursivo - [Detalles]

    Correctez de un algoritmo recursivo - Cómo realizar el análisis de correctez mediante inducción matemática siguiendo el principio del buen orden.

  • Video

    Entrada y Salida estructurada, Definición de flujo - [Detalles]

    Definición de flujo - Explicación del concepto, definiciones generales y cómo apliciar filtros

  • Video

    Flujos en JAVA, PrintStream - [Detalles]

    PrintStream - Presentación del tipo de flujo en JAVA y ejemplo.

  • Video

    Implementación con orientación a objetos, Interfaz ILista (agregar I a Lista) - [Detalles]

    Interfaz ILista (agregar I a Lista) - Principio del encapsulamiento al aplicar la interfaz ILista. Implementar la clase Nodos. Programar listas simplemente ligadas.

  • Video

    Implementación con orientación a objetos, Insertar en cualquier posición - [Detalles]

    Insertar en cualquier posición - Qué clase usar para insertar en cualquier posición dependiendo del caso.

  • Video

    Implementación de genéricos en Java, Tipos puros - [Detalles]

    Tipos puros - Interactuando con código viejo; qué hacer cuando las versiones del pasado quedan obsoletas; compatibilidad

  • Video

    Modelo Vista Controlador, Patrones de diseño - [Detalles]

    Patrones de diseño - Explicación del modelo vista controlador para desarrollar aplicaciones de software; qué es, patrón y explicación. Explicación de los tres tipos de patrones de diseño.(creación, estructurales y comportamiento)

  • Video

    Acción del grupo fundamental - [Detalles]

    Vemos que el grupo pi_1 actúa en los grupos de homotopía superiores