Resultados de búsqueda: igualdad entre conjuntos

244 resultados encontrados

  • Blog

    Álgebra de conjuntos - [Detalles]

    En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.

  • Diapositivas

    Diapositivas sobre demostraciones de conjuntos - [Detalles]

    Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.

  • Video

    Conjuntos iguales - [Detalles]

    Damos la definición de igualdad de conjuntos, explicamos cuando dos conjuntos son iguales y damos algunos ejemplos.

  • Diapositivas

    Diapositivas sobre familias de conjuntos - [Detalles]

    Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Video

    Relaciones entre conjuntos - [Detalles]

    Definimos que es una relación entre conjuntos. Mediante ejemplos explicamos que es una relación entre conjuntos y sus propiedades. También definimos que es el Dominio, Codominio e Imagen, en una relación de conjuntos.

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Blog

    Nota 4. Unión e intersección de Conjuntos. - [Detalles]

    En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.

  • Video

    Funciones iguales - [Detalles]

    Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas

  • Diapositivas

    Diapositivas sobre funciones - [Detalles]

    Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.

  • Blog

    Equipotencia - [Detalles]

    En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.

  • Video

    Definición de función - [Detalles]

    Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último

  • Blog

    Introducción a funciones - [Detalles]

    En esta entrada revisamos el concepto de función matemática, así como la igualdad entre funciones.

  • Diapositivas

    Diapositivas sobre conjuntos infinitos - [Detalles]

    Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.

  • Blog

    Nota 7. Relaciones y funciones - [Detalles]

    En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.

  • Blog

    Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]

    En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.

  • Video

    Familias de conjuntos - [Detalles]

    Damos la definición de familia de conjuntos, unión e intersección de familias de conjuntos., mediante ejemplos platicamos que es una familia de conjuntos y sus propiedades.

  • Video

    Conjuntos límite - [Detalles]

    Definimos a los ω-conjuntos límite y los α-conjuntos límite para puntos en el plano. Probamos algunas propiedades de dichos conjuntos límite.

  • Diapositivas

    Diapositivas sobre cardinalidad y conjuntos - [Detalles]

    Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.

  • Blog

    Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]

    En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.

  • Capítulo del libro

    Conjuntos y Lógica - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.

  • Cuestionario

    Cuestionario de conjuntos y logica - [Detalles]

    Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.

  • Blog

    Introducción a vectores y matrices con entradas reales - [Detalles]

    Damos una introducción muy sencilla a los vectores y matrices con entradas reales. Hablamos de su noción de igualdad y vemos ejemplos.

  • Blog

    Nota 14. Familia de Conjuntos y particiones. - [Detalles]

    En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.

  • Blog

    Leyes de De Morgan y diferencia simétrica de conjuntos - [Detalles]

    En esta entrada hablamos de la diferencia y diferencia simétrica entre conjuntos, las leyes de De Morgan y un resumen de las propiedades de conjuntos.

  • Video

    Composición de relaciones entre conjuntos - [Detalles]

    Definimos que es la composición de relaciones entre conjuntos, usamos ejemplos para dar composiciones sencillas

  • Blog

    Relaciones en conjuntos: dominio, codominio y composición - [Detalles]

    En esta entrada hablamos sobre relaciones entre conjuntos, el dominio, imagen de una relación así como la composición entre relaciones.

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Video

    Familias indexadas de conjuntos - [Detalles]

    Continuamos con la discusión sobre familias de conjuntos, pero ahora añadimos el concepto de índice, el cual sirve para indexar una familia de conjuntos.

  • Diapositivas

    Diapositivas sobre conjuntos - [Detalles]

    Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.

  • Guía de estudio

    Guía de estudio sobre funciones y cardinalidad - [Detalles]

    Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Ilustración

    Ejemplos de cardinalidad de conjuntos - [Detalles]

    Se exponen dos conjuntos con características distintas y el ejercicio pide que se demuestre que estos conjuntos tienen la misma cardinalidad.

  • Video

    Conjuntos Lineamente Dependientes Y Linealmente Independientes - [Detalles]

    Repasamos la definición de conjuntos linealmente dependientes y linealmente independientes. Vemos varios ejemplos de conjuntos linealmente dependientes, y otros linealmente independientes. 

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Blog

    Conjuntos finitos - [Detalles]

    En esta sección veremos a los conjuntos finitos, los cuales podremos contar según el número natural al que sean equipotentes. Además, veremos resultados acerca de la cardinalidad de la unión de dos conjuntos.

  • Blog

    Conjuntos finitos (parte II) - [Detalles]

    En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.

  • Blog

    Conjuntos y elementos - [Detalles]

    Estudiamos las primeras nociones de teoría de conjuntos. Vemos qué significa que un elemento pertenezca a otro y cómo describir conjuntos.

  • Video

    Breviario de Lógica y Conjuntos - [Detalles]

    En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.

  • Video

    Tipos de relaciones entre conjuntos - [Detalles]

    Hablamos de relaciones de conjuntos muy especiales, la relación identidad, la inversa de una relación, relación reflexiva, relación simétrica, relación transitiva y relación de equivalencia y damos un ejemplo de cada una.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Blog

    Nota 30. Dependencia e independencia lineal - [Detalles]

    En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.

  • Blog

    Diferencia simétrica - [Detalles]

    En esta sección hablaremos de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos, algunos otros los probaremos con el método de demostración habitual.

  • Blog

    Parejas ordenadas y producto cartesiano de conjuntos - [Detalles]

    En esta entrada introducimos el concepto de parejas ordenadas y del producto cartesiano entre conjuntos.

  • Blog

    Funciones invertibles - [Detalles]

    Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]

  • Diapositivas

    Diapositivas de distancia entre 2 puntos - [Detalles]

    Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.

  • Diapositivas

    Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]

    Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.

  • Video

    Distancia entre dos puntos del plano cartesiano - [Detalles]

    Usamos el Teorema de Pitágoras para deducir la fórmula de la distancia entre dos puntos en el plano cartesiano. Con esta fórmula podemos conocer la distancia entre dos puntos cualesquiera en el plano,  

  • Video

    Distancia entre dos puntos en el espacio cartesiano - [Detalles]

    Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional. 

  • Video

    Ejercicios Producto Punto - [Detalles]

    Hacemos varios ejercicios para calcular el producto punto entre dos vectores. También calculamos el ángulo entre dos vectores y demostramos, usando el producto punto, que el ángulo entre un vector consigo mismo es cero. 

  • Video

    Distancia entre dos planos en el espacio - [Detalles]

    Similar al caso de la distancia entre dos rectas, deducimos la fórmula para calcular la distancia mínima entre dos planos (siempre que no se crucen). Vemos que los planos deben ser paralelos, ya que en caso contrario se cruzan y su distancia es cero. Para la formula hacemos uso de la fórmula para la distancia de un punto a un plano. 

  • Video

    Qué es un conjunto y otras cuestiones - [Detalles]

    Damos la definición de conjunto, y algunos ejemplos de conjuntos importantes. También explicamos la notación que se utiliza para conjuntos.

  • Video

    Unión e intersección de conjuntos - [Detalles]

    Definimos la intersección y unión de conjuntos, también damos algunos ejemplos ilustrativos y casos particulares

  • Video

    Diferencia y diferencia simétrica de conjuntos - [Detalles]

    Vemos las definiciones diferencia y diferencia simétrica de conjuntos, además damos algunos ejemplos

  • Video

    Ejercicio de repaso de operaciones con conjuntos - [Detalles]

    Damos un repaso a las operaciones con conjuntos: Unión, Intersección, etc. Usamos ejemplos sencillos de subconjuntos de números naturales.

  • Video

    Conjunto potencia - [Detalles]

    Definimos el conjunto potencia de un conjunto, hablamos de ejemplos de los conjuntos potencia de conjuntos sencillos, y damos propiedades y teoremas relacionados al conjunto potencia

  • Video

    Cardinalidad - conjuntos finitos - [Detalles]

    Usando lo visto anteriormente, usando la cardinalidad, damos la definición de un conjunto finito o infinito. Hablamos de varios teoremas relacionados a los conjuntos finitos.

  • Blog

    Introducción. Repaso Teoría de Conjuntos (Parte 1) - [Detalles]

    Presentación de los problemas que fundamentan el cálculo. Conceptos básicos de teoría de conjuntos.

  • Blog

    Repaso Teoría de Conjuntos (Parte 2) - [Detalles]

    Presentación de las operaciones de conjuntos.

  • Diapositivas

    Diapositivas sobre operaciones de conjuntos - [Detalles]

    Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.

  • Guía de estudio

    Guía de estudio sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Cuestionario

    Cuestionario sobre conjuntos - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.

  • Guía de estudio

    Ejemplos sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejemplos respecto a los temas de conjuntos y relaciones con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.

  • Video

    G-conjuntos - [Detalles]

    Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.

  • Blog

    Nota 1. Noción de Conjunto - [Detalles]

    En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.

  • Blog

    Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]

    En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.

  • Video

    Ejercicio de Conjuntos (De Morgan) - [Detalles]

    En este video, emprenderemos un viaje meticuloso para demostrar la validez de las Leyes de De Morgan, dos principios fundamentales que conectan la lógica con las operaciones de conjuntos.

  • Blog

    Clases de equivalencia y particiones - [Detalles]

    Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.

  • Blog

    Sucesor - [Detalles]

    En esta nueva sección hablaremos acerca del sucesor de un número natural. Este nuevo concepto nos permitirá definir a los conjuntos inductivos e iniciar a descubrir el concepto del infinito desde la perspectiva de la teoría de conjuntos.

  • Blog

    Conjuntos infinitos - [Detalles]

    En esta sección comenzaremos definiendo que es un conjunto infinito para posteriormente probar resultados acerca de la cantidad de elementos que estos poseen, es decir, la cardinalidad de dichos conjuntos.

  • Blog

    Conjuntos numerables - [Detalles]

    En esa entrada seguiremos trabajando con conjuntos infinitos, en especial aquellos que tienen la misma cantidad de elementos que los numeros naturales .

  • Capítulo del libro

    Conjuntos importantes - [Detalles]

    En este capitulo de Cimientos Matemáticos revisaremos los conjuntos de números más importantes y los más usuales con los que solemos trabajar, tal es el caso de los naturales y enteros que ya hemos visto en capítulos anteriores, pero ahora añadiendo a los números, racionales, irracionales, reales y hasta los números complejos, que de complejos únicamente es el nombre, ya que veremos que la manera de trabajar con este es muy sencilla.

  • Blog

    Axiomas de los conjuntos. - [Detalles]

    En esta entrada hablamos sobre la teoría de conjuntos y sus axiomas.

  • Blog

    Intersecciones, uniones y complementos de conjuntos - [Detalles]

    En esta entrada revisamos tres operaciones de la teoría de conjuntos: La intersección, la unión y el complemento.

  • Blog

    Varios tamaños de conjuntos infinitos - [Detalles]

    En esta entrada revisamos el concepto de conjuntos con cardinalidad infinita y damos algunos ejemplos de ellos.

  • Sitio web

    COMAL: Teoría de los Conjuntos - [Detalles]

    En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Video

    Particiones, relaciones y clases de equivalencia - [Detalles]

    Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia

  • Video

    Funciones numéricas - [Detalles]

    Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.

  • Blog

    Operaciones entre conjuntos - [Detalles]

    None

  • Diapositivas

    Diapositivas sobre cardinalidad y los racionales - [Detalles]

    En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Nota 16. Los números naturales. - [Detalles]

    En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.

  • Blog

    Isomorfismos de orden - [Detalles]

    En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.

  • Video

    Presentación del curso de Calculo Diferencial e Integral I - [Detalles]

    En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.

  • Video

    Definición de congruencia - [Detalles]

    Definimos la relación de congruencia modulo "m" entre dos enteros "a", "b", cuando "m" divide a "a-b". Damos la notación para representar la relación de congruencia y mostramos que dos enteros que son congruentes modulo "m", tienen el mismo residuo de dividir entre "m". 

  • Video

    Propiedades básicas de congruencias - [Detalles]

    Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".  

  • Blog

    Área entre curvas - [Detalles]

    Enseñanza sobre el cálculo del area delimitada entre dos funciones.

  • Video

    Área entre curvas - [Detalles]

    Se aborda la teoría de área entre curvas y se dan tres ejemplos.

  • Video

    Distancia - [Detalles]

    Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta. 

  • Video

    Producto cruz ( producto vectorial) - [Detalles]

    Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores. 

  • Video

    Producto triple - [Detalles]

    Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores. 

  • Video

    Distancia entre dos rectas en el espacio - [Detalles]

    Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula. 

  • Video

    Ejemplo distancia entre dos rectas - [Detalles]

    Dadas dos rectas descritas por sus respectivas ecuaciones de la resta, calculamos como ejemplo la distancia entre estas dos rectas. Usamos la formula anteriormente deducida. 

  • Video

    Homomorfismos inducidos - [Detalles]

    En este video demostramos que cualquier función entre espacios topológicos induce una homomorfismo entre grupos fundamentales (con puntos bases adecuados).

  • Video

    Homotopias entre funciones - [Detalles]

    En este video definimos homotopía entre funciones y homotopías que preservan el punto base. Luego demostramos que las homotopías que preservan el punto base inducen el mismo homomorfismo en grupos fundamentales.

  • Video

    Homología singular - funtorialidad - [Detalles]

    En este video mostraremos que funciones continuas entre espacios topológicos inducen funciones de complejos de cadenas singulares y, por lo tanto, funciones entre grupos de homología.

  • Video

    Homología singular - El grado de una función entre esferas - [Detalles]

    En este video definimos el grado de una función entre esferas y estudiamos sus propiedades básicas.

  • Video

    Conjugación y conjugados - [Detalles]

    Se define la relación de conjugación entre elementos de un grupo, y también la conjugación entre subgrupos.

  • Video

    Grupo alternante (2) - [Detalles]

    Se recuerda la definición de grupo simple y se explica la relación entre este concepto y los grupos alternantes: An es simple para n entre 1 y 5, excepto 4.

  • Video

    Los Elementos de Euclides: Teorema 5 - [Detalles]

    En este video cubrimos el Teorema 5 de Los Elementos de Euclides. Aquí se prueba que en todo triángulo isósceles, los ángulos en la base son iguales entre sí, y además si prolongamos los lados iguales, los ángulos situados bajo la base también son iguales entre sí.

  • Video

    La distancia entre dos vértices - [Detalles]

    Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.

  • Video

    Hilos. Sincronización, Sincronización, comunicación entre hilos - [Detalles]

    Sincronización, comunicación entre hilos - Breve introducción a la sincronización.

  • Blog

    Conjuntos generadores e independencia lineal - [Detalles]

    Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.

  • Blog

    El lema del intercambio de Steinitz - [Detalles]

    En un espacio vectorial los conjuntos independientes son "chicos" y los generadores son "grandes". El lema de intercambio de Steinitz formaliza esto.

  • Blog

    Transformaciones lineales y vectores independientes - [Detalles]

    Estudiamos el efecto que tienen las transformaciones lineales en bases, en conjuntos generadores y en linealmente independientes.

  • Blog

    Bases ortogonales y ortonormales - [Detalles]

    Definimos conjuntos ortogonales y ortonormales. Definimos también bases ortogonales y ortonormales. Damos propiedades básicas y vemos algunos ejemplos.

  • Video

    Demostraciones con conjuntos - [Detalles]

    Usamos ejemplos para dar tips y métodos para demostrar contenciones e igualdades, así como las reglas para demostrar por casos.

  • Video

    Cardinalidad - definición y ejemplos - [Detalles]

    Damos la definición de la cardinalidad de un conjunto, usando ejemplos mostramos cuando dos conjuntos tienen la misma cardinalidad.

  • Video

    Cardinalidad - conjuntos infinitos - los naturales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción. 

  • Video

    El grado de un polinomio - [Detalles]

    Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo. 

  • Blog

    Conjuntos infinitos - [Detalles]

    Revisión del concepto de cardinalidad de un conjunto, conjunto infinito y numerable.

  • Blog

    Interpretación de las operaciones con eventos - [Detalles]

    Explicamos el significado de las operaciones con conjuntos en el contexto de la probabilidad.

  • Blog

    Lenguaje de la teoría de los conjuntos - [Detalles]

    None

  • Diapositivas

    Diapositivas sobre combinatoria - [Detalles]

    Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.

  • Video

    Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]

    Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos. 

  • Cuestionario

    Mini-cuestionario: Generadores e independientes - [Detalles]

    Mini-cuestionario para verificar el entendimiento de los conceptos de conjuntos de vectores generadores y linealmente independientes.

  • Blog

    La construcción de las naturales - [Detalles]

    Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.

  • Blog

    Conjuntos transitivos - [Detalles]

    Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.

  • Blog

    El tamaño de $N$ y de cada natural - [Detalles]

    Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.

  • Blog

    Problemas de conjuntos transitivos y cardinalidad de los naturales - [Detalles]

    Descripción pendiente

  • Video

    Grupos - "Casi grupos" - [Detalles]

    Se dan ejemplos de conjuntos con operaciones que "casi" son grupos y se explican las propiedades de grupo que fallan.

  • Cuestionario

    26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]

    Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.

  • Blog

    Nota 2. Subconjuntos - [Detalles]

    En esta nota se presenta la idea de subconjunto así como varias propiedades que derivan de ella, se ven un par de demostraciones básicas de conjuntos y subconjuntos y se dan un par de axiomas.

  • Blog

    Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de H en G - [Detalles]

    En esta entrada definiremos una relación de equivalencia en un grupo. Nos referimos al grupo de los enteros con la suma (Z,+) en el cual es posible establecer una relación de equivalencia que induce a una partición con exactamente n conjuntos.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Blog

    El complemento de un conjunto - [Detalles]

    En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

  • Blog

    Pares ordenados y producto cartesiano - [Detalles]

    En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Blog

    Relaciones - [Detalles]

    En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.

  • Blog

    Funciones (parte II) - [Detalles]

    En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

  • Blog

    Funciones suprayectivas y biyectivas - [Detalles]

    En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.

  • Blog

    Cotas inferiores e ínfimos - [Detalles]

    En esta entrada hablaremos acerca de cotas inferiores e ínfimos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relacionan estos conceptos con el minimo.

  • Blog

    Cotas superiores y supremos - [Detalles]

    En esta entrada hablaremos acerca de cotas superiores y supremos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relaciona este concepto con el máximo de un conjunto.

  • Blog

    Construcción de los números naturales - [Detalles]

    En esta sección comenzaremos con la construcción rigurosa de los números naturales, es decir, desde la teoría de conjuntos, sin dejar de lado la noción intuitiva que ya tenemos, para ello veremos el concepto de conjunto transitivo.

  • Blog

    Axioma de elección - [Detalles]

    En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.

  • Cuestionario

    Cuestionario de conjuntos importantes - [Detalles]

    Este es un cuestionario para repasar el Módulo 14 del texto "Cimientos Matemáticos" donde se abarcan temas como: los números naturales, los números enteros, los números racionales e irracionales, etc.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.

  • Blog

    Tipos de relaciones en conjuntos - [Detalles]

    En esta entrada vemos los conceptos de relaciones inyectivas, suprayectivas, reflexivas, transitivas y simétricas.

  • Blog

    Relaciones de equivalencia y clases de equivalencia - [Detalles]

    En esta entrada revisamos las relaciones de equivalencia, clases de equivalencia y particiones de conjuntos.

  • Blog

    Cardinalidad de conjuntos finitos - [Detalles]

    Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]

  • Video

    Valor absoluto y más sobre el orden de los reales - [Detalles]

    En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.

  • Blog

    Espacios vectoriales - [Detalles]

    Definimos qué son los espacios vectoriales. Damos muchos ejemplos, entre ellos, espacios de matrices, espacios de funciones y espacios de polinomios.

  • Blog

    Técnicas básicas de cálculo de determinantes - [Detalles]

    Vemos varias técnicas para el cálculo de determinantes. Entre ellas empezamos con determinantes de 2x2, 3x3 y qué hacen las operaciones elementales.

  • Video

    Logica proposicional - Proposiciones condicionales - [Detalles]

    Se estudia el conector condicional. Definimos la implicación contrapositiva y la conversa. Se finaliza con un teorema que demuestra algunas equivalencias entre formas proposicionales.

  • Video

    Equivalencia entre funciones biyectivas e invertibles - [Detalles]

    Definimos la inversa de una función, demostramos principalmente que: Una función tiene inversa si y sólo si, es biyectiva. Además de esto demostramos otro par de Teoremas relacionados a la inversa de una función.

  • Video

    El algoritmo de Euclides: enunciado y demostración. - [Detalles]

    Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor. 

  • Video

    Más propiedades de congruencias - [Detalles]

    Continuamos viendo propiedades sobre las congruencias. Vemos que si dos enteros expresados productos: "a*x", "a*y", son congruentes modulo "m", es equivalente a que los enteros "x", "y" sean congruentes modulo "m/MCD(a,m)", dándonos una relación entre el módulo y el máximo común divisor. Igualmente vemos algunas propiedades más que surgen de este teorema. 

  • Video

    División de polinomios - [Detalles]

    Definimos la división entre polinomios, dados dos polinomios "a(x), b(x)", decimos que "b(x)" divide a "a(x)" si y solo si "a(x)=b(x)*q(x)" para algún polinomio "q(x)". Vemos algunos ejemplos y también propiedades sobre la divisibilidad. 

  • Video

    Raíces de polinomios - [Detalles]

    Explicamos en que consiste la división sintética, la cual nos ayuda a dividir polinomios entre polinomios de la forma "x-a". Damos el procedimiento de la división sintética y hacemos dos ejemplos. 

  • Video

    Teorema del Factor - [Detalles]

    Explicamos el Teorema del Residuo, el cual nos dice que: El residuo de dividir un polinomio "p(x)" entre "x-a" (con "a" un escalar), es "p(a)", es decir que existe "q(x)" tal que: "p(x)=(x-a)*q(x)+r", con el residuo "r=p(a)". Mostramos algunos ejemplos y demostramos el teorema. 

  • Lección

    Homotecia entre triángulos - [Detalles]

    Definimos el concepto de homotecia y demostramos algunos resultados

  • Interactivo

    Homotecia entre triángulos - [Detalles]

    Decimos cuándo dos triángulos son homotéticos

  • Video

    Curvas integrales y soluciones a una ecuación diferencial de primer orden - [Detalles]

    Revisamos la relación existente entre las curvas integrales del campo asociado a la ecuación de primer orden dy/dt=f(t,y) y sus soluciones.

  • Video

    Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]

    Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.

  • Blog

    Funciones exponenciales y logarítmicas - [Detalles]

    Estudio de las funciones exponenciales y logarítmicas, su relación entre ellas. Revisión de resultados importantes como: las leyes de los esponentes, las leyes de los logaritmos y el cambio de base.

  • Blog

    Continuidad y monotonía - [Detalles]

    Estudio de la relación existente entre la continuidad y la monotonía

  • Blog

    Continuidad de la función inversa - [Detalles]

    Revisión de la relación entre una función, su inversa y la continuidad

  • Blog

    Homotecia - [Detalles]

    Estudiamos la homotecia entre polígonos y circunferencias, una herramienta que usaremos en demostraciones futuras.

  • Blog

    Desigualdades geométricas - [Detalles]

    Mostraremos algunas desigualdades geométricas, entre ellas la desigualdad de Erdos Mordell y la desiuldad de Euler, también veremos ejemplos.

  • Blog

    Puntos de Fermat y triángulos de Napoleón - [Detalles]

    Demostramos el teorema de Napoleón y mostramos la relación que hay entre los triángulos de Napoleón y los puntos de Fermat.

  • Blog

    Derivabilidad y continuidad - [Detalles]

    Relación entre derivabilidad y continuidad y revisión de las primeras reglas de derivación (derivada de las operaciones con funciones).

  • Blog

    Probabilidad condicional - [Detalles]

    Desarrollamos la probabilidad condicional, una herramienta nueva que permite describir la asociación que existe entre eventos

  • Blog

    Variables aleatorias discretas - [Detalles]

    Presentamos el primer tipo de variables aleatorias que son las discretas tomando un soporte finito o infinito numerable, también se muestra la relación entre la función de masa de probabilidad y la función de distribución.

  • Blog

    Propiedades del valor esperado - [Detalles]

    Enunciamos y demostramos una serie de propiedades del valor esperado de una variable aleatoria, entre estas propiedades una muy importante en el desarrollo del curso la cual es la Ley del Estadístico Inconsciente.

  • Diapositivas

    Diapositivas sobre los tipos de enunciados en matemáticas - [Detalles]

    Mostramos la diferencia entre los diferentes enunciados más recurridos en matemáticas, planteamos algunos ejemplos y la relación que entablan unos tipos de enunciados con otros.

  • Diapositivas

    Diapositivas sobre traducciones entre proposiciones - [Detalles]

    Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.

  • Diapositivas

    Diapositivas sobre composición de funciones y función inversa - [Detalles]

    Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.

  • Diapositivas

    Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]

    Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Cuestionario

    Cuestionario de distancia - [Detalles]

    Ponemos en práctica el tema de distancia entre 2 puntos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre operaciones matriciales - [Detalles]

    Ponemos en práctica los nuevos conocimientos que tenemos de las matrces y sus operaciones que se realizan entre ellas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre producto punto - [Detalles]

    Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.

  • Diapositivas

    Diapositivas sobre producto cruz - [Detalles]

    Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.

  • Diapositivas

    Diapositivas sobre ecuaciones de la recta en el plano - [Detalles]

    Damos inicio a un nuevo tema que será de utilidad para toda la carrera que es el tema de ecuaciones de rectas como la paramétrica, la general, la de punto pendiente, entre otras.

  • Cuestionario

    Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]

    Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre planos y distancias en el espacio - [Detalles]

    Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.

  • Cuestionario

    Cuestionario sobre rectas y planos - [Detalles]

    Ponemos en práctica todo el conocimiento nuevo que tenemos respecto a los temas de rectas y planos así como sus interacciones entre éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]

    Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.

  • Diapositivas

    Diapositivas sobre discriminante y excentricidad - [Detalles]

    Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.

  • Video

    Qué es un radián. Tallercito feliz - [Detalles]

    En este taller nos dedicamos a explicar qué es un radián, durante el taller se realiza una actividad muy divertida que pueden hacer con Arilín desde su casa. Por otro lado, explicamos la relación entre radianes y grados, cómo hacer convenciones de radianes a grados y viceversa. 

  • Video

    Razones Trigonométricas de los ángulos notables - [Detalles]

    En este video hablamos sobre el valor de las razones trigonométricas de los ángulos notables, anteriormente vistos. explicamos como se relación entre si las razones trigonométricas en estos ángulos. 

  • Video

    Ley de senos - [Detalles]

    Demostramos la Ley de Senos, la cual da una relación entre los lados y ángulos de triángulos no rectángulos. La ley de senos nos da una relación de la longitud de un lado de un triángulo al seno del ángulo opuesto. 

  • Video

    Producto punto - [Detalles]

    Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores. 

  • Video

    Distancia entre un plano y un punto - [Detalles]

    Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades. 

  • Video

    Traslaciones - [Detalles]

    Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado. 

  • Video

    Rotación De Ejes Y Figuras - [Detalles]

    Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola. 

  • Curso

    COMAL: Álgebra Lineal I - [Detalles]

    Cubrimos el temario oficial de Álgebra Lineal con un fuerte uso de notas de blog y problemas. Hacia el final hacemos énfasis en cómo los temas se aplican en áreas como programación en Python, homología, cuántica, biología matemática, entre otros. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Video

    El teorema de clasificación de cubrientes - parte 3 - [Detalles]

    En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.

  • Video

    Álgebra homológica - homotopías - [Detalles]

    En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.

  • Blog

    El principio del buen orden - [Detalles]

    Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.

  • Blog

    Racionales y sus expansiones decimales - [Detalles]

    Damos una serie de ejemplos que nos muestran la relación entre los números racionales y sus expresiones decimales.

  • Blog

    Cambio de coordenadas y forma polar de un complejo - [Detalles]

    Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.

  • Blog

    El teorema de derivadas y multiplicidad - [Detalles]

    Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.

  • Video

    La relación entre paridad y signo - [Detalles]

    Demostramos que una permutación es par si y sólo si su signo es iguala 1. Equivalentemente, vemos que una permutación es impar si y sólo si su signo es igual a -1. Esto muestra que la noción de paridad y la de signo son equivalentes.

  • Video

    Subgrupos conjugados y normalizadores - [Detalles]

    Se define la relación de conjugación entre subgrupos de un grupo y se definen los normalizadores.

  • Cuestionario

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    Revisitaremos un poco de la parte histórica y notaremos un poco de la importancia de la simbiótica relación entre los números complejos y el plano cartesiano.

  • Blog

    9. Continuidad en un espacio métrico - [Detalles]

    Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.

  • Blog

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.

  • Blog

    4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Video

    ¿Qué es una gráfica? - [Detalles]

    En este video se presenta la definición formal de gráfica. Se explica cómo las representaciones visuales (o dibujos) nos sirven para entender la combinatoria de estos objetos. Se reconoce la necesidad de identificar gráficas que, aunque no son iguales formalmente, son esencialmente la misma (gráficas isomorfas), y se define isomorfismo entre gráficas.

  • Blog

    Nota 9. Composición de funciones. - [Detalles]

    En esta nota vemos una operación entre funciones llamada composición, así como la prueba de que es una operación asociativa; también vemos varios ejemplos de composiciones y recursos interactivos que nos ayudan a entender mejor el tema, por ultimo introducimos una función muy importante: la función identidad.

  • Video

    Ejemplo Desigualdad del Triángulo - [Detalles]

    En este video, nos sumergimos en el corazón de una demostración que explora la relación entre $\vert xy - x_0y_0\vert$ y un valor $\varepsilon$ determinado, todo ello haciendo uso de la poderosa Desigualdad del Triángulo.

  • Blog

    Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]

    En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Video

    Los Elementos de Euclides: Teorema 6 - [Detalles]

    En este video cubrimos el Teorema 6 de Los Elementos de Euclides. Aquí se demuestra que si en un triángulo dos de sus ángulos son iguales, entonces los lados opuestos a dichos ángulos son iguales entre sí.

  • Blog

    Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo - [Detalles]

    En esta sección se analizara un tipo de correspondencia que se puede presentar entre dos grupos, lo cual nos llevara a definir el concepto de Homomorfismo. Por tanto, es necesario analizar sus propiedades y comportamientos bajo composición.

  • Blog

    Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]

    En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.

  • Blog

    Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]

    El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.

  • Video

    Los Elementos de Euclides: Teorema 27 - [Detalles]

    En este video cubrimos el Teorema 27 de Los Elementos de Euclides. Este teorema prueba que si al incidir una recta sobre otras dos, hace los ángulos alternos iguales entre sí, entonces las dos últimas rectas son paralelas.

  • Video

    Los Elementos de Euclides: Teorema 30 - [Detalles]

    En este video cubrimos el Teorema 30 de Los Elementos de Euclides, aquí se demuestra que si las paralelas a una misma recta son paralelas entre sí. (También se conoce como la propiedad transitiva del paralelismo de rectas)

  • Video

    Los elementos de Euclides: Teorema 35 - [Detalles]

    En este video cubrimos el Teorema 35 de Los Elementos de Euclides. Este teorema demuestra que los paralelogramos que están sobre la misma base y entre las mismas paralelas tienen áreas iguales.

  • Video

    Los elementos de Euclides: Teorema 36 - [Detalles]

    En este video cubrimos el Teorema 36 de Los Elementos de Euclides. Este teorema nos dice que los paralelogramos que tienen bases iguales y que además están entre las mismas paralelas, tienen áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 37 - [Detalles]

    En este video cubrimos el Teorema 37 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que están sobre la misma base y entre las mismas paralelas tienen también áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 38 - [Detalles]

    En este video cubrimos el Teorema 38 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que tienen bases iguales y que están entre las mismas paralelas tienen áreas iguales.

  • Video

    Los Elementos de Euclides: Teorema 39 - [Detalles]

    En este video cubrimos el Teorema 39 de Los Elementos de Euclides. Aquí se demuestra que si triángulos iguales están sobre la misma base y en el mismo lado, entonces también están entre las mismas paralelas.

  • Video

    Los Elementos de Euclides: Teorema 40 - [Detalles]

    En este video cubrimos el Teorema 40 de Los Elementos de Euclides. Aquí se demuestra que triángulos iguales, que están sobre bases iguales y en el mismo lado, también están entre las mismas paralelas.

  • Video

    Los Elementos de Euclides: Teorema 41 - [Detalles]

    En este video cubrimos el Teorema 41 de Los Elementos de Euclides. Aquí se demuestra que si un paralelogramo y un triángulo tienen la misma base y están entre las mismas paralelas, determinadas por la base del triángulo y la paralela que pasa por el vértice opuesto a la base, entonces el área del paralelogramo es el doble que el área del triángulo.

  • Blog

    Aritmética cardinal - [Detalles]

    En esta sección definiremos operaciones aritméticas entre números cardinales y analizaremos algunas de sus propiedades.

  • Video

    Ejercicio Limite superior de una sucesión - [Detalles]

    En este video estudiamos los límites limsup y el liminf. Navegaremos entre secuencias y funciones, descubriendo cómo estas dos nociones nos brindan perspectivas únicas sobre el comportamiento asintótico.

  • Video

    Ejercicio Optimización (Escalera) - [Detalles]

    ¿Alguna vez te has preguntado cuál es la escalera más larga que puedes pasar entre dos pasillos que se cruzan? En este problema, usaremos técnicas de máximos y mínimos para determinar la longitud máxima de una escalera que puede maniobrarse a través de estos pasillos.

  • Capítulo del libro

    Geometría elemental - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.

  • Capítulo del libro

    Nociones de trigonometría - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.

  • Capítulo del libro

    Ecuaciones de la línea recta - [Detalles]

    En este capitulo de Cimientos Matemáticos abordaremos conceptos clave de geometría analítica, como lugares geométricos y ecuaciones. Exploraremos la forma general de la ecuación de la línea recta y su expresión en la forma pendiente-ordenada al origen. También analizaremos la relación entre la inclinación y la pendiente de una recta, así como las propiedades de rectas paralelas y perpendiculares.

  • Cuestionario

    Cuestionario de nociones de trigonometría - [Detalles]

    Este es un cuestionario para repasar el Módulo 8 del texto "Cimientos Matemáticos" donde se abarcan temas como: convertir ángulos a radianes y viceversa, semejanza de triángulos, distancia entre dos puntos, etc.

  • Blog

    Teorema de Gauss - [Detalles]

    En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices. Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.

  • Blog

    Matrices de formas bilineales - [Detalles]

    En esta entrada formalizaremos la relación entre formas bilineales y matrices. Veremos cómo se define la matriz asociada a una forma bilineal y cómo podemos traducir operaciones con la forma bilineal en operaciones con su matriz asociada.

  • Blog

    Matrices de formas sesquilineales - [Detalles]

    En esta entrada daremos una relación entre formas sesquilineales, formas cuadráticas hermitianas y matrices. Daremos la definición y veremos sus propiedades. Gran parte de la relación que había para el caso real se mantiene al pasar a los complejos. Las demostraciones en la mayoría de los casos son análogas, sin embargo, haremos énfasis en las partes que hacen que el caso real y el complejo sean distintos.

  • Blog

    Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]

    En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

  • Blog

    Composición de funciones - [Detalles]

    En esta entrada revisamos la composición entre funciones y algunas propiedades.

  • Video

    Álgebra de Funciones - [Detalles]

    En este video se enlistan las operaciones entre funciones, dando lugar al álgebra de funciones.

  • Video

    Funciones inyectivas, crecientes y decrecientes - [Detalles]

    En este video definimos el concepto de inyectividad, que es un criterio por el que una función puede tener una función inversa, y se discute la relación entre inyectividad y crecimiento-decrecimiento de funciones.

  • Video

    Vecindades de números reales - [Detalles]

    En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.

  • Video

    Distancia en R - [Detalles]

    En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.

  • Video

    Intervalos de crecimiento - [Detalles]

    En este video se muestra la relación entre el signo de la derivada y la tendencia creciente/decreciente de una función. Al final se establece el criterio de la primera derivada para máximos y mínimos locales.

  • Video

    Bases numéricas, Sistemas numéricos, base b a base 10 - [Detalles]

    Sistemas numéricos, base b a base 10 – Bases numéricas: conversión entre sistemas numéricos; de base b a base 10.

  • Video

    Bases numéricas, Base 10 a base b y especificación de algoritmo - [Detalles]

    Base 10 a base b y especificación de algoritmo - Bases numéricas: conversión entre sistemas numéricos; de base 10 a base b. Cómo usar algoritmos para la conversión

  • Video

    Complejidad - [Detalles]

    Complejidad - Qué es la complejidad algorítmica; características que impactarán en el desempeño de un algoritmo entre otros conceptos de complejidad.

  • Video

    Implementación de genéricos en Java, Si se quiere actualizar código anterior a los genéricos - [Detalles]

    Si se quiere actualizar código anterior a los genéricos - Cómo mantener la compatibilidad entre código viejo y código nuevo.

  • Video

    Hilos. Implementación, Interrupciones - [Detalles]

    Interrupciones - Cómo se comunican los hilos entre sí

  • Video

    Equivalencia homotópica implica equivalencia homotópica debil - [Detalles]

    Un mapeo entre espacios se dice que es una equivalencia homotópica débil si induce isomorfismos en todos los grupos de homotopía. En este video probamos que todas las equivalencias homotópicas son equivalencias homotópicas débiles.