Álgebra Lineal I Unidad 4: Tarea en equipo

1. Determina todos los números reales x para los cuales la matriz

$$A = \begin{pmatrix} 1 & x \\ 2 & 1 \end{pmatrix}.$$

tiene dos eigenvalores reales distintos.

2. a) Calcula los eigenvalores y eigenvectores de la matriz

$$A = \begin{pmatrix} 1 & 4 & 4 \\ 3 & -1 & 0 \\ 0 & 2 & 3 \end{pmatrix}.$$

- b) Verifica que el determinante de A coincide con el producto de sus eigenvalores.
- c) Demuestra que lo anterior sucede en general. Es decir, que para $A \in M_n(\mathbb{C})$ y $\lambda_1, \lambda_2, \ldots, \lambda_n$ los eigenvalores de A, cada uno escrito tantas veces como su multiplicidad, siempre se cumple que

$$\lambda_1 \lambda_2 \dots \lambda_n = \det A$$
.

Sugerencia. El término libre de un polinomio es igual al producto de sus raíces, contando multiplicidad (¿por qué?). También es igual al polinomio evaluado en 0 (¿por qué?). Usa esto en el polinomio característico de A. Argumenta cuidadosamente.

- 3. Decimos que una matriz $A \in M_n(\mathbb{R})$ es *estocástica* si $a_{ij} \geq 0$ para cualesquiera $i, j \in [1, n]$ y $\sum_{i=1}^n a_{ij} = 1 \ \forall j \in [1, n]$.
 - a) Demuestra que 1 es un eigenvalor de cualquier matriz estocástica A. Sugerencia. Es más fácil probar que 1 es eigenvalor de tA dando un eigenvector muy específico. Luego, usa propiedades de eigenvalores.
 - b) Demuestra que cualquier eigenvalor λ de una matriz estocástica satisface $|\lambda| \leq 1$.

- 4. Demuestra que para cualquier matriz $A \in M_n(\mathbb{R})$ se cumple que
 - $a) \det(A^2 + I_n) \ge 0.$
 - b) $\det(A^2 + A + I_n) \ge 0$.

Sugerencia. Para el inciso (b), necesitarás factorizar al polinomio x^2+x+1 usando sus raíces complejas, usar que el determinante es multiplicativo y conjugados complejos.

- 5. a) Demuestra que toda matriz en $M_3(\mathbb{R})$ tiene por lo menos un eigenvalor real. Argumenta cuidadosamente los resultados que uses.
 - b) Construye una matriz en $M_4(\mathbb{R})$ que no tenga ningún eigenvalor real, y demuestra que en efecto este es el caso.
 - c) ¿Puedes encontrar una matriz en $M_5(\mathbb{R})$ sin eigenvalores reales?