Resultados de búsqueda: álgebra de conjuntos

196 resultados encontrados

  • Diapositivas

    Diapositivas sobre familias de conjuntos - [Detalles]

    Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.

  • Blog

    Álgebra de conjuntos - [Detalles]

    En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Blog

    Nota 4. Unión e intersección de Conjuntos. - [Detalles]

    En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.

  • Video

    Familias de conjuntos - [Detalles]

    Damos la definición de familia de conjuntos, unión e intersección de familias de conjuntos., mediante ejemplos platicamos que es una familia de conjuntos y sus propiedades.

  • Video

    Conjuntos límite - [Detalles]

    Definimos a los ω-conjuntos límite y los α-conjuntos límite para puntos en el plano. Probamos algunas propiedades de dichos conjuntos límite.

  • Diapositivas

    Diapositivas sobre demostraciones de conjuntos - [Detalles]

    Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.

  • Diapositivas

    Diapositivas sobre cardinalidad y conjuntos - [Detalles]

    Proporcionamos la definición de lo que es la cardinalidad y de lo que es la quivalencia de 2 conjuntos finitos, se anotan una serie de ejemplos respecto a conjuntos finitos equivalentes, también se demuestran una serie de propiedades del tema de cardinalidad en conjuntos finitos.

  • Video

    Relaciones entre conjuntos - [Detalles]

    Definimos que es una relación entre conjuntos. Mediante ejemplos explicamos que es una relación entre conjuntos y sus propiedades. También definimos que es el Dominio, Codominio e Imagen, en una relación de conjuntos.

  • Blog

    Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]

    En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.

  • Blog

    Equipotencia - [Detalles]

    En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.

  • Capítulo del libro

    Conjuntos y Lógica - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.

  • Cuestionario

    Cuestionario de conjuntos y logica - [Detalles]

    Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.

  • Video

    Álgebra homológica - el teorema fundamental del álgebra homológica - [Detalles]

    En este video enunciamos y demostramos el teorema fundamental del álgebra homológica. Seguramente el teorema más importante en esta área.

  • Blog

    Diferencia simétrica - [Detalles]

    En esta sección hablaremos de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos, algunos otros los probaremos con el método de demostración habitual.

  • Video

    Conjuntos iguales - [Detalles]

    Damos la definición de igualdad de conjuntos, explicamos cuando dos conjuntos son iguales y damos algunos ejemplos.

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Video

    Familias indexadas de conjuntos - [Detalles]

    Continuamos con la discusión sobre familias de conjuntos, pero ahora añadimos el concepto de índice, el cual sirve para indexar una familia de conjuntos.

  • Video

    Definición de función - [Detalles]

    Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último

  • Diapositivas

    Diapositivas sobre conjuntos - [Detalles]

    Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.

  • Diapositivas

    Diapositivas sobre conjuntos infinitos - [Detalles]

    Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.

  • Guía de estudio

    Guía de estudio sobre funciones y cardinalidad - [Detalles]

    Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Ilustración

    Ejemplos de cardinalidad de conjuntos - [Detalles]

    Se exponen dos conjuntos con características distintas y el ejercicio pide que se demuestre que estos conjuntos tienen la misma cardinalidad.

  • Video

    Conjuntos Lineamente Dependientes Y Linealmente Independientes - [Detalles]

    Repasamos la definición de conjuntos linealmente dependientes y linealmente independientes. Vemos varios ejemplos de conjuntos linealmente dependientes, y otros linealmente independientes. 

  • Blog

    Nota 7. Relaciones y funciones - [Detalles]

    En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.

  • Blog

    Nota 14. Familia de Conjuntos y particiones. - [Detalles]

    En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.

  • Blog

    Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]

    En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Blog

    Conjuntos finitos - [Detalles]

    En esta sección veremos a los conjuntos finitos, los cuales podremos contar según el número natural al que sean equipotentes. Además, veremos resultados acerca de la cardinalidad de la unión de dos conjuntos.

  • Blog

    Conjuntos finitos (parte II) - [Detalles]

    En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.

  • Blog

    Conjuntos y elementos - [Detalles]

    Estudiamos las primeras nociones de teoría de conjuntos. Vemos qué significa que un elemento pertenezca a otro y cómo describir conjuntos.

  • Blog

    Leyes de De Morgan y diferencia simétrica de conjuntos - [Detalles]

    En esta entrada hablamos de la diferencia y diferencia simétrica entre conjuntos, las leyes de De Morgan y un resumen de las propiedades de conjuntos.

  • Video

    Breviario de Lógica y Conjuntos - [Detalles]

    En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 1 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 1 del COMAL de Álgebra Lineal 1

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 2 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 2 del COMAL de Álgebra Lineal 1

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 3 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 3 del COMAL de Álgebra Lineal 1

  • Evaluación

    COMAL Álgebra Lineal 1 – Tarea 4 - [Detalles]

    Tarea en equipo para repasar temas de la Unidad 4 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 1 - [Detalles]

    Examen de práctica de la Unidad 1 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 2 - [Detalles]

    Examen de práctica de la Unidad 2 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 3 - [Detalles]

    Examen de práctica de la Unidad 3 del COMAL de Álgebra Lineal 1

  • Examen

    COMAL Álgebra Lineal 1 – Examen 4 - [Detalles]

    Examen de práctica de la Unidad 4 del COMAL de Álgebra Lineal 1

  • Blog

    Construcción de σ-álgebras - [Detalles]

    Desarrollamos el concepto de sigma-álgebra generado por una familia de subconjuntos del espacio muestral. Con este se construye el sigma-álgebra de los borelianos.

  • Curso

    COMAL: Álgebra Lineal I - [Detalles]

    Cubrimos el temario oficial de Álgebra Lineal con un fuerte uso de notas de blog y problemas. Hacia el final hacemos énfasis en cómo los temas se aplican en áreas como programación en Python, homología, cuántica, biología matemática, entre otros. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Curso

    COMAL: Álgebra Superior I - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior I viendo varios videos, ejemplos y presentaciones en el camino. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Curso

    COMAL: Álgebra Superior II - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior II viendo varios videos, ejemplos y presentaciones en el camino. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721.

  • Curso

    COMAL: Álgebra Lineal II - [Detalles]

    Cubrimos el temario oficial de Álgebra Lineal II con un fuerte uso de notas de blog y problemas. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Curso

    COMAL: Álgebra Moderna I - [Detalles]

    Cubrimos el temario oficial de la materia Álgebra Moderna I. Tenemos notas del curso, videos y cuestionarios para práctica. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522..

  • Video

    Demostración del teorema fundamental del álgebra usando el grupo fundamental del círculo - [Detalles]

    En este video damos una demostración hermosa del teorema fundamental del álgebra usando e hecho de que el grupo fundamental del círculo es cíclico infinito.

  • Video

    Álgebra homológica - complejos de cadenas - [Detalles]

    En este video comenzamos a estudiar álgebra homológica desde un punto de vista puramente algebraico. Definimos complejos de cadenas, subcomplejos, complejos cociente, homología y funciones inducidas.

  • Video

    Álgebra homológica - el lema de la serpiente - [Detalles]

    En este video enunciamos y demostramos el "lema de la serpiente". Este lema será usado en la demostración del teorema fundamental del álgebra homológica.

  • Video

    Álgebra homológica - el lema de los cinco - [Detalles]

    En este video enunciamos y demostramos "el lema del cinco", el cual es un resultado fundamental y elemental en álgebra homológica. Este lema nos será muy útil más adelante.

  • Curso

    COMAL: Álgebra Superior II - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior II con un fuerte uso de notas de blog y problemas. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Proyecto

    Proyecto: Álgebra lineal básica en Python y Jupyter - [Detalles]

    En este proyecto llevamos varios de los conceptos teóricos de álgebra lineal a un lenguaje de programación. Vemos cómo usar las bibliotecas SymPy y NumPy de Python para trabajar con matrices.

  • Blog

    Algebra Moderna I: Operación binaria - [Detalles]

    El objetivo de esta nota es definir el concepto de "operación binaria" dentro del Algebra Moderna. Así mismo, dejar definida la notación del concepto que se adoptará a lo largo de las notas del curso. Y por ultimo se ejemplifican algunas formas de construir este tipo de operaciones.

  • Blog

    Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]

    El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.

  • Video

    Álgebra de Funciones - [Detalles]

    En este video se enlistan las operaciones entre funciones, dando lugar al álgebra de funciones.

  • Sitio web

    COMAL: Álgebra Superior I - [Detalles]

    Cubrimos el temario oficial de Álgebra Superior I con un fuerte uso de notas de blog y problemas. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Blog

    Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de H en G - [Detalles]

    En esta entrada definiremos una relación de equivalencia en un grupo. Nos referimos al grupo de los enteros con la suma (Z,+) en el cual es posible establecer una relación de equivalencia que induce a una partición con exactamente n conjuntos.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Video

    Qué es un conjunto y otras cuestiones - [Detalles]

    Damos la definición de conjunto, y algunos ejemplos de conjuntos importantes. También explicamos la notación que se utiliza para conjuntos.

  • Video

    Unión e intersección de conjuntos - [Detalles]

    Definimos la intersección y unión de conjuntos, también damos algunos ejemplos ilustrativos y casos particulares

  • Video

    Diferencia y diferencia simétrica de conjuntos - [Detalles]

    Vemos las definiciones diferencia y diferencia simétrica de conjuntos, además damos algunos ejemplos

  • Video

    Ejercicio de repaso de operaciones con conjuntos - [Detalles]

    Damos un repaso a las operaciones con conjuntos: Unión, Intersección, etc. Usamos ejemplos sencillos de subconjuntos de números naturales.

  • Video

    Conjunto potencia - [Detalles]

    Definimos el conjunto potencia de un conjunto, hablamos de ejemplos de los conjuntos potencia de conjuntos sencillos, y damos propiedades y teoremas relacionados al conjunto potencia

  • Video

    Tipos de relaciones entre conjuntos - [Detalles]

    Hablamos de relaciones de conjuntos muy especiales, la relación identidad, la inversa de una relación, relación reflexiva, relación simétrica, relación transitiva y relación de equivalencia y damos un ejemplo de cada una.

  • Video

    Composición de relaciones entre conjuntos - [Detalles]

    Definimos que es la composición de relaciones entre conjuntos, usamos ejemplos para dar composiciones sencillas

  • Video

    Cardinalidad - conjuntos finitos - [Detalles]

    Usando lo visto anteriormente, usando la cardinalidad, damos la definición de un conjunto finito o infinito. Hablamos de varios teoremas relacionados a los conjuntos finitos.

  • Blog

    Introducción. Repaso Teoría de Conjuntos (Parte 1) - [Detalles]

    Presentación de los problemas que fundamentan el cálculo. Conceptos básicos de teoría de conjuntos.

  • Blog

    Repaso Teoría de Conjuntos (Parte 2) - [Detalles]

    Presentación de las operaciones de conjuntos.

  • Diapositivas

    Diapositivas sobre operaciones de conjuntos - [Detalles]

    Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Guía de estudio

    Guía de estudio sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejercicios respecto a los temas de conjuntos, operaciones de éstos y relaciones, en esta lista se contempla que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.

  • Cuestionario

    Cuestionario sobre conjuntos - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.

  • Guía de estudio

    Ejemplos sobre conjuntos y relaciones - [Detalles]

    Se deja una lista de ejemplos respecto a los temas de conjuntos y relaciones con el objetivo de que los alumnos que deseen profundizar más en su estudio respecto a este tema puedan clarificar su comprensión.

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Video

    G-conjuntos - [Detalles]

    Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.

  • Blog

    Nota 1. Noción de Conjunto - [Detalles]

    En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.

  • Blog

    Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]

    En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.

  • Video

    Ejercicio de Conjuntos (De Morgan) - [Detalles]

    En este video, emprenderemos un viaje meticuloso para demostrar la validez de las Leyes de De Morgan, dos principios fundamentales que conectan la lógica con las operaciones de conjuntos.

  • Blog

    Nota 30. Dependencia e independencia lineal - [Detalles]

    En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.

  • Blog

    Clases de equivalencia y particiones - [Detalles]

    Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.

  • Blog

    Sucesor - [Detalles]

    En esta nueva sección hablaremos acerca del sucesor de un número natural. Este nuevo concepto nos permitirá definir a los conjuntos inductivos e iniciar a descubrir el concepto del infinito desde la perspectiva de la teoría de conjuntos.

  • Blog

    Conjuntos infinitos - [Detalles]

    En esta sección comenzaremos definiendo que es un conjunto infinito para posteriormente probar resultados acerca de la cantidad de elementos que estos poseen, es decir, la cardinalidad de dichos conjuntos.

  • Blog

    Conjuntos numerables - [Detalles]

    En esa entrada seguiremos trabajando con conjuntos infinitos, en especial aquellos que tienen la misma cantidad de elementos que los numeros naturales .

  • Capítulo del libro

    Conjuntos importantes - [Detalles]

    En este capitulo de Cimientos Matemáticos revisaremos los conjuntos de números más importantes y los más usuales con los que solemos trabajar, tal es el caso de los naturales y enteros que ya hemos visto en capítulos anteriores, pero ahora añadiendo a los números, racionales, irracionales, reales y hasta los números complejos, que de complejos únicamente es el nombre, ya que veremos que la manera de trabajar con este es muy sencilla.

  • Blog

    Axiomas de los conjuntos. - [Detalles]

    En esta entrada hablamos sobre la teoría de conjuntos y sus axiomas.

  • Blog

    Intersecciones, uniones y complementos de conjuntos - [Detalles]

    En esta entrada revisamos tres operaciones de la teoría de conjuntos: La intersección, la unión y el complemento.

  • Blog

    Parejas ordenadas y producto cartesiano de conjuntos - [Detalles]

    En esta entrada introducimos el concepto de parejas ordenadas y del producto cartesiano entre conjuntos.

  • Blog

    Relaciones en conjuntos: dominio, codominio y composición - [Detalles]

    En esta entrada hablamos sobre relaciones entre conjuntos, el dominio, imagen de una relación así como la composición entre relaciones.

  • Blog

    Varios tamaños de conjuntos infinitos - [Detalles]

    En esta entrada revisamos el concepto de conjuntos con cardinalidad infinita y damos algunos ejemplos de ellos.

  • Sitio web

    COMAL: Teoría de los Conjuntos - [Detalles]

    En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Blog

    Introducción al curso, vectores y matrices - [Detalles]

    Definimos escalares, vectores, matrices en álgebra lineal. Vemos cómo sumar matrices/vectores y multiplicar por escalares. Probamos un resultado de bases.

  • Blog

    Problemas de vectores, matrices y matrices como transformaciones lineales - [Detalles]

    Problemas resueltos de temas básicos de álgebra lineal. Vemos ejemplos de suma de vectores y matrices. Además, hay ejemplos de transformaciones lineales.

  • Blog

    Valores y vectores propios para resolver sistemas lineales - [Detalles]

    Se desarrolla la teoría preliminar hacía el método de valores y vectores propios para resolver sistemas lineales homogéneos, así mismo se hace un breve repaso sobre éstos conceptos desde una perspectiva del álgebra lineal

  • Cuestionario

    Cuestionario Unidad 1 Álgebra Superior - [Detalles]

    Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a lógica proposicional, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.

  • Video

    Álgebra homológica - homotopías - [Detalles]

    En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.

  • Video

    Álgebra homológica - sucesiones exactas - [Detalles]

    En este video definimos sucesiones exactas. Este video introduce notación que será muy usada en videos posteriores.

  • Video

    Álgebra homológica - naturalidad del homomorfismo de conexión - [Detalles]

    En este video demostramos la naturalidad del homomorfismo de conexión. Dicha naturalidad es en el sentido de la teoría de categorías.

  • Video

    Homología singular - la sucesión exacta de la tercia - [Detalles]

    En este video deducimos una sucesión exacta larga que involucra grupos de homología relativas de tres espacios Z contenido en Y y Y contenido en X. Esta sucesión es muy parecida a la sucesión exacta larga de la pareja y se deduce usando el teorema fundamental del álgebra homológica.

  • Proyecto

    Proyecto: El sorteo del auto y matrices de transición - [Detalles]

    En este proyecto usamos ideas básicas de álgebra lineal para introducir el concepto de procesos estocásticos discretos usando un problema sobre el sorteo de un auto.

  • Proyecto

    Proyecto: Modelo de Leslie para explotación animal y eigenvalores - [Detalles]

    Este proyecto de aplicación usa nociones básicas de álgebra lineal para plantear un modelo poblacional para cierta especie, así como una posible expltación responsable de la misma.

  • Proyecto

    Proyecto: Mecánica cuántica desde álgebra lineal - [Detalles]

    En este proyecto de aplicación extendemos lo aprendido sobre producto interior hacia espacios vectoriales sobre los complejos. Hacemos esto para hablar de la notación bra-ket en física y para introducir ideas básicas de mecánica cuántica.

  • Blog

    Introducción al curso y números naturales - [Detalles]

    Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.

  • Blog

    Construcción de números complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Inmersión de los reales en los complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Ecuaciones cuadráticas complejas - [Detalles]

    Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.

  • Blog

    Irreducibilidad en R[x] - [Detalles]

    Enunciamos el teorema fundamental del álgebra y el teorema de la factorización única de polinomios sobre los complejos asimismo vemos las raíces complejas de un polinomio y su la irreducibilidad de un polinomio real.

  • Blog

    Continuidad y diferenciabilidad de polinomios reales - [Detalles]

    Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.

  • Blog

    37. Consecuencias del teorema integral de Cauchy - [Detalles]

    En esta entrada veremos unas cuantas consecuencias del Teorema Integral de Cauchy, tales como el Teorema de Liouville, el Teorema Fundamental del Álgebra, el Teorema de Morera y más.

  • Blog

    Álgebra Moderna I: Operación binaria asociativa y conmutativa - [Detalles]

    A continuación se manejan dos tipos de operaciones especificas: las operaciones binarias asociativas y las operaciones conmutativas. Dentro de estos conceptos se espera que el lector pueda reconocer cuando una operación binaria recae dentro de alguno de estos dos tipos mencionados o no. En las notas, se da ejemplo de como reconocer la conmutatividad dentro de un arreglo de Tabla.

  • Blog

    Álgebra Moderna I: Definición de Grupos - [Detalles]

    Dentro de lo que se abordará como tema principal a continuación, es la definición de grupo y se facilitara la compresión de este nuevo concepto a través de varios ejemplos. Un concepto más es el de Grupo abeliano.

  • Blog

    Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo - [Detalles]

    En primera instancia se definirán propiedades básicas de grupos como en cualquier otra estructura algebraica. En la cual, es de importancia mencionar la existencia de un neutro, asociatividad e inverso. Por ultimo, la definición débil de grupo.

  • Blog

    Álgebra Moderna I: Asociatividad Generalizada y Leyes de los Exponentes - [Detalles]

    Dentro de las operaciones básicas de un grupo, podemos encontrar la asociatividad. La cual es tratada dentro de esta sección, además de algunas de sus consecuencias inmediatas y un teorema generalizando.

  • Blog

    Álgebra Moderna I: Subgrupos - [Detalles]

    La proxima estructura que nos interesa estudiar es la de la subcoleccion H de un grupo G, por tanto necesitamos conocer que necesita H para que sea un grupo en si mismo. Así mismo, hay que estudiar propiedades que heredan estas subcolecciones y las caracterizaciones. Por ultimo siempre es bueno revisar que pasa cuando son finitos.

  • Blog

    Álgebra Moderna I: Orden de un elemento y Grupo cíclico - [Detalles]

    ¿Cualquier subconjunto X de un grupo G es un subgrupo? Esta premisa es abordada principalmente, necesitamos ver condiciones necesarias que pedirle a a X. Requiriendo la definición de orden de un elemento hasta llegar al concepto de subgrupo cíclico.

  • Blog

    Álgebra Moderna I: Orden de un grupo - [Detalles]

    Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.

  • Blog

    Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]

    El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.

  • Blog

    Álgebra Moderna I: Palabras. - [Detalles]

    Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.

  • Blog

    Álgebra Moderna I: Permutaciones y Grupo Simétrico - [Detalles]

    En primera instancia tenemos que definir lo que es una permutación de un conjunto X. Posteriormente podremos construir el concepto de Grupo Simétrico y la definición de un r-ciclo.

  • Blog

    Álgebra Moderna I: Permutaciones disjuntas - [Detalles]

    A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.

  • Blog

    Álgebra Moderna I: Factorización Completa - [Detalles]

    Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Blog

    Álgebra Moderna I: Paridad de una permutación - [Detalles]

    A partir de la entrada anterior, se puede definir el signo de una permutación. Lo cual guía a introducir la función signo y probar que es multiplicativa. Posteriormente se descubre al Grupo alternante.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Blog

    Álgebra Moderna I: Teorema de Lagrange - [Detalles]

    A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H

  • Blog

    Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]

    En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.

  • Blog

    Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]

    En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.

  • Blog

    Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]

    Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.

  • Blog

    Álgebra Moderna I: Grupo Cociente - [Detalles]

    La definición de subgrupos normales surgió de la necesidad de extender las propiedades de los enteros a grupos más generales. En los enteros, definimos una relación de equivalencia (módulo n) que nos permite obtener clases de equivalencia. Estas clases no solo generan una partición, sino que también constituyen un subgrupo de Z. La idea central es generalizar este concepto: buscamos definir una operación en ciertas clases de equivalencia para que también formen un grupo.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Blog

    Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo - [Detalles]

    En esta sección se analizara un tipo de correspondencia que se puede presentar entre dos grupos, lo cual nos llevara a definir el concepto de Homomorfismo. Por tanto, es necesario analizar sus propiedades y comportamientos bajo composición.

  • Blog

    Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]

    En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.

  • Blog

    Álgebra Moderna I: Segundo Teorema de Isomorfía - [Detalles]

    Para esta entrada nos apoyaremos en el diagrama de retícula propuesto anteriormente, con el cual introduciremos el segundo teorema de isomorfía. Posteriormente reforzaremos y daremos una versión mas intuitiva de este teorema.

  • Blog

    Álgebra Moderna I: Tercer Teorema de Isomorfía - [Detalles]

    "Alguna vez te haz preguntado: ¿Qué ocurre con un cociente de cocientes?" Después de una breve introducción al tercer teorema de isomorfía, comenzaremos enunciándolo y probándolo a partir del primer teorema.

  • Blog

    Álgebra Moderna I: Cuarto Teorema de Isomorfía - [Detalles]

    A partir de ilustraciones con retículas, en esta entrada se introduce al cuarto teorema de Isomorfía. El cual nos encargaremos de demostrar a lo largo de la sección y ejemplificar trabajando sobre el grupo diédrico.

  • Blog

    Álgebra Moderna I: Teorema de Cayley - [Detalles]

    A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley

  • Blog

    Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]

    Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.

  • Blog

    Álgebra Moderna I: Acciones - [Detalles]

    Para esta sección, necesitamos tomar el concepto de acción. Hemos estado usando el verbo actuar para referirnos a esta transformación que sucede al operar un a en G y otro elemento, sea del mismo G o de las clases laterales. La realidad es que ya usar actuar da una idea de lo que estamos queriendo decir. Estamos usando un elemento de un grupo para transformar un elemento de otro.

  • Blog

    Bases para cualquier espacio vectorial - [Detalles]

    Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en Álgebra lineal, específicamente, el hecho de que todo espacio vectorial tiene una base

  • Capítulo del libro

    Monomios y polinomios - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.

  • Blog

    Introducción al curso - [Detalles]

    Introducción al curso de álgebra lineal II, vemos un repaso general de lo que se vio en el curso anterior así como varios resultados importantes a tener en cuenta, damos una idea general de los temas y resultados que se verán en este nuevo curso.

  • Blog

    Polinomio mínimo de transformaciones lineales y matrices - [Detalles]

    En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar

  • Blog

    Introducción a forma canónica de Jordan - [Detalles]

    En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.

  • Video

    Álgebra de límites - [Detalles]

    En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.

  • Video

    Continuidad de funciones de números reales - [Detalles]

    En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.

  • Blog

    Conjuntos generadores e independencia lineal - [Detalles]

    Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.

  • Blog

    El lema del intercambio de Steinitz - [Detalles]

    En un espacio vectorial los conjuntos independientes son "chicos" y los generadores son "grandes". El lema de intercambio de Steinitz formaliza esto.

  • Blog

    Transformaciones lineales y vectores independientes - [Detalles]

    Estudiamos el efecto que tienen las transformaciones lineales en bases, en conjuntos generadores y en linealmente independientes.

  • Blog

    Bases ortogonales y ortonormales - [Detalles]

    Definimos conjuntos ortogonales y ortonormales. Definimos también bases ortogonales y ortonormales. Damos propiedades básicas y vemos algunos ejemplos.

  • Video

    Demostraciones con conjuntos - [Detalles]

    Usamos ejemplos para dar tips y métodos para demostrar contenciones e igualdades, así como las reglas para demostrar por casos.

  • Video

    Particiones, relaciones y clases de equivalencia - [Detalles]

    Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia

  • Video

    Funciones numéricas - [Detalles]

    Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.

  • Video

    Funciones iguales - [Detalles]

    Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas

  • Video

    Cardinalidad - definición y ejemplos - [Detalles]

    Damos la definición de la cardinalidad de un conjunto, usando ejemplos mostramos cuando dos conjuntos tienen la misma cardinalidad.

  • Video

    Cardinalidad - conjuntos infinitos - los naturales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.

  • Video

    Inducción matemática (1) - [Detalles]

    Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción. 

  • Video

    El grado de un polinomio - [Detalles]

    Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo. 

  • Blog

    Conjuntos infinitos - [Detalles]

    Revisión del concepto de cardinalidad de un conjunto, conjunto infinito y numerable.

  • Blog

    Interpretación de las operaciones con eventos - [Detalles]

    Explicamos el significado de las operaciones con conjuntos en el contexto de la probabilidad.

  • Blog

    Lenguaje de la teoría de los conjuntos - [Detalles]

    None

  • Blog

    Operaciones entre conjuntos - [Detalles]

    None

  • Diapositivas

    Diapositivas sobre funciones - [Detalles]

    Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.

  • Diapositivas

    Diapositivas sobre cardinalidad y los racionales - [Detalles]

    En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.

  • Diapositivas

    Diapositivas sobre combinatoria - [Detalles]

    Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Video

    Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]

    Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos. 

  • Cuestionario

    Mini-cuestionario: Generadores e independientes - [Detalles]

    Mini-cuestionario para verificar el entendimiento de los conceptos de conjuntos de vectores generadores y linealmente independientes.

  • Blog

    La construcción de las naturales - [Detalles]

    Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.

  • Blog

    Conjuntos transitivos - [Detalles]

    Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.

  • Blog

    El tamaño de $N$ y de cada natural - [Detalles]

    Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.

  • Blog

    Problemas de conjuntos transitivos y cardinalidad de los naturales - [Detalles]

    Descripción pendiente

  • Video

    Grupos - "Casi grupos" - [Detalles]

    Se dan ejemplos de conjuntos con operaciones que "casi" son grupos y se explican las propiedades de grupo que fallan.

  • Cuestionario

    26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]

    Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.

  • Blog

    Nota 2. Subconjuntos - [Detalles]

    En esta nota se presenta la idea de subconjunto así como varias propiedades que derivan de ella, se ven un par de demostraciones básicas de conjuntos y subconjuntos y se dan un par de axiomas.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Nota 16. Los números naturales. - [Detalles]

    En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.

  • Blog

    El complemento de un conjunto - [Detalles]

    En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

  • Blog

    Pares ordenados y producto cartesiano - [Detalles]

    En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Blog

    Relaciones - [Detalles]

    En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.

  • Blog

    Funciones (parte II) - [Detalles]

    En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

  • Blog

    Funciones suprayectivas y biyectivas - [Detalles]

    En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.

  • Blog

    Cotas inferiores e ínfimos - [Detalles]

    En esta entrada hablaremos acerca de cotas inferiores e ínfimos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relacionan estos conceptos con el minimo.

  • Blog

    Cotas superiores y supremos - [Detalles]

    En esta entrada hablaremos acerca de cotas superiores y supremos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relaciona este concepto con el máximo de un conjunto.

  • Blog

    Isomorfismos de orden - [Detalles]

    En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.

  • Blog

    Construcción de los números naturales - [Detalles]

    En esta sección comenzaremos con la construcción rigurosa de los números naturales, es decir, desde la teoría de conjuntos, sin dejar de lado la noción intuitiva que ya tenemos, para ello veremos el concepto de conjunto transitivo.

  • Blog

    Axioma de elección - [Detalles]

    En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.

  • Cuestionario

    Cuestionario de conjuntos importantes - [Detalles]

    Este es un cuestionario para repasar el Módulo 14 del texto "Cimientos Matemáticos" donde se abarcan temas como: los números naturales, los números enteros, los números racionales e irracionales, etc.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.

  • Blog

    Tipos de relaciones en conjuntos - [Detalles]

    En esta entrada vemos los conceptos de relaciones inyectivas, suprayectivas, reflexivas, transitivas y simétricas.

  • Blog

    Relaciones de equivalencia y clases de equivalencia - [Detalles]

    En esta entrada revisamos las relaciones de equivalencia, clases de equivalencia y particiones de conjuntos.

  • Blog

    Funciones invertibles - [Detalles]

    Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]

  • Blog

    Cardinalidad de conjuntos finitos - [Detalles]

    Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]

  • Video

    Presentación del curso de Calculo Diferencial e Integral I - [Detalles]

    En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.

  • Video

    Valor absoluto y más sobre el orden de los reales - [Detalles]

    En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.