Producto cartesiano - [Detalles]
Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.
Diapositivas sobre producto cartesiano - [Detalles]
Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.
Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]
En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.
Propiedades del producto cartesiano (parte II) - [Detalles]
En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.
Diapositivas sobre relaciones de conjuntos - [Detalles]
Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,
Parejas ordenadas y producto cartesiano de conjuntos - [Detalles]
En esta entrada introducimos el concepto de parejas ordenadas y del producto cartesiano entre conjuntos.
El espacio cartesiano - [Detalles]
Describimos el espacio cartesiano como "espacio" de 3 dimensiones: largo ancho y alto. Explicamos sus similitudes al plano cartesiano y como ubicar un punto en el espacio cartesiano.
Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]
En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.
Pares ordenados y producto cartesiano - [Detalles]
En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.
Propiedades del producto cartesiano - [Detalles]
En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.
Propiedades del producto cartesiano - [Detalles]
En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.
Cuestionario sobre producto cruz - [Detalles]
Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre familias de conjuntos - [Detalles]
Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.
Diapositivas sobre producto triple de vectores - [Detalles]
Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.
Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores.
Cuestionario sobre producto triple de vectores - [Detalles]
Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]
Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.
Diapositivas de subconjuntos del plano y espacio cartesiano - [Detalles]
En estas diapositivas sirve de retroalimentación respecto a los temas 2 temas anteriores, son un repaso de esteos subconjuntos generados por una condición dentro del plano cartesiano o dentor del espacio cartesiano.
Lugares en el espacio cartesiano - [Detalles]
Recordamos la definición de un lugar geométrico, la cual también aplica para el espacio cartesiano. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas, pero esta vez en el espacio cartesiano, es decir, con 3 coordenadas.
Simetría en el plano cartesiano - [Detalles]
Extendemos la noción de simetría central y axial. Ahora definimos la simetría central y axial para un subconjunto F de puntos en el plano cartesiano, es decir, describimos lo que significa que un subconjunto del plano cartesiano tenga simetría central o axial.
Nota 4. Unión e intersección de Conjuntos. - [Detalles]
En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.
Producto cruz ( producto vectorial) - [Detalles]
Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores.
Ejercicios Producto Triple - [Detalles]
Realizamos varios ejercicios del producto triple, vemos en que caso el producto triple es cero, algunos ejercicios para obtener el volumen del paralelepípedo formado por los factores, y que significa que el producto triple sea cero, lo cual está relacionado a que los factores sean linealmente dependientes o independientes.
Producto directo de grupos - parte 3 - [Detalles]
Se demuestra que el producto de subgrupos normales es subgrupo normal del producto y que el cociente es isomorfo a un producto de cocientes.
Producto en los naturales - [Detalles]
Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.
Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]
Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos.
Familias de conjuntos - [Detalles]
Damos la definición de familia de conjuntos, unión e intersección de familias de conjuntos., mediante ejemplos platicamos que es una familia de conjuntos y sus propiedades.
Definimos a los ω-conjuntos límite y los α-conjuntos límite para puntos en el plano. Probamos algunas propiedades de dichos conjuntos límite.
Diapositivas sobre demostraciones de conjuntos - [Detalles]
Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.
Diapositivas sobre cardinalidad y conjuntos - [Detalles]
Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.
Relaciones entre conjuntos - [Detalles]
Definimos que es una relación entre conjuntos. Mediante ejemplos explicamos que es una relación entre conjuntos y sus propiedades. También definimos que es el Dominio, Codominio e Imagen, en una relación de conjuntos.
Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]
En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.
En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.
Conjuntos y Lógica - [Detalles]
En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.
Cuestionario de conjuntos y logica - [Detalles]
Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.
Teoría de Gráficas - Cuestionario 2 - [Detalles]
Antes de contestar este cuestionario se recomienda ver los videos 4, 5 y 6 del curso. Los conceptos que requieres saber son: Secuencia de grados. Algunas familias especiales: gráfica r-regular; gráfica de lineas; gráfica bipartita. Conceptos no totalmente formales: Operaciones: unión disjunta; suma de Zykov; producto cartesiano de G_1 □ G_2; producto directo de G_1 x G_2.
Funciones iguales - [Detalles]
Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas
Producto de matrices y composición de sus transformaciones - [Detalles]
Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.
Diapositivas sobre producto punto - [Detalles]
Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.
Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores.
Ejercicios Producto Punto - [Detalles]
Hacemos varios ejercicios para calcular el producto punto entre dos vectores. También calculamos el ángulo entre dos vectores y demostramos, usando el producto punto, que el ángulo entre un vector consigo mismo es cero.
El grupo fundamental de un producto - [Detalles]
En este video demostramos que el grupo fundamental de un producto de espacios topológicos es el producto de los grupos fundamentales de los factores, es decir, el grupo fundamental abre productos.
El producto en los enteros - [Detalles]
Definimos la operación producto y demostramos algunas propiedades básicas de esta operación en los enteros, también demostramos la propiedad distributiva para la suma y el producto, también vemos que en los enteros no tiene divisores de cero.
Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]
En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.
Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]
Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.
Cuestionario de plano cartesiano y espacios geométricos - [Detalles]
Ponemos en práctica las definiciones del tema de espacios geométricos dentro del plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]
Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario de subconjuntos del plano y espacio cartesiano - [Detalles]
Ponemos en práctica los temas de lugares geométricos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas de distancia entre 2 puntos - [Detalles]
Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.
Cuestionario sobre el plano y espacio cartesiano - [Detalles]
Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.
Coordenadas en el plano cartesiano - [Detalles]
Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas.
Distancia entre dos puntos del plano cartesiano - [Detalles]
Usamos el Teorema de Pitágoras para deducir la fórmula de la distancia entre dos puntos en el plano cartesiano. Con esta fórmula podemos conocer la distancia entre dos puntos cualesquiera en el plano,
Distancia entre dos puntos en el espacio cartesiano - [Detalles]
Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional.
Conjuntos iguales - [Detalles]
Damos la definición de igualdad de conjuntos, explicamos cuando dos conjuntos son iguales y damos algunos ejemplos.
Familias indexadas de conjuntos - [Detalles]
Continuamos con la discusión sobre familias de conjuntos, pero ahora añadimos el concepto de índice, el cual sirve para indexar una familia de conjuntos.
Definición de función - [Detalles]
Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último
Diapositivas sobre conjuntos - [Detalles]
Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.
Diapositivas sobre conjuntos infinitos - [Detalles]
Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.
Guía de estudio sobre funciones y cardinalidad - [Detalles]
Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Ejemplos de cardinalidad de conjuntos - [Detalles]
Se exponen dos conjuntos con características distintas y el ejercicio pide que se demuestre que estos conjuntos tienen la misma cardinalidad.
Conjuntos Lineamente Dependientes Y Linealmente Independientes - [Detalles]
Repasamos la definición de conjuntos linealmente dependientes y linealmente independientes. Vemos varios ejemplos de conjuntos linealmente dependientes, y otros linealmente independientes.
Nota 7. Relaciones y funciones - [Detalles]
En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.
Nota 14. Familia de Conjuntos y particiones. - [Detalles]
En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.
Álgebra de conjuntos - [Detalles]
En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.
Conjuntos inductivos y axioma del infinito - [Detalles]
En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.
Conjuntos finitos - [Detalles]
En esta sección veremos a los conjuntos finitos, los cuales podremos contar según el número natural al que sean equipotentes. Además, veremos resultados acerca de la cardinalidad de la unión de dos conjuntos.
Conjuntos finitos (parte II) - [Detalles]
En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.
Conjuntos y elementos - [Detalles]
Estudiamos las primeras nociones de teoría de conjuntos. Vemos qué significa que un elemento pertenezca a otro y cómo describir conjuntos.
Leyes de De Morgan y diferencia simétrica de conjuntos - [Detalles]
En esta entrada hablamos de la diferencia y diferencia simétrica entre conjuntos, las leyes de De Morgan y un resumen de las propiedades de conjuntos.
Breviario de Lógica y Conjuntos - [Detalles]
En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.
Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]
Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz
Problemas de formas cuadráticas y producto interior - [Detalles]
Resolvemos problemas de formas cuadráticas y de producto interior en espacios vectoriales. Estudiamos el núcleo de formas bilineales y cuadráticas.
Propiedades de la suma y multiplicación de los polinomios - [Detalles]
Vemos como realizar operaciones con polinomios. Definimos la suma de polinomios, el producto de polinomio por un escalar y el producto de polinomios. Damos un ejemplo para cada operación.
Producto de segmentos - [Detalles]
Demostramos geométricamente cómo determinar el producto de dos segmentos cualesquiera
Suma, producto y composición de funciones - [Detalles]
Estudio de los conceptos de suma, producto, cociente y composición de funciones.
Cuestionario sobre producto punto - [Detalles]
Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre producto cruz - [Detalles]
Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.
Distancia entre dos rectas en el espacio - [Detalles]
Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula.
Mini-cuestionario: Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]
Mini-cuestionario para verificar el entendimiento de las nociones básicas de producto interior y de la desigualdad de Cauchy-Schwarz
Definición del producto y sus propiedades básicas - [Detalles]
Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Multiplicatividad del signo. Parte 1 - [Detalles]
Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.
Productos de subconjuntos de un grupo - [Detalles]
Se extiende la definición de producto para incluir el producto de dos subconjuntos de un grupo.
Producto directo de grupos - [Detalles]
Se da la definición del producto directo de grupos y se demuestran algunas propiedades.
Producto directo de grupos - parte 2 - [Detalles]
Se continúa el estudio del producto directo, se enuncia y demuestra el teorema de factorización.
Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]
En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.
Ejercicio Límite de función acotada y otra con valor $0$ - [Detalles]
Si $g(x)$ tiende a $0$ y $h(x)$ es una función acotada, ¿qué ocurre con el producto $g(x)h(x)$? En este video, exploramos y demostramos por qué este producto también tiende a $0$.
Dualidad y representación de Riesz en espacios euclideanos - [Detalles]
En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».
Operaciones de suma y producto escalar con vectores y matrices - [Detalles]
Definimos las operaciones de suma y producto escalar para vectores y martices. Enunciamos algunas propiedades con ejemplos y demostraciones.
Producto de matrices con vectores - [Detalles]
Definimos el producto de matrices con vectores para pocas entradas. Vemos ejemplos y propiedades que cumple.
Producto de matrices con matrices - [Detalles]
Definimos el producto de matrices y vemos casos con pocas entradas. Enunciamos algunas propiedades con demostración y vemos ejemplos.
Álgebra de límites - [Detalles]
En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.
Nota 16. Los números naturales. - [Detalles]
En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.
Qué es un conjunto y otras cuestiones - [Detalles]
Damos la definición de conjunto, y algunos ejemplos de conjuntos importantes. También explicamos la notación que se utiliza para conjuntos.
Unión e intersección de conjuntos - [Detalles]
Definimos la intersección y unión de conjuntos, también damos algunos ejemplos ilustrativos y casos particulares
Diferencia y diferencia simétrica de conjuntos - [Detalles]
Vemos las definiciones diferencia y diferencia simétrica de conjuntos, además damos algunos ejemplos
Ejercicio de repaso de operaciones con conjuntos - [Detalles]
Damos un repaso a las operaciones con conjuntos: Unión, Intersección, etc. Usamos ejemplos sencillos de subconjuntos de números naturales.
Conjunto potencia - [Detalles]
Definimos el conjunto potencia de un conjunto, hablamos de ejemplos de los conjuntos potencia de conjuntos sencillos, y damos propiedades y teoremas relacionados al conjunto potencia
Tipos de relaciones entre conjuntos - [Detalles]
Hablamos de relaciones de conjuntos muy especiales, la relación identidad, la inversa de una relación, relación reflexiva, relación simétrica, relación transitiva y relación de equivalencia y damos un ejemplo de cada una.
Composición de relaciones entre conjuntos - [Detalles]
Definimos que es la composición de relaciones entre conjuntos, usamos ejemplos para dar composiciones sencillas
Cardinalidad - conjuntos finitos - [Detalles]
Usando lo visto anteriormente, usando la cardinalidad, damos la definición de un conjunto finito o infinito. Hablamos de varios teoremas relacionados a los conjuntos finitos.
Introducción. Repaso Teoría de Conjuntos (Parte 1) - [Detalles]
Presentación de los problemas que fundamentan el cálculo. Conceptos básicos de teoría de conjuntos.
Repaso Teoría de Conjuntos (Parte 2) - [Detalles]
Presentación de las operaciones de conjuntos.
Diapositivas sobre operaciones de conjuntos - [Detalles]
Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.
Diapositivas sobre conjuntos potencia - [Detalles]
Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.
Guía de estudio sobre conjuntos y relaciones - [Detalles]
Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre conjuntos - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Ejemplos sobre conjuntos y relaciones - [Detalles]
Se deja una lista de ejemplos respecto a los temas de conjuntos y relaciones con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.
Diapositivas sobre imagen y preimagen de una función - [Detalles]
Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.
Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.
Nota 1. Noción de Conjunto - [Detalles]
En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.
Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]
En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.
Ejercicio de Conjuntos (De Morgan) - [Detalles]
En este video, emprenderemos un viaje meticuloso para demostrar la validez de las Leyes de De Morgan, dos principios fundamentales que conectan la lógica con las operaciones de conjuntos.
Nota 30. Dependencia e independencia lineal - [Detalles]
En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.
Diferencia simétrica - [Detalles]
En esta sección hablaremos de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos, algunos otros los probaremos con el método de demostración habitual.
Clases de equivalencia y particiones - [Detalles]
Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.
En esta nueva sección hablaremos acerca del sucesor de un número natural. Este nuevo concepto nos permitirá definir a los conjuntos inductivos e iniciar a descubrir el concepto del infinito desde la perspectiva de la teoría de conjuntos.
Conjuntos infinitos - [Detalles]
En esta sección comenzaremos definiendo que es un conjunto infinito para posteriormente probar resultados acerca de la cantidad de elementos que estos poseen, es decir, la cardinalidad de dichos conjuntos.
Conjuntos numerables - [Detalles]
En esa entrada seguiremos trabajando con conjuntos infinitos, en especial aquellos que tienen la misma cantidad de elementos que los numeros naturales .
Conjuntos importantes - [Detalles]
En este capitulo de Cimientos Matemáticos revisaremos los conjuntos de números más importantes y los más usuales con los que solemos trabajar, tal es el caso de los naturales y enteros que ya hemos visto en capítulos anteriores, pero ahora añadiendo a los números, racionales, irracionales, reales y hasta los números complejos, que de complejos únicamente es el nombre, ya que veremos que la manera de trabajar con este es muy sencilla.
Axiomas de los conjuntos. - [Detalles]
En esta entrada hablamos sobre la teoría de conjuntos y sus axiomas.
Intersecciones, uniones y complementos de conjuntos - [Detalles]
En esta entrada revisamos tres operaciones de la teoría de conjuntos: La intersección, la unión y el complemento.
Relaciones en conjuntos: dominio, codominio y composición - [Detalles]
En esta entrada hablamos sobre relaciones entre conjuntos, el dominio, imagen de una relación así como la composición entre relaciones.
Varios tamaños de conjuntos infinitos - [Detalles]
En esta entrada revisamos el concepto de conjuntos con cardinalidad infinita y damos algunos ejemplos de ellos.
COMAL: Teoría de los Conjuntos - [Detalles]
En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Ejemplo de demostración de relación de equivalencia - [Detalles]
Damos un ejemplo de relación de equivalencia con elementos del plano cartesiano y demostramos que es una relación de equivalencia, es decir, cumple las 3 propiedades
Ejemplo de clase de equivalencia y partición - [Detalles]
Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.
El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]
Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo.
Cuestionario de distancia - [Detalles]
Ponemos en práctica el tema de distancia entre 2 puntos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario de gráfica de funciones - [Detalles]
Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.
Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Resolución de guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Cuestionario sobre funciones en el plano polar - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Actividad Geogebra funciones en el plano polar - [Detalles]
En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.
Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]
Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Lugar geométrico en el plano cartesiano - [Detalles]
Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
Ejercicio 1 dependencia o independencia lineal - [Detalles]
Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente.
Ejercicio 1 bases de espacios vectoriales - [Detalles]
Damos la definición de una base en el plano cartesiano, y mostramos cuando dos vectores forman una base para este espacio vectorial.
Definimos los semiplanos, los cuales son regiones del plano cartesiano delimitados por una recta. Vemos su representación geométrica y como representarlos por desigualdad relacionada a la ecuación de la recta.
Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado.
Rotación De Ejes Y Figuras - [Detalles]
Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola.
3. El plano complejo $\mathbb{C}$ - [Detalles]
Revisitaremos un poco de la parte histórica y notaremos un poco de la importancia de la simbiótica relación entre los números complejos y el plano cartesiano.
Nota 25. Espacios vectoriales - [Detalles]
Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.
Nociones de trigonometría - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.
Problemas de producto de matrices y matrices invertibles - [Detalles]
En esta entrada de blog hablamos resolvemos problermas de cómo multiplicar matrices. También hacemos algunos problemas sobre matrices invertibles para aprovechar la teoría desarrollada anteriormente.
Forma matricial de una transformación lineal - [Detalles]
Definimos la forma matricial de transformaciones lineales. Vemos que la composición de transformaciones corresponde al producto de sus formas matriciales.
Operaciones con matrices - [Detalles]
Explicamos la suma de matrices y la multiplicación de una matriz por un escalar. También damos la definición de un vector y el producto punto. Explicamos de manera sencilla la multiplicación de matrices.
El anillo de los números enteros - [Detalles]
Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior.
Definición de anillo - [Detalles]
Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero.
Factorización en números primos - [Detalles]
Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética.
El teorema fundamental de la aritmética - [Detalles]
Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única!
Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]
Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.
Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]
Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.
Propiedades algebraicas de los números reales (Parte 1) - [Detalles]
Estudio de las propiedades básicas de los números reales con sus operaciones: suma y producto.
Teorema de Thales - [Detalles]
Demostramos el teorema de Thales, el teorema de la bisectriz y sus recíprocos. También construimos el producto y cociente de dos segmentos.
Propiedades básicas de la integral definida - [Detalles]
Propiedades básicas de la integral definida, aditividad, suma, producto por una constante
Integrales trigonométricas: Producto de potencias de senos y cosenos - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones senos y cosenos
Integrales trigonométricas: Producto de potencias de tan(x) y sec(x) - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones tan(x) y sec(x).
Principios de conteo 1 - Suma y Producto - [Detalles]
Desarrollamos los principios de conteo más básicos para calcular el número total de formas distintas de hacer cierta tarea.
Mini-cuestionario: Introducción al curso, vectores y matrices - [Detalles]
Mini-cuestionario para verificar el entendimiento de las operaciones de suma vectorial y producto escalar.
Mini-cuestionario: Multiplicación de matrices y composición de sus transformaciones - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo hacer el producto de matrices y cómo esto se relaciona con la composición de sus transformaciones asociadas.
Diapositivas sobre matrices y operaciones - [Detalles]
Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.
Diapositivas sobre determinantes - [Detalles]
Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.
Diapositivas sobre espacios vectoriales - [Detalles]
Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.
Distancia punto recta - [Detalles]
Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta.
Distancia entre un plano y un punto - [Detalles]
Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades.
En este video continuamos nuestro pequeño detour por la teoría de grupos. Definiremos el producto libre de grupos y su propiedad universal.
Complejos CW - productos - [Detalles]
En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.
Proyecto: Mecánica cuántica desde álgebra lineal - [Detalles]
En este proyecto de aplicación extendemos lo aprendido sobre producto interior hacia espacios vectoriales sobre los complejos. Hacemos esto para hablar de la notación bra-ket en física y para introducir ideas básicas de mecánica cuántica.
Mini-cuestionario: Ángulos, norma, distancia y desigualdad de Minkowski - [Detalles]
Mini-cuestionario para verificar el entendimiento de varias nociones geométricas que salen a partir del producto interior.
Problemas de suma y producto de naturales - [Detalles]
Descripción pendiente
Problemas de construcción, suma y producto de enteros - [Detalles]
Descripción pendiente
Construcción de números complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Inmersión de los reales en los complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Problemas de operaciones en complejos - [Detalles]
Resolvemos problemas de operaciones básicas de complejos como la suma y producto junto con sus operaciones inversas.
Factorización en transposiciones - [Detalles]
Definimos lo que es una transposición y demostramos que toda permutación se puede factorizar como producto de transposiciones.
Multiplicatividad del signo. Parte 2 - [Detalles]
Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.
Álgebra Moderna I: Palabras. - [Detalles]
Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.
Álgebra Moderna I: Permutaciones disjuntas - [Detalles]
A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.
Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]
En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.
Ejercicio Derivación - [Detalles]
En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.
Matrices similares y su polinomio característico - [Detalles]
En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).
Espacios euclideanos y espacios hermitianos - [Detalles]
En esta entrada haremos un breve recordatorio de los conceptos de producto interior y de espacios euclideanos. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.
Matrices positivas y congruencia de matrices - [Detalles]
En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).
Ortogonalidad en espacios euclideanos - [Detalles]
En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.
Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]
En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.
Suma y producto de naturales y sus propiedades - [Detalles]
En esta entrada vemos la definición de suma y multiplicación en términos de los números naturales así como algunas propiedades.
Grupos de homotopía de un producto - [Detalles]
Vemos una fórmula para pi_n(X x Y)
Conjuntos generadores e independencia lineal - [Detalles]
Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.
El lema del intercambio de Steinitz - [Detalles]
En un espacio vectorial los conjuntos independientes son "chicos" y los generadores son "grandes". El lema de intercambio de Steinitz formaliza esto.
Transformaciones lineales y vectores independientes - [Detalles]
Estudiamos el efecto que tienen las transformaciones lineales en bases, en conjuntos generadores y en linealmente independientes.
Bases ortogonales y ortonormales - [Detalles]
Definimos conjuntos ortogonales y ortonormales. Definimos también bases ortogonales y ortonormales. Damos propiedades básicas y vemos algunos ejemplos.
Demostraciones con conjuntos - [Detalles]
Usamos ejemplos para dar tips y métodos para demostrar contenciones e igualdades, así como las reglas para demostrar por casos.
Particiones, relaciones y clases de equivalencia - [Detalles]
Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia
Funciones numéricas - [Detalles]
Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.
Cardinalidad - definición y ejemplos - [Detalles]
Damos la definición de la cardinalidad de un conjunto, usando ejemplos mostramos cuando dos conjuntos tienen la misma cardinalidad.
Cardinalidad - conjuntos infinitos - los naturales - [Detalles]
Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.
Inducción matemática (1) - [Detalles]
Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.
Inducción matemática (1) - [Detalles]
Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.
El grado de un polinomio - [Detalles]
Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo.
Conjuntos infinitos - [Detalles]
Revisión del concepto de cardinalidad de un conjunto, conjunto infinito y numerable.
Interpretación de las operaciones con eventos - [Detalles]
Explicamos el significado de las operaciones con conjuntos en el contexto de la probabilidad.
Lenguaje de la teoría de los conjuntos - [Detalles]
None
Operaciones entre conjuntos - [Detalles]
None
Diapositivas sobre funciones - [Detalles]
Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.
Diapositivas sobre cardinalidad y los racionales - [Detalles]
En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.
Diapositivas sobre combinatoria - [Detalles]
Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.
Diapositivas sobre bases de espacios vectoriales - [Detalles]
A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.
Mini-cuestionario: Generadores e independientes - [Detalles]
Mini-cuestionario para verificar el entendimiento de los conceptos de conjuntos de vectores generadores y linealmente independientes.
La construcción de las naturales - [Detalles]
Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.
Conjuntos transitivos - [Detalles]
Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.
El tamaño de $N$ y de cada natural - [Detalles]
Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.
Problemas de conjuntos transitivos y cardinalidad de los naturales - [Detalles]
Descripción pendiente
Grupos - "Casi grupos" - [Detalles]
Se dan ejemplos de conjuntos con operaciones que "casi" son grupos y se explican las propiedades de grupo que fallan.
26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]
Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.
Nota 2. Subconjuntos - [Detalles]
En esta nota se presenta la idea de subconjunto así como varias propiedades que derivan de ella, se ven un par de demostraciones básicas de conjuntos y subconjuntos y se dan un par de axiomas.
Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de H en G - [Detalles]
En esta entrada definiremos una relación de equivalencia en un grupo. Nos referimos al grupo de los enteros con la suma (Z,+) en el cual es posible establecer una relación de equivalencia que induce a una partición con exactamente n conjuntos.
Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]
En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.
El complemento de un conjunto - [Detalles]
En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.
En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.
Funciones (parte II) - [Detalles]
En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.
Funciones suprayectivas y biyectivas - [Detalles]
En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.
Cotas inferiores e ínfimos - [Detalles]
En esta entrada hablaremos acerca de cotas inferiores e ínfimos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relacionan estos conceptos con el minimo.
Cotas superiores y supremos - [Detalles]
En esta entrada hablaremos acerca de cotas superiores y supremos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relaciona este concepto con el máximo de un conjunto.
Isomorfismos de orden - [Detalles]
En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.
Construcción de los números naturales - [Detalles]
En esta sección comenzaremos con la construcción rigurosa de los números naturales, es decir, desde la teoría de conjuntos, sin dejar de lado la noción intuitiva que ya tenemos, para ello veremos el concepto de conjunto transitivo.
Axioma de elección - [Detalles]
En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.
Cuestionario de conjuntos importantes - [Detalles]
Este es un cuestionario para repasar el Módulo 14 del texto "Cimientos Matemáticos" donde se abarcan temas como: los números naturales, los números enteros, los números racionales e irracionales, etc.
Tipos de relaciones en conjuntos - [Detalles]
En esta entrada vemos los conceptos de relaciones inyectivas, suprayectivas, reflexivas, transitivas y simétricas.
Relaciones de equivalencia y clases de equivalencia - [Detalles]
En esta entrada revisamos las relaciones de equivalencia, clases de equivalencia y particiones de conjuntos.
Funciones invertibles - [Detalles]
Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]
Cardinalidad de conjuntos finitos - [Detalles]
Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]
Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.