Diapositivas de cuantificadores - [Detalles]
Mostramos los símbolos más recurrentes en matemáticas para denotar la existencia, unicidad la totalidad y pertenencia de elementos en un conjunto asi mismo es acompañado por una lista de ejemplos.
Cuestionario de conjuntos y logica - [Detalles]
Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.
Resolución de triángulos rectángulo, otro ejemplo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la uno de sus lados y uno de sus ángulos, podemos saber las medidas de todos sus ángulos y lados.
Diapositivas sobre composición de funciones y función inversa - [Detalles]
Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.
Diapositivas sobre espacios vectoriales - [Detalles]
Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.
Lugar geométrico en el plano cartesiano - [Detalles]
Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas.
Lugares en el espacio cartesiano - [Detalles]
Recordamos la definición de un lugar geométrico, la cual también aplica para el espacio cartesiano. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas, pero esta vez en el espacio cartesiano, es decir, con 3 coordenadas.
Lugares Geométricos en el plano polar - [Detalles]
Damos una explicación sobre los lugares geométricos en el plano polar. Vemos que las condiciones para representar algunos lugares geométricos son diferentes en el plano polar.
El cubriente universal - parte 2 - [Detalles]
En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.
Ejemplos de funciones de varias variables - [Detalles]
Se presentan varios ejemplos de funciones de varias variables que cumplen con distintas condiciones sobre ser C_1, tener derivadas parciales, ser continuas, ser derivables, etc.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
Veamos una primera entrada de las ecuaciones C-R.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Ahora chequemos más propiedades de las ecuaciones C-R.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.
39. Teoremas de Weierstrass - [Detalles]
Vamos a ver unos cuantos resultados importantes para ver cómo se relacionan las series de funciones, derivadas e integrales de estas y veremos bajo qué condiciones se puede derivar e integrar término a término.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
Álgebra Moderna I: Orden de un elemento y Grupo cíclico - [Detalles]
¿Cualquier subconjunto X de un grupo G es un subgrupo? Esta premisa es abordada principalmente, necesitamos ver condiciones necesarias que pedirle a a X. Requiriendo la definición de orden de un elemento hasta llegar al concepto de subgrupo cíclico.
Resolución de triángulos rectángulo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la medida de dos de sus lados, podemos saber las medidas de todos sus ángulos y su otro lado.
Bases numéricas, Sistema binario y sus potencias - [Detalles]
Sistema binario y sus potencias – Qué es el sistema binario y sus derivados.
Axioma del supremo y sus aplicaciones - [Detalles]
Estudio del concepto de completitud en los números reales, el axioma del supremo y sus consecuencias.
Mini-cuestionario: Multiplicación de matrices y composición de sus transformaciones - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo hacer el producto de matrices y cómo esto se relaciona con la composición de sus transformaciones asociadas.
Cuestionario sobre traslación de ejes - [Detalles]
Ponemos en práctica el tema de las cónicas fuera del origen, el alumno a estas alturas debe ser capaz de identificar la cónica que se está presentando, sus elementos y su construcción dados sus elementos. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Producto cruz ( producto vectorial) - [Detalles]
Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores.
Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores.
Racionales y sus expansiones decimales - [Detalles]
Damos una serie de ejemplos que nos muestran la relación entre los números racionales y sus expresiones decimales.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
COMAL: Teoría de los Conjuntos - [Detalles]
En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Funciones de orden superior, Definiciones - [Detalles]
Funciones de orden superior - Definiciones y explicación previa a la introducción de este tipo de funciones en JAVA mediante sus interfaces funcionales por sus limitantes
Producto de matrices y composición de sus transformaciones - [Detalles]
Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.
Matrices de bloques - [Detalles]
Definimos el concepto de matrices de bloques. Damos ejemplos y vemos que sus operaciones son compatibles con las de matrices.
Forma matricial de una transformación lineal - [Detalles]
Definimos la forma matricial de transformaciones lineales. Vemos que la composición de transformaciones corresponde al producto de sus formas matriciales.
Problemas de rango de transformaciones y matrices - [Detalles]
Resolvemos problemas de rango de matrices y transformaciones lineales usando sus propiedades, el teorema de rango nulidad y la desigualdad de Sylvester.
Formas cuadráticas, propiedades, polarización y teorema de Gauss - [Detalles]
Retomamos las formas bilineales y cuadráticas. Mostramos la identidad de polarización y sus consecuencias. Enunciamos el teorema de clasificación de Gauss.
Propiedades del polinomio característico - [Detalles]
Retomamos la definición de polinomio característico y vemos sus propiedades principales. Enunciamos dos teoremas fundamentales de matrices que lo usan.
Matrices simétricas reales y sus eigenvalores - [Detalles]
Enunciamos el teorema espectral para matrices simétricas reales. Mostramos que estas matrices tienen eigenvalores reales y otros dos resultados auxiliares.
Tipos de enunciados - [Detalles]
Definición de enunciados como axiomas, teoremas y sus clasificaciones. También se definen formas proposicionales como la tautología y la contradicción.
Familias de conjuntos - [Detalles]
Damos la definición de familia de conjuntos, unión e intersección de familias de conjuntos., mediante ejemplos platicamos que es una familia de conjuntos y sus propiedades.
Ejemplo de partición, clases y relación de equivalencia - [Detalles]
Continuamos con la discusión sobre las relaciones de equivalencia, damos un ejemplo y demostramos que es una relación de equivalencia, usamos el ejemplo para ilustrar sus clases de equivalencia y la partición.
Funciones - inclusión y restricción - [Detalles]
Vemos la definición de las funciones inclusión y restricción de una función, damos algunos ejemplos con funciones numéricas con sus graficas.
Definimos que es una permutación, y hablamos de sus usos y características. También damos una fórmula de conteo para saber cuántas permutaciones tenemos en un conjunto de n elementos, ya sea permutaciones con o sin repeticiones.
Triángulo de Pascal - [Detalles]
Vemos cómo utilizar el triángulo de Pascal y explicamos como deducir sus coeficientes. También comparamos las propiedades del combinatorio con los coeficientes en el triángulo de Pascal. Todo esto nos ayuda para calcular la n-ésima potencia de un binomio.
Matrices: que son y notación - [Detalles]
Explicamos la definición de matrices, y sus características, como numero de renglones y columnas. También se discute la notación de matrices.
Matriz transpuesta y propiedades de las operaciones matriciales - [Detalles]
Definimos la traspuesta de una matriz y discutimos sus propiedades. También discutimos varias propiedades algebraicas de las operaciones de matrices: Asociatividad, conmutatividad, distributividad y otras propiedades asociadas a las operaciones de matrices con escalares.
Neutro multiplicativo y unidades de un anillo - [Detalles]
Retomamos la definición de anillo. Damos la definición formal de neutro multiplicativo y de unidad. Tomando los ejemplos de anillos anteriormente vistos mostramos cuál es su neutro multiplicativo y sus unidades.
El maximo común divisor como combinación lineal entera - [Detalles]
Demostramos un teorema que nos afirma que el máximo común divisor se puede escribir como una combinación lineal de sus dividendos. Hacemos uso de las propiedades de divisibilidad anteriormente vistas y después generalizamos el teorema para el máximo común divisor de un numero arbitrario de enteros.
Damos la definición formal de un numero primo. Un entero "p>1" se dice que es primo si sus únicos divisores positivos son 1 y el mismo (1 y "p"). Definimos que es un numero compuesto y hablamos sobre algunas curiosidades sobre los números primos.
Propiedades básicas de congruencias - [Detalles]
Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".
Los enteros módulo $m$ - [Detalles]
Definimos los enteros modulo "m". Este conjunto consiste de las clases de equivalencia de la congruencia modulo "m". Definimos la operación suma y multiplicación en el conjunto de los enteros modulo "m" (recordemos que sus elementos son clases de equivalencia). Mostramos que las operaciones cumplen las propiedades necesarias para que los enteros modulo "m" sean un anillo.
i, el número imaginario - [Detalles]
Presentamos el numero imaginario "i", el cual nos permite definir la raíz cuadrada de un numero negativo. Hablamos brevemente de sus propiedades, y lo más importante, que se cumple que el cuadrado del número imaginario es menos uno: "i^2=-1".
Introducción, nociones comunes y postulados de Euclides - [Detalles]
Damos la introducción al curso. Para ello hablamos de las definiciones elementales en geometría. Planteamos los postulados de Euclides, nociones comunes y algunas de sus consecuencias.
Razón, semejanza y triángulos semejantes - [Detalles]
Demostramos el primer y segundo teorema de Thales y sus recíprocos, el teorema de Pitágoras y los criterios de semejanza de triángulos
Medianas, bisectrices, mediatrices y alturas - [Detalles]
Damos las definiciones de varios puntos y rectas notables del triángulo y demostramos algunas de sus propiedades
Triángulos pedales - [Detalles]
Damos las definiciones de triángulo mediano, triángulo órtico y triángulo pedal y demostramos algunas de sus propiedades
Rectas notables en circunferencias y ángulos inscritos - [Detalles]
Definimos las rectas notables en la circunferencia y los ángulos en la circunferencia, además demostramos algunas de sus propiedades
Curvas integrales y soluciones a una ecuación diferencial de primer orden - [Detalles]
Revisamos la relación existente entre las curvas integrales del campo asociado a la ecuación de primer orden dy/dt=f(t,y) y sus soluciones.
Ecuaciones autónomas, soluciones de equilibrio, línea fase y esbozo de soluciones - [Detalles]
Esbozamos las soluciones a una ecuación de primer orden de la forma dy/dt=f(y), la cual denominamos ecuación autónoma, mediante el uso de sus soluciones de equilibrio y la línea fase asociada a la ecuación.
Ecuaciones lineales no homogéneas de segundo orden y sus soluciones - [Detalles]
Demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.
Transformada de Laplace y sus propiedades - [Detalles]
Definimos la transformada de Laplace de una función y demostramos algunas propiedades que nos servirán para resolver problemas de condición inicial.
Propiedades algebraicas de los números reales (Parte 1) - [Detalles]
Estudio de las propiedades básicas de los números reales con sus operaciones: suma y producto.
Propiedades de orden y sus consecuencias - [Detalles]
Estudio del orden en los números reales y algunos resultados relacionados.
Valor absoluto. Desigualdad del triángulo - [Detalles]
Estudio del concepto valor absoluto y la desigualdad del triángulo con algunas de sus consecuencias.
Sucesiones divergentes y sus propiedades - [Detalles]
Definción, ejemplos y propiedades de las funciones divergentes
Definición de continuidad y sus propiedades - [Detalles]
Definición, ejemplos y propiedades de las funciones continuas
Teorema de Thales - [Detalles]
Demostramos el teorema de Thales, el teorema de la bisectriz y sus recíprocos. También construimos el producto y cociente de dos segmentos.
Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio - [Detalles]
Comenzamos el estudio cualitativo a los sistemas de dos ecuaciones no lineales. Linealizamos el sistema en sus puntos de equilibrio y estudiamos el comportamiento de las soluciones cerca de estos.
Derivada de las funciones trigonométricas - [Detalles]
Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.
Medida de probabilidad - [Detalles]
Presentamos el concepto de medida de probabilidad y sus propiedades básicas. Mostramos algunos ejemplos de funciones que son medidas de probabilidad.
Sistemas hamiltonianos - [Detalles]
Definimos y estudiamos a detalle a los sistemas hamiltonianos y sus principales propiedades.
Sistemas hamiltonianos (Ejemplos) - [Detalles]
Estudiamos un par de sistemas hamiltonianos y esbozamos sus planos fase respectivos.
Funciones de Lyapunov - [Detalles]
Definimos las funciones de Lyapunov y estudiamos algunas propiedades útiles respecto a sistemas de ecuaciones y sus puntos de equilibrio.
Sistemas gradiente - [Detalles]
Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.
Mini-cuestionario: Matrices invertibles - [Detalles]
Mini-cuestionario para verificar el entendimiento de la noción de matrices invertibles y sus propiedades
Mini-cuestionario: Matrices de bloque - [Detalles]
Mini-cuestionario para verificar el entendimiento de la noción de matriz de bloque y sus propiedades
Diapositivas sobre traducciones entre proposiciones - [Detalles]
Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.
Cuestionario Unidad 1 Álgebra Superior - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a lógica proposicional, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Cuestionario sobre conjuntos - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a conjuntos, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Cuestionario sobre funciones - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a funciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Cuestionario sobre inducción matemática y cálculo combinatorio - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a inducción matemática y cálculo combinatorio. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]
Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.
Cuestionario sobre sistemas de ecuaciones lineales y espacios vectoriales - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a matrices (operaciones y determinantes) y para solucionar sistemas de ecuaciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Diapositivas sobre coordenadas polares - [Detalles]
Mostramos lo que es el plano polar, para qué sirve este plano, cómo se utiliza, cuáles son las entradas de sus coordenadas, definimos lo que es un radián y cómo se utiliza este para utilizar el plano polar. Dejamos algunos ejemplos de funciones graficadas en este nuevo plano.
Guía de autoevaluación sobre trigonometría y más sistemas de coordenadas - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Diapositivas sobre operaciones matriciales - [Detalles]
Continuamos construyendo la definición de una matriz pero ahora definimos sus operaciones básicas somo la suma y multiplicación de dos matrices también su multiplicación por escalar, también hablamos que una matriz de nx1 o también llamado vector columna es un vector con n entradas que se ocupa para hablar de un elemento de Rn.
Cuestionario sobre operaciones matriciales - [Detalles]
Ponemos en práctica los nuevos conocimientos que tenemos de las matrces y sus operaciones que se realizan entre ellas, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre bases de espacios vectoriales - [Detalles]
A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.
Diapositivas sobre producto cruz - [Detalles]
Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.
Diapositivas sobre producto triple de vectores - [Detalles]
Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.
Cuestionario sobre rectas y planos - [Detalles]
Ponemos en práctica todo el conocimiento nuevo que tenemos respecto a los temas de rectas y planos así como sus interacciones entre éstos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]
Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.
Actividad Geogebra hipérbola - [Detalles]
Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la hipérbola, nos muestra como al cambiar de posición alguno de sus focos, asimismo nos muestra como cambia su ecuación y nos muestra de forma visual como éstos cumplen con la propiedad de la hipérbola.
Diapositivas sobre traslación de ejes - [Detalles]
Continuando con el tema de canónicas y ya sabiendo diferenciar cada una de éstas ahora aumentamos un poco la dificultad haciendo una traslación de los ejes, es decir, con cónicas fuera del origen ya teniendo éstas fuera del origen veremos que es muy sencillo calcular sus elementos báscios como el centro, focos y demás.
Diapositivas sobre rotación de ejes - [Detalles]
Dando continuidad al tema de cónicas y su traslación de ejes, ahora es natural imaginar la rotación de estos ejes y cómo esta rotación repercute en nuestras figuras cónicas y en sus elementos básicos.
Diapositivas sobre discriminante y excentricidad - [Detalles]
Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.
El espacio cartesiano - [Detalles]
Describimos el espacio cartesiano como "espacio" de 3 dimensiones: largo ancho y alto. Explicamos sus similitudes al plano cartesiano y como ubicar un punto en el espacio cartesiano.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. El Teorema de Pitágoras es válido solo para triángulos rectángulos.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. Usamos las fórmulas conocidas de un cuadrado para demostrar dicho teorema.
Razones trigonométricas - [Detalles]
Hablamos sobre las razones trigonométricas: coseno, seno, tangente, secante, cosecante y cotangente, las cuales están relacionadas con un triángulo rectángulo, escritas en termino de sus catetos e hipotenusa.
Matrices: que son y notación - [Detalles]
Explicamos la definición de matrices, y sus características, como numero de renglones y columnas. También se discute la notación de matrices.
Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores.
Ejemplo diferentes formas de la ecuación de la recta - [Detalles]
En este ejemplo vemos como a partir de la ecuación de la recta en forma de punto pendiente, podemos transformarla a las demás formas. Es decir, dada una misma recta, vemos como representarla en sus demás formas.
Ejemplo distancia entre dos rectas - [Detalles]
Dadas dos rectas descritas por sus respectivas ecuaciones de la resta, calculamos como ejemplo la distancia entre estas dos rectas. Usamos la formula anteriormente deducida.
Distancia entre un plano y un punto - [Detalles]
Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades.
Ecuación de la circunferencia - [Detalles]
Damos una ecuación para la circunferencia a base de su definición como lugar geométrico. Vemos como a partir de sus componentes, centro y su radio, podemos conocer la ecuación de la circunferencia.
Ecuación de la la Elipse - [Detalles]
Damos una ecuación para la elipse a base de su definición como lugar geométrico. Vemos como a partir de sus focos y otros componentes podemos dar la ecuación de la elipse.
Ejercicios para identificar y graficar cónicas - [Detalles]
Usamos la ecuación general de las cónicas para identificar el tipo de sección cónica dada una ecuación. Vemos algunos ejemplos y obtenemos sus elementos.
Relaciones entre conjuntos - [Detalles]
Definimos que es una relación entre conjuntos. Mediante ejemplos explicamos que es una relación entre conjuntos y sus propiedades. También definimos que es el Dominio, Codominio e Imagen, en una relación de conjuntos.
Homología singular - El grado de una función entre esferas - [Detalles]
En este video definimos el grado de una función entre esferas y estudiamos sus propiedades básicas.
Mini-cuestionario: Lema del intercambio de Steinitz - [Detalles]
Mini-cuestionario para verificar el entendimiento del lema de intercambio de Steinitz y sus apliaciones.
Mini-cuestionario: Formas cuadráticas, propiedades, polarización y teorema de Gauss - [Detalles]
Mini-cuestionario para verificar el entendimiento de la teoría básica de formas cuadráticas, sus propiedades y la identidad de polarización
Mini-cuestionario: Bases ortonormales y descomposición de Fourier - [Detalles]
Mini-cuestionario para verificar el entendimiento de la descomposición de Fourier y sus aplicaciones.
Mini-cuestionario: Matrices reales simétricas y sus eigenvalores - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo son los eigenvalores de las matrices simétricas reales.
Definición de la suma y sus propiedades básicas - [Detalles]
Definimos la suma en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Definición del producto y sus propiedades básicas - [Detalles]
Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Problemas de compatibilidad del orden de los naturales con sus operaciones - [Detalles]
Descripción pendiente
Números primos y sus propiedades - [Detalles]
Damos la definición de que un entero sea primo. Vemos dos equivalencias y propiedades para preparar el teorema fundamental de la aritmética.
Problemas de congruencias y $Z_n$ - [Detalles]
Resolvemos ejercicios que ocupan las definiciones de congruencia, anillo de módulo n para encontras sus unidades e inversos multiplicativos en caso de que los haya.
Problemas de operaciones en complejos - [Detalles]
Resolvemos problemas de operaciones básicas de complejos como la suma y producto junto con sus operaciones inversas.
La conjugación de números complejos - [Detalles]
Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.
El teorema de derivadas y multiplicidad - [Detalles]
Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.
S3 y el signo de sus elementos - [Detalles]
Se analiza el signo de los elementos de S3.
Potencias de un elemento en un grupo - [Detalles]
Se definen las potencias de elementos de un grupo y se explican sus propiedades.
Grupos cíclicos - parte 1 - [Detalles]
Se da la definición de grupo cíclico y se exploran algunas de sus propiedades, se demuestra que todos los subgrupos de un grupo cíclico son cíclicos y que hay subgrupos para cada divisor del orden de un grupo cíclico.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Introducimos las nociones de conexidad y compacidad, que nos permitirán dar caracterizaciones de subconjuntos de $\mathbb{C}$, además veremos su relación con las funciones continuas y estudiaremos sus propiedades topológicas.
11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]
Finalizando la unidad, vamos a estudiar el concepto del $\infty$, la manera será construyendo lo que llamaremos el "Plano Complejo Extendido" y analizando sus propiedades.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Chequemos un poquito de la definición de función y de sus partes real e imaginaria.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.
36. Teorema integral de Cauchy - [Detalles]
El Teorema Integral de Cauchy es un teorema importantísimo en el estudio de la variable compleja, veremos sus diferentes versiones y demostraciones.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
En esta entrada definiremos lo que significa que dos funciones sean conjugadas y armónicas conjugadas, esto luego nos permitirá caracterizar con aún más precisión a las funciones analíticas por medio de sus partes real e imaginaria.
31. Funciones elementales como series de potencias - [Detalles]
Vamos a repasar un par de trucos para los cuales se necesario aplicar las propiedades de series de potencias, de las funciones de las cuales conocemos sus series.
23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas. - [Detalles]
Ya repasamos las funciones trigonométricas, repasemos un poco cómo se ven sus funciones inversas, ya que estas también son muy importantes.
Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]
En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.
Nota 30. Dependencia e independencia lineal - [Detalles]
En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.
Álgebra Moderna I: Asociatividad Generalizada y Leyes de los Exponentes - [Detalles]
Dentro de las operaciones básicas de un grupo, podemos encontrar la asociatividad. La cual es tratada dentro de esta sección, además de algunas de sus consecuencias inmediatas y un teorema generalizando.
Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]
En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.
Introducción: ¿Qué son las Ciencias de la Computación?, Algoritmos y funciones - [Detalles]
1.2 Algoritmos y funciones - Continuación de los conceptos clave de la materia, qué son los algoritmos y funciones además de sus diferencias y semejanzas.
Introducción: ¿Qué son las Ciencias de la Computación?, Complejidad - [Detalles]
1.3 Complejidad - Continuación de los conceptos clave de la materia, significado de la complejidad y sus características (tiempo, espacio, tamaño y dificultad) para su ejecución.
Introducción: ¿Qué son las Ciencias de la Computación?, Modelos Teóricos - [Detalles]
1.4 Modelos teóricos - Uso de modelos teóricos para estudiar los problemas que se van a resolver y sus soluciones. Se aborda el análisis de algoritmos y teoría de la computación.
Los Elementos de Euclides: Teorema 6 - [Detalles]
En este video cubrimos el Teorema 6 de Los Elementos de Euclides. Aquí se demuestra que si en un triángulo dos de sus ángulos son iguales, entonces los lados opuestos a dichos ángulos son iguales entre sí.
Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo - [Detalles]
En esta sección se analizara un tipo de correspondencia que se puede presentar entre dos grupos, lo cual nos llevara a definir el concepto de Homomorfismo. Por tanto, es necesario analizar sus propiedades y comportamientos bajo composición.
Los Elementos de Euclides: Teorema 17 - [Detalles]
En este video cubrimos el Teorema 17 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo la suma de dos cualesquiera de sus ángulos es menor que dos rectos (es decir, es menor a 180°).
Los Elementos de Euclides: Teorema 20 - [Detalles]
En este video cubrimos el Teorema 20 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, la suma de las longitudes de dos cualesquiera de sus lados es mayor que la longitud del tercer lado.
Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]
Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.
Historia de las Ciencias de la Computación; Fechas y personajes - [Detalles]
1.1 Fechas y personajes - Fechas históricas, personajes y conceptos desde las aportaciones de los babilonios y egipcios en el 2000 AC hasta 1944 con John Von Neumann y sus aportaciones a nuestra era de la computación.
Arquitectura de Von Neumman y el ciclo de acarreo; - [Detalles]
2.1 Arquitectura de Von Neumman y el ciclo de acarreo - ¿Qué es la arquitectura de Von Neumman? ¿Para qué sirve? y ¿Cómo funciona? Breve presentación de quién fue Neumann y sus contribuciones a la Ciencia y a las Ciencias de la Computación.
Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. En esta entrada abordaremos la definición de función, algunas de sus propiedades y ejemplos.
Aritmética cardinal - [Detalles]
En esta sección definiremos operaciones aritméticas entre números cardinales y analizaremos algunas de sus propiedades.
Axioma de elección - [Detalles]
En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.
Ejercicio Valor Absoluto - [Detalles]
En este video, exploraremos el enigmático mundo de las desigualdades con valor absoluto, desvelando sus secretos y aprendiendo a resolverlas con precisión y eficacia.
Los números naturales - [Detalles]
En este capítulo de Cimientos matemáticos, nos embarcaremos en lo que es la aritmética, explorando los números primos, así como algunas de sus propiedades más importantes. Comenzaremos revisando algunos conceptos básicos, como los números naturales, los múltiplos, el mínimo común múltiplo (MCM) y el máximo común divisor (MCD). Luego, profundizaremos en la noción de divisibilidad, factorización y la clasificación de los números en primos y compuestos.
Los números enteros - [Detalles]
En este capítulo de Cimientos Matemáticos, veremos el tema de los números enteros. Exploraremos sus propiedades y operaciones básicas. Veremos cómo cómo se ordenan en una recta numérica, estableciendo desigualdades. Hablaremos de su suma y resta, cuidando cómo trabajar con positivos y negativos. Luego, revisaremos la multiplicación y división de números enteros. Para todas estas operaciones hablaremos de varias propiedades.
Monomios y polinomios - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.
Geometría elemental - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.
Funciones algebraicas - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones algebraicas que son fundamentales en matemáticas, abarcando desde las simples funciones lineales, que dibujan rectas, hasta las cuadráticas con sus parábolas características, pasando por las polinomiales, hasta las racionales.
Definición formal de gráfica conexa - [Detalles]
Definimos formalmente lo que es una gráfica conexa y sus componentes. Probamos dos resultados que confirman dos intuiciones claras: (1) que si en una gráfica de orden n todos los vértices tienen grado "grande" entonces la gráfica es conexa; (2) que si una gráfica de orden n tiene "muchas" aristas entonces la gráfica es conexa. En ambos casos se determina de manera exacta el significado de "muchas", en función de n.
Cuestionario de ecuaciones de la línea recta - [Detalles]
Este es un cuestionario para repasar el Módulo 11 del texto "Cimientos Matemáticos" donde se abarcan temas como: lugares geométricos y sus ecuaciones, punto-pendiente de una recta, forma general de la ecuación de la línea recta, etc.
Cuestionario de ecuaciones de cónicas - [Detalles]
Este es un cuestionario para repasar el Módulo 12 del texto "Cimientos Matemáticos" donde se abarcan temas como: circunferencia, parábola, elipse, con sus respectivas propiedades cada una, etc.
Cuestionario de funciones algebraicas - [Detalles]
Este es un cuestionario para repasar el Módulo 17 del texto "Cimientos Matemáticos" donde se abarcan temas como: función lineal, función cuadrática, sus propiedades, funciones polinomiales, etc.
Cuestionario de funciones trascendentes - [Detalles]
Este es un cuestionario para repasar el Módulo 18 del texto "Cimientos Matemáticos" donde se abarcan temas como: función seno, coseno y sus respectivas propiedades, función exponencial, función logaritmica, etc.
Resumen de algoritmos de búsqueda - [Detalles]
Se comparan los diferentes algoritmos de búsqueda y sus propiedades.
Propiedades de eigenvectores y eigenvalores - [Detalles]
En esta entrada profundizaremos en el estudio de los vectores y valores propios, exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.
Formas cuadráticas hermitianas - [Detalles]
El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades. Al final enunciaremos una versión compleja del teorema de Gauss.
Matrices de formas sesquilineales - [Detalles]
En esta entrada daremos una relación entre formas sesquilineales, formas cuadráticas hermitianas y matrices. Daremos la definición y veremos sus propiedades. Gran parte de la relación que había para el caso real se mantiene al pasar a los complejos. Las demostraciones en la mayoría de los casos son análogas, sin embargo, haremos énfasis en las partes que hacen que el caso real y el complejo sean distintos.
Matrices positivas y congruencia de matrices - [Detalles]
En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).
Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]
En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.
Repasamos qué son los determinantes, definidos en términos de permutaciones. Recordamos algunas de sus propiedades.
Inferencias Matemáticas - [Detalles]
Vemos lo que es una inferencia matemática, sus partes y el significado de inferencias válidas.
Axiomas de los conjuntos. - [Detalles]
En esta entrada hablamos sobre la teoría de conjuntos y sus axiomas.
Funciones invertibles - [Detalles]
Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]
Suma y producto de naturales y sus propiedades - [Detalles]
En esta entrada vemos la definición de suma y multiplicación en términos de los números naturales así como algunas propiedades.
JAVA, Variables y tipos - [Detalles]
Variables y tipos - Qué son las variables y sus tipos. Cómo se declaran, su sintaxis y definición. Cuáles son los tipos primitivos y derivados así como los operadores en JAVA.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.
Continuidad en intervalos cerrados 2 - [Detalles]
En este video demostramos que las funciones continuas en intevalos cerrados son acotadas, y después, demostramos que alcanzan sus valores máximo y mínimo.
Arreglos, Arreglos nD en JAVA - [Detalles]
Arreglos nD en JAVA - Cómo se crean arreglos en más dimensiones así como sus limitantes y excepciones.
Modelo Vista Controlador - [Detalles]
Modelo Vista Controlador - por sus siglas MVC. explicación a fondo de este patrón para diseño de software