Introducción a los sistemas de ecuaciones lineales - [Detalles]
Damos la definición de una ecuación lineal y damos ejemplos de cuales no son ecuaciones lineales. Definimos un sistema de ecuaciones lineales como un conjunto de ecuaciones lineales. Finalmente se da la definición y un ejemplo de solución al sistema de ecuaciones lineales.
Operaciones elementales renglón - [Detalles]
Se definen sistemas de ecuaciones lineales equivalentes, y se da un teorema que demuestra que aplicar operaciones elementales a un sistema, resulta en un sistema equivalente. Finalmente explicamos como al usar operaciones elementales se puede resolver un sistema de ecuaciones lineales.
Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]
Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.
La matriz de coeficientes de un sistema de ecuaciones - [Detalles]
Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.
Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]
Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.
Sistemas de dos ecuaciones de primer orden. Campo vectorial asociado - [Detalles]
Asociamos un campo vectorial a un sistema de ecuaciones de primer orden con coeficientes constantes, y analizamos su relación con las curvas del plano fase del sistema.
Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]
Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.
Solución general al sistema lineal no homogéneo. - [Detalles]
Enunciamos y probamos un teorema que nos dice cómo encontrar la solución general a un sistema lineal no homogéneo con la ayuda del sistema homogéneo asociado.
Bases numéricas, Sistema binario y sus potencias - [Detalles]
Sistema binario y sus potencias – Qué es el sistema binario y sus derivados.
Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 2) - [Detalles]
Definimos el Wronskiano de un subconjunto de soluciones a un sistema lineal homogéneo. Además definimos cuándo este subconjunto de soluciones es linealmente dependiente o independiente. Finalmente demostramos un teorema que relaciona estos dos conceptos.
Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]
Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.
Analisis cualitativo de sistemas de ecuaciones lineales - [Detalles]
Discutimos una serie de observaciones con las cuales podemos describir un sistema lineal sin resolverlo directamente. También se demuestra que un sistema lineal tiene una única solución, infinitas soluciones, o ninguna solución.
Las nulclinas y el plano fase - [Detalles]
Definimos las nulclinas de un sistema de ecuaciones de primer orden, y estudiamos los aspectos más importantes que nos ayudarán a esbozar el plano fase de un sistema.
El péndulo con fricción - [Detalles]
Revisamos el sistema de ecuaciones que modela el movimiento de un péndulo con fricción y estudiamos las diferencias que existen con el péndulo simple. Además esbozamos el plano fase del el sistema.
Sistemas de ecuaciones lineales con coeficientes constantes. Método de eliminación de variables - [Detalles]
Resolvemos el sistema lineal (homogéneo y no homogéneo) de dos ecuaciones de primer orden con coeficientes constantes en su forma general por el método de eliminación de variables.
Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio - [Detalles]
Comenzamos el estudio cualitativo a los sistemas de dos ecuaciones no lineales. Linealizamos el sistema en sus puntos de equilibrio y estudiamos el comportamiento de las soluciones cerca de estos.
Sistemas de $2 imes 2$ y su geometría - [Detalles]
Se da una representación geométrica para las ecuaciones lineales y los sistemas de ecuaciones lineales de 2x2. También se explica la representación geométrica de las soluciones para un sistema de ecuaciones lineales de 2x2.
La solución de un sistema con matriz en forma escalonada reducida - [Detalles]
Describimos la solución para un sistema con matriz en forma escalonada reducida. Discutimos los diferentes casos donde se tiene o no solución a los sistemas en forma escalonada.
Proceso de reducción de Gauss-Jordan - [Detalles]
Se describe el proceso de reducción de Gauss-Jordan, el cual consiste en usar operaciones elementales para dar la forma escalonada reducida de la matriz aumentada de un sistema lineal y dar la solución al sistema usando su forma escalonada reducida.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Sistemas lineales homogéneos con coeficientes constantes. Matriz no diagonalizable - [Detalles]
Consideramos el caso cuando la matriz asociada al sistema tiene valores propios repetidos y NO es diagonalizable. Definimos a los vectores propios generalizados de una matriz, desarrollamos un algoritmo mediante el cual encontramos n soluciones linealmente independientes al sistema, y por tanto la solución general.
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 3) - [Detalles]
Escribimos a los sistemas en forma de matrices. Además transformamos una ecuación de orden n en un sistema de n ecuaciones diferenciales.
Distancia entre dos puntos en el espacio cartesiano - [Detalles]
Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional.
Ejemplo distancia entre dos rectas - [Detalles]
Dadas dos rectas descritas por sus respectivas ecuaciones de la resta, calculamos como ejemplo la distancia entre estas dos rectas. Usamos la formula anteriormente deducida.
Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros (Ejemplos) - [Detalles]
Resolvemos dos ecuaciones por el método de variación de parámetros, una de ellas la resolvimos por el método de factor integrante en un video anterior, esto para comprobar que los dos métodos llevan a la misma solución.
Introducción a las bifurcaciones en sistemas de dos ecuaciones de primer orden - [Detalles]
Damos una breve introducción a las bifurcaciones en sistemas de dos ecuaciones de primer orden.
Ecuaciones y problemas - [Detalles]
En este capitulo de Cimientos Matemáticos, aprenderemos a resolver ecuaciones de primer grado y sistemas de ecuaciones con dos o más variables. Veremos diferentes métodos de resolución, como sustitución y suma-resta.
Ecuaciones diofantinas - [Detalles]
Definimos lo que son las ecuaciones diofantinas que son aquellas ecuaciones con soluciones enteras, asimismo profundizamos en saber que características toman este tipo de ecuaciones para logras saber si tienen solución entera o no.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.
Cuestionario de ecuaciones y problemas - [Detalles]
Este es un cuestionario para repasar el Módulo 5 del texto "Cimientos Matemáticos" donde se abarcan temas como: problemas que dan lugar a ecuaciones, solución de ecuaciones de primer grado, sistemas de ecuaciones 2x2 y 3x3, etc.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos - [Detalles]
Analizamos el caso cuando la matriz asociada al sistema tiene valores propios complejos. Encontramos dos soluciones reales dada una solución compleja formada con un valor y un vector propios complejos.
El oscilador armónico simple - [Detalles]
Mediante un sistema de ecuaciones resolvemos la ecuación del oscilador armónico simple.
El plano traza - determinante - [Detalles]
Clasificamos los planos fase y puntos de equilibrio de sistemas de ecuaciones homogéneas con coeficientes constantes, según la traza y el determinante de la matriz asociada al sistema.
Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio (Ejemplos) - [Detalles]
Analizamos el plano fase de un par sistemas no lineales, después de linealizar el sistema cerca de los puntos de equilibrio.
Propiedades cualitativas de las trayectorias - [Detalles]
Se desarrollan las principales propiedades cualitativas de las trayectorias en el plano fase de un sistema de ecuaciones diferenciales
El péndulo simple - [Detalles]
Obtenemos una ecuación de segundo orden que modela el movimiento de un péndulo. Posteriormente estudiamos el sistema de ecuaciones asociado y su plano fase.
Mapeo de Poincaré - [Detalles]
Hablamos un poco acerca del mapeo de primer retorno de Poincaré y relacionamos las secciones locales en un punto con las órbitas cerradas de un sistema de ecuaciones.
Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado.
Rotación De Ejes Y Figuras - [Detalles]
Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola.
1. Introducción a los números complejos - [Detalles]
En esta entrada de blog se presentan problemas que motivan la necesidad del sistema de números complejos, en particular los problemas de solucionar ecuaciones de segundo, tercer y cuarto grado.
Como calcular el máximo común divisor de dos enteros - [Detalles]
Retomamos el teorema anterior sobre el máximo común divisor y el algoritmo de la división. Haciendo uso de estos dos resultados damos un método para calcular el máximo común divisor de dos enteros.
Distancia entre dos puntos del plano cartesiano - [Detalles]
Usamos el Teorema de Pitágoras para deducir la fórmula de la distancia entre dos puntos en el plano cartesiano. Con esta fórmula podemos conocer la distancia entre dos puntos cualesquiera en el plano,
Distancia entre dos planos en el espacio - [Detalles]
Similar al caso de la distancia entre dos rectas, deducimos la fórmula para calcular la distancia mínima entre dos planos (siempre que no se crucen). Vemos que los planos deben ser paralelos, ya que en caso contrario se cruzan y su distancia es cero. Para la formula hacemos uso de la fórmula para la distancia de un punto a un plano.
Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]
En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.
Problemas de sistemas de ecuaciones e inversas de matrices - [Detalles]
Resolvemos cuatro problemas usando el método de reducción gaussiana. Dos de ellos son de resolver sistemas lineales y dos de encontrar inversas de matrices.
Ecuaciones lineales homogéneas de segundo orden. Conjunto fundamental de soluciones y el Wronskiano - [Detalles]
Definimos al conjunto fundamental de soluciones de una ecuación, y al Wronskiano de dos soluciones. Vemos la relación que guardan estos dos conceptos, y demostramos algunas propiedades que cumplen estos.
Ecuación diofántica lineal en dos variables - [Detalles]
Definimos la ecuación Diofánticas, como ecuaciones algebraicas para las cuales que buscan soluciones enteras. Nos concentramos en las ecuaciones de la forma "a*x+b*y=n", con a,b,n enteros. Mostramos cuando la ecuación tiene solución entera y cuantas soluciones tiene.
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 1) - [Detalles]
Damos las primeras definiciones acerca de sistemas de ecuaciones de primer orden y mostramos dos ejemplos de problemas donde los sistemas aparecen.
Ecuaciones lineales y congruencias - primeros ejemplos - [Detalles]
Repasamos brevemente que es una ecuación lineal y definimos las ecuaciones lineales modulo "m" de una variable. Vemos cuales son los posibles valores que pueden solucionar nuestra ecuación lineal y algunos ejemplos de cuáles serían las soluciones a algunas ecuaciones lineales.
Ecuaciones no lineales de primer orden separables - [Detalles]
Comenzamos el estudio a las ecuaciones no lineales considerando el caso de las ecuaciones separables
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 2) - [Detalles]
Hablamos un poco del problema de condición inicial para sistemas de ecuaciones de primer orden, así como del Teorema de existencia y unicidad correspondiente, tanto en una versión general como en su versión para sistemas de ecuaciones lineales homogéneas.
Ecuaciones diferenciales autónomas - [Detalles]
Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden en las que no aparece explícitamente la variable independiente, mejor conocidas como ecuaciones autónomas
Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad - [Detalles]
Continuación con el estudio de métodos para resolver ecuaciones diferenciales lineales de primer orden homogéneas y no homogéneas y presentación del teorema de existencia y unicidad para este tipo de ecuaciones diferenciales
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.
Forma escalonada reducida - [Detalles]
Definimos que una matriz esté en forma escalonada reducida. Vemos cómo resolver su sistema lineal asociado. Hablamos de operaciones y matrices elementales.
Reducción gaussiana en sistemas lineales $AX=b$ - [Detalles]
Aplicamos el algoritmo de reducción gaussiana en sistemas lineales de la forma AX=b para llevarlos a un sistema más sencillo y con las mismas soluciones.
La exponencial de una matriz y la matriz fundamental de soluciones - [Detalles]
Relacionamos la exponencial de una matriz A de coeficientes constantes con la matriz fundamental de soluciones al sistema lineal homogéneo que tiene a A como matriz asociada.
Método de valores y vectores propios para sistemas lineales homogéneos con coeficientes constantes - [Detalles]
Encontramos la solución general a un sistema lineal homogéneo con coeficientes constantes en términos de los valores y vectores propios de la matriz asociada A, si esta es diagonalizable.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios repetidos y diagonalizable - [Detalles]
Consideramos el caso cuando la matriz asociada al sistema homogéneo con coeficientes constantes es diagonalizable y tiene valores propios repetidos. Además resolvemos un par de ejemplos.
Método de variación de parámetros para sistemas lineales no homogéneos - [Detalles]
Desarrollamos el método de variación de parámetros para encontrar una solución particular al sistema lineal no homogéneo con coeficientes constantes.
Plano fase para sistemas lineales con valores propios repetidos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios repetidos, dependiendo si la matriz asociada al sistema es diagonalizable o no.
Exponencial de una matriz y matriz fundamental de soluciones - [Detalles]
Se define el concepto de exponencial de una matriz y se ve su utilidad en los sistema lineales además de probar que es una matriz fundamental de soluciones a estos sistemas lineales
Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos - [Detalles]
Se estudia el primer caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema lineal son todos reales y distintos
Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos - [Detalles]
Se continua con el segundo caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema son complejos
Sistemas lineales homogéneos con coeficientes constantes – Valores propios repetidos - [Detalles]
Se finaliza el método de valores y vectores propios con el caso en el que los valores propios de la matriz del sistema son algunos repetidos y se presenta el teorema de Cayley-Hamilton
Sistemas gradiente - [Detalles]
Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.
Mini-cuestionario: Forma escalonada reducida - [Detalles]
Mini-cuestionario para verificar el entendimiento de la noción de que una matriz esté en forma escalonada reducida, y cómo se relaciona con la solución del sistema asociado.
Cuestionario de coordenadas polares - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares y como se grafica sobre este nuevo plano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar
Cuestionario sobre funciones en el plano polar - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Sistemas de coordenadas en el espacio. Cartesianas, coordenadas cilíndricas y coordenadas esféricas - [Detalles]
Damos una pequeña presentación de los tres principales sistemas de coordenadas tridimensionales: Cartesianas, esféricas y cilíndricas. Igualmente hablamos sobre las ventajas de cada sistema de coordenadas.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.
Producto cartesiano - [Detalles]
Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.
Cómo verificar que dos funciones son inversas - [Detalles]
Haciendo uso de un ejemplo, mostramos como verificar cuando dos funciones son inversas una de otra.
Determinantes de matrices $3 imes 3$: dos métodos diferentes - [Detalles]
Describimos dos métodos para calcular el determinante de la matriz de 3x3. El método por cofactores y otro método por la regla de Sarrus (el cual es un método para matrices de 3x3).
Definición de congruencia - [Detalles]
Definimos la relación de congruencia modulo "m" entre dos enteros "a", "b", cuando "m" divide a "a-b". Damos la notación para representar la relación de congruencia y mostramos que dos enteros que son congruentes modulo "m", tienen el mismo residuo de dividir entre "m".
Soluciones de una ecuación cuadrática - [Detalles]
Hablamos sobre las posibles soluciones de una ecuación cuadrática (damos un breve recordatorio sobre la formula general o más popularmente conocida como "chicharronera"). Vemos gráficamente cuando una ecuación cuadrática tiene dos, una o ninguna solución real. Definimos el discriminante y haciendo uso de el vemos cuando la ecuación cuadrática tiene una o dos soluciones reales, o cuando su solución es compleja.
Otros puntos y rectas notables del triángulo - [Detalles]
Demostramos que la suma de los tres ángulos internos de un triángulo suman dos ángulos rectos y que las bisectrices de dos ángulos exteriores de un triángulo y la del ángulo interior no adyacente son concurrentes por tercias
Más de puntos armónicos y circunferencias ortogonales - [Detalles]
Definimos el conjugado armónico del punto medio de un segmento, el ángulo de intersección de dos circunferencias y cuándo dos circunferencias son ortogonales y demostramos algunos resultados que involucran estos conceptos
Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]
Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos.
Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores.
Ejercicios Producto Punto - [Detalles]
Hacemos varios ejercicios para calcular el producto punto entre dos vectores. También calculamos el ángulo entre dos vectores y demostramos, usando el producto punto, que el ángulo entre un vector consigo mismo es cero.
Determinantes de matrices 3x3 Dos métodos Diferentes - [Detalles]
Describimos dos métodos para calcular el determinante de la matriz de 3x3. El método por cofactores y otro método por la regla de Sarrus (el cual es un método para matrices de 3x3).
Producto cruz ( producto vectorial) - [Detalles]
Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores.
Distancia entre dos rectas en el espacio - [Detalles]
Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula.
Cuando dos clases laterales son iguales - [Detalles]
Se presenta un criterio para determinar cuándo dos clases laterales son iguales, también se demuestra que clases laterales son iguales o disjuntas.
Álgebra Moderna I: Operación binaria asociativa y conmutativa - [Detalles]
A continuación se manejan dos tipos de operaciones especificas: las operaciones binarias asociativas y las operaciones conmutativas. Dentro de estos conceptos se espera que el lector pueda reconocer cuando una operación binaria recae dentro de alguno de estos dos tipos mencionados o no. En las notas, se da ejemplo de como reconocer la conmutatividad dentro de un arreglo de Tabla.
Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]
En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.
Los Elementos de Euclides. Teorema 7 - [Detalles]
En este video cubrimos el Teorema 7 de Los Elementos de Euclides. Aquí se demuestra que no se pueden levantar sobre una misma recta otras dos rectas iguales respectivamente a dos rectas dadas.
Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]
En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.
Los Elementos de Euclides: Teorema 14 - [Detalles]
En este video cubrimos el Teorema 14 de Los Elementos de Euclides. Aquí demostramos que si dos segmentos de recta forman con una recta y en un punto de ella, ángulos adyacentes iguales a dos rectos, y no están del mismo lado de dicha recta, entonces los segmentos forman parte de una misma recta.
Los Elementos de Euclides: Teorema 17 - [Detalles]
En este video cubrimos el Teorema 17 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo la suma de dos cualesquiera de sus ángulos es menor que dos rectos (es decir, es menor a 180°).
Los Elementos de Euclides: Teorema 24 - [Detalles]
En este video cubrimos el Teorema 24 de Los Elementos de Euclides. Este teorema prueba que si dos triángulos tienen dos lados respectivamente iguales pero el ángulo comprendido por estos lados es mayor en el primer triángulo respecto del segundo, entonces el tercer lado del primer triángulo es mayor respecto del tercer lado del segundo triángulo.
Los Elementos de Euclides: Teorema 25 - [Detalles]
En este video cubrimos el Teorema 25 de Los Elementos de Euclides. Aquí se demuestra que si dos triángulos tienen dos lados respectivamente iguales y en el primer triángulo el tercer lado es mayor que el tercer lado del segundo triángulo, entonces el ángulo comprendido por los lados iguales en el primer triángulo es mayor que el ángulo respectivo en el segundo triángulo.
Los Elementos de Euclides: Teorema 27 - [Detalles]
En este video cubrimos el Teorema 27 de Los Elementos de Euclides. Este teorema prueba que si al incidir una recta sobre otras dos, hace los ángulos alternos iguales entre sí, entonces las dos últimas rectas son paralelas.
Los Elementos de Euclides: Teorema 28 - [Detalles]
En este video cubrimos el Teorema 28 de Los Elementos de Euclides. Aquí se demuestra que si al incidir una recta sobre otras dos hace los ángulos correspondientes iguales, o los ángulos conjugados internos suplementarios, entonces las dos últimas rectas son paralelas.
Los Elementos de Euclides: Teorema 32 - [Detalles]
En este video cubrimos el Teorema 32 de Los Elementos de Euclides, el cual trata la propiedad que en todo triángulo la suma de los ángulos interiores es igual a 180° (es decir dos rectos); y la propiedad que en todo triángulo la medida de un ángulo exterior del triángulo es igual a la suma de los dos ángulos interiores no adyacentes a él.
Pares ordenados y producto cartesiano - [Detalles]
En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.
Definición formal de gráfica conexa - [Detalles]
Definimos formalmente lo que es una gráfica conexa y sus componentes. Probamos dos resultados que confirman dos intuiciones claras: (1) que si en una gráfica de orden n todos los vértices tienen grado "grande" entonces la gráfica es conexa; (2) que si una gráfica de orden n tiene "muchas" aristas entonces la gráfica es conexa. En ambos casos se determina de manera exacta el significado de "muchas", en función de n.
La distancia entre dos vértices - [Detalles]
Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios reales y distintos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son reales y distintos
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios complejos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son complejos
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios repetidos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son repetidos
El plano Traza-Determinante - [Detalles]
Toda la teoría desarrollada sobre los sistemas lineales de dos ecuaciones diferenciales de primer orden se resume en el conocido plano Traza-Determinante
Diapositivas sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]
Dando continuidad al tema anterior de las rectas pero ahora hacemos ahora la generalización de este tipo de rectas en más dimensiones (R^n). Vemos la recta paramétrica y como encontrar esta recta si conocemos dos puntos pertenecientes a ella. Las diapositivas se encuentran acompañadas de ejemplos.
Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]
Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.
Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]
Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Sistemas de ecuaciones lineales y sistemas homogéneos asociados - [Detalles]
Definimos sistemas de ecuaciones lineales y homogéneos. Vemos que se pueden expresar en términos matriciales. Probamos el principio de superposición.
Problemas de sistemas de ecuaciones y forma escalonada reducida - [Detalles]
Ejercicios resueltos de sistemas de ecuaciones lineales consistentes y equivalentes. Ejemplos de matrices en forma escalonada reducida.
Problemas de ortogonalidad, ecuaciones e hiperplanos - [Detalles]
Resolvemos problemas de ortogonalidad relacionados con encontrar bases para el espacio ortogonal y definir subespacios mediante ecuaciones e hiperplanos.
Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]
Aplicamos teoría de determinantes en sistemas de ecuaciones. Calculamos el rango a partir de subdeterminantes. Vemos la regla de Cramer y ejemplos.
Resolviendo un problemacon ecuaciones diofánticas - [Detalles]
Resolvemos un problema donde podemos hacer uso de las ecuaciones diofánticas para dar la solución al problema. Describimos como abstraer el problema a una ecuación diofántica, y usando lo anteriormente visto, damos la solución.
Introducción a las ecuaciones diferenciales ordinarias: motivación y ejemplos (Parte 1) - [Detalles]
Revisamos un par de ejemplos sencillos donde las ecuaciones diferenciales hacen su aparición, motivando su estudio.
Introducción a las ecuaciones diferenciales ordinarias: motivación y ejemplos (Parte 2) - [Detalles]
Revisamos un par de ejemplos sencillos donde las ecuaciones diferenciales hacen su aparición, motivando su estudio.
Definiciones elementales: Problema de condición inicial, ecuaciones lineales y no lineales - [Detalles]
Definimos el problema de condición inicial (o valor inicial) y a las ecuaciones lineales y no lineales.
Ecuaciones lineales homogéneas de primer orden: ejemplos - [Detalles]
Resolvemos un par de ejemplos de ecuaciones lineales homogéneas de primer orden.
Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de ecuaciones lineales no homogéneas de primer orden, por el método de factor integrante.
Teorema de existencia y unicidad para ecuaciones lineales de primer orden - [Detalles]
Demostramos el Teorema de existencia y unicidad en su versión para ecuaciones lineales de primer orden
Ecuaciones no lineales de primer orden separables (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales por el método de variables separables
Ecuaciones diferenciales exactas - [Detalles]
Comenzamos el estudio de las ecuaciones exactas, y demostramos un teorema que nos dice cuándo una ecuación es exacta y tiene solución
Ecuaciones diferenciales exactas (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de ecuaciones exactas
Ecuaciones diferenciales no exactas. Método del factor integrante (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales no exactas por el método de factor integrante.
Ecuaciones lineales homogéneas de segundo orden. Propiedades de las soluciones - [Detalles]
Estudiamos a las ecuaciones homogéneas de segundo orden y el comportamiento de las soluciones
Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]
Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.
Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones de segundo orden por el método de variación de parámetros.
Introducción a las ecuaciones diferenciales - [Detalles]
Introducción general a las ecuaciones diferenciales ordinarias
Ecuaciones diferenciales lineales de primer orden - [Detalles]
Estudio de métodos para resolver ecuaciones diferenciales lineales de primer orden homogéneas y no homogéneas
Ecuaciones diferenciales NO lineales de primer orden, métodos de resolución - [Detalles]
Estudio de métodos para resolver ecuaciones diferenciales NO lineales de primer orden
Ecuaciones diferenciales exactas - [Detalles]
Desarrollo del método de resolución de las ecuaciones diferenciales exactas
Ecuaciones diferenciales de orden superior - [Detalles]
Introducción general a las ecuaciones diferenciales ordinarias de orden superior
Soluciones a ecuaciones diferenciales de orden superior - [Detalles]
Estudio de las propiedades de las soluciones de las ecuaciones diferenciales de orden superior
Ecuaciones diferenciales homogéneas con coeficientes constantes - [Detalles]
Se estudia un método para resolver ecuaciones diferenciales homogéneas de segundo orden con coeficientes constantes de acuerdo al valor del discriminante de la ecuación auxiliar
Ecuaciones lineales no homogéneas de segundo orden – Método de coeficientes indeterminados - [Detalles]
Al estudiar el caso no homogeneo de las ecuaciones diferenciales de segundo orden se presenta un primer método que propone soluciones en forma de series similares a la función g
Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros - [Detalles]
Se hace una generalización del método de variación de parámetros para resolver de manera general ecuaciones diferenciales no homogéneas de segundo orden
Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos ordinarios - [Detalles]
Se hace un breve repaso de series de potencias para posteriormente desarrollar un método de resolución de ecuaciones diferenciales de segundo orden con coeficientes variables con respecto a puntos ordinarios
Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos singulares - [Detalles]
Se describe el método de Frobenius para resolver ecuaciones diferenciales de segundo orden con coeficientes variables con respecto a puntos singulares
Ecuaciones del Hermite, Laguerre y Legendre - [Detalles]
Se aplican los métodos anteriores para resolver tres de seis ecuaciones diferenciales especiales
Ecuaciones de Bessel, Chebyshev e Hipergeométrica - [Detalles]
Se continua con la resolución de tres ecuaciones diferenciales especiales más
Introducción al teorema de existencia y unicidad para sistemas de ecuaciones de primer orden - [Detalles]
Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden y damos los primeros detalles para la demostración de dicho teorema.
Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de existencia - [Detalles]
Demostramos la existencia de una solución al problema de condición inicial para sistemas de ecuaciones de primer orden.
Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de unicidad - [Detalles]
Demostramos la unicidad de la solución al problema de condición inicial para sistemas de ecuaciones de primer orden.
Puntos de equilibrio de sistemas de ecuaciones de primer orden - [Detalles]
Definimos los puntos de equilibrio para sistemas de ecuaciones de primer orden, y revisamos algunos ejemplos.
Estabilidad de puntos de equilibrio para sistemas de ecuaciones de primer orden - [Detalles]
Revisamos los conceptos de puntos de equilibrio estables, asintóticamente estables e inestables para sistemas de ecuaciones de primer orden.
Sistemas de ecuaciones diferenciales - [Detalles]
Se presenta una introducción a los sistemas de ecauciones diferenciales compuestos por varias ecuaciones diferenciales lineales de primer orden
Teorema de existencia y unicidad para sistemas de ecuaciones diferenciales de primer orden - [Detalles]
Se hace un generalización de la teoría preliminar vista en el teorema de existencia y unicidad de Picar-Lindelöf y se demuestra el teorema de existencia y unicidad para el caso general, es decir, para sistemas de ecuaciones diferenciales de primer orden tanto lineales como no lineales
Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]
Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales
Mini-cuestionario: Sistemas de ecuaciones lineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones relacionadas con sistemas de ecuaciones lineales
Mini-cuestionario: Sistemas de ecuaciones lineales no homogéneos - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para resolver sistemas de ecuaciones no homogéneos
Guía de estudio sobre sistemas de ecuaciones lineales, matrices y determinantes - [Detalles]
Se deja una lista de ejercicios respecto a los temas de matrices y solución a sistemas de ecuaciones lineales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre sistemas de ecuaciones lineales y espacios vectoriales - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a matrices (operaciones y determinantes) y para solucionar sistemas de ecuaciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Diapositivas sobre ecuaciones de la recta en el plano - [Detalles]
Damos inicio a un nuevo tema que será de utilidad para toda la carrera que es el tema de ecuaciones de rectas como la paramétrica, la general, la de punto pendiente, entre otras.
Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]
Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ecuaciones de la recta en $\mathbb{R}^n$ - [Detalles]
Ponemos en práctica esta extensión respecto a las ecuaciones de las rectas en R^n, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]
Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).
Cuestionario sobre ecuaciones de planos en el espacio - [Detalles]
Ponemos en práctica el tema de los planos en el espacio euclídeo y las ecuaciones de estos tanto de manera paramétrica, cuando conocemos 3 pu tos que forman parte del plano. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]
Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.
Cuestionario sobre las ecuaciones canónicas de las cónicas - [Detalles]
Ponemos en práctica las ecuaciones canónicas para cada una de nuestra cónicas mediante ejercicios muy simples que tratan sobre identificar dada la ecuación de qué tipo de cónica se trata o se trataría, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Mini-cuestionario: Ortogonalidad, ecuaciones e hiperplanos - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo la ortogonalidad está relacionada con los sistemas de ecuaciones y con los hiperplanos en espacios vectoriales.
Mini-cuestionario: Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo los determinantes ayudan a resolver sistemas de ecuaciones.
Problemas de ecuaciones en congruencias y teorema chino del residuo - [Detalles]
Resolvemos una serie de ejercicios de ecuaciones lineales de congruencias.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Sistemas de ecuaciones lineales complejos - [Detalles]
Motivamos el estudio de la solución de sistemas de ecuaciones lineales pero ahora con números complejos, nuestra inspiración fueron algunos métodos que ya conocemos por el estudio en los reales tales como el determinante, substitución o igualando coeficientes.
Problemas de sistemas de ecuaciones complejos y forma polar - [Detalles]
Resolvemos una serie de problemas de sistemas de ecuaciones lineales con números complejos, asi también enunciamos la relga de Kramer para la resolución de estos problemas.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
Veamos una primera entrada de las ecuaciones C-R.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Ahora chequemos más propiedades de las ecuaciones C-R.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
Repasaremos un par de propiedades que se derivan de las ecuaciones de C-R.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.
Expresiones algebraicas - [Detalles]
En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.
Ecuaciones de la línea recta - [Detalles]
En este capitulo de Cimientos Matemáticos abordaremos conceptos clave de geometría analítica, como lugares geométricos y ecuaciones. Exploraremos la forma general de la ecuación de la línea recta y su expresión en la forma pendiente-ordenada al origen. También analizaremos la relación entre la inclinación y la pendiente de una recta, así como las propiedades de rectas paralelas y perpendiculares.
Ecuaciones de las cónicas - [Detalles]
En este capitulo de Cimientos Matemáticos exploraremos cuatro figuras importantes en este modulo: la circunferencia, la parábola, la elipse y la hipérbola, cada una con su propia identidad matemática. Estas ecuaciones son clave para comprender y modelar fenómenos diversos, enriqueciendo nuestra percepción del mundo.
Cuestionario de ecuaciones de la línea recta - [Detalles]
Este es un cuestionario para repasar el Módulo 11 del texto "Cimientos Matemáticos" donde se abarcan temas como: lugares geométricos y sus ecuaciones, punto-pendiente de una recta, forma general de la ecuación de la línea recta, etc.
Sistemas de ecuaciones lineales - [Detalles]
Repasamos sistemas de ecuaciones lineales, matrices elementales y matrices equivalentes por filas. Los relacionamos con matrices invertibles.
Sistemas de ecuaciones lineales - [Detalles]
Hablamos de sistemas de ecuaciones lineales y qué quiere decir resolverlos. Vemos su forma matricial y una aplicación a sistemas de 2x2.
Propiedades del polinomio característico - [Detalles]
Retomamos la definición de polinomio característico y vemos sus propiedades principales. Enunciamos dos teoremas fundamentales de matrices que lo usan.
Matrices simétricas reales y sus eigenvalores - [Detalles]
Enunciamos el teorema espectral para matrices simétricas reales. Mostramos que estas matrices tienen eigenvalores reales y otros dos resultados auxiliares.
Conjunción y Disyunción - [Detalles]
Usamos las tablas de verdad para definir la conjunción y disyunción para dos proposiciones lógicas.
Demostración de un bicondicional - [Detalles]
Explicamos cómo demostrar un bicondicional, es decir, un sí y solo sí. Vemos dos posibles estrategias y algunos ejemplos.
Conjuntos iguales - [Detalles]
Damos la definición de igualdad de conjuntos, explicamos cuando dos conjuntos son iguales y damos algunos ejemplos.
Composición de funciones - [Detalles]
Definimos la composición de dos funciones, la cual es una nueva función, vemos un ejemplo con una función numérica
Composición de inyectivas es inyectiva - [Detalles]
Usando el concepto de inyectividad, demostramos el teorema: Si dos funciones son inyectivas, entonces su composición es inyectiva.
Composición de suprayectivas es suprayectiva - [Detalles]
Usando el concepto de suprayectividad, demostramos el teorema: Si dos funciones son suprayectivas, entonces su composición es inyectiva.
Composición de Funciones Biyectivas es Biyectiva - [Detalles]
Al igual que los casos anteriores demostramos que: Si dos funciones son biyectivas, entonces su composición es biyectiva
Cardinalidad - definición y ejemplos - [Detalles]
Damos la definición de la cardinalidad de un conjunto, usando ejemplos mostramos cuando dos conjuntos tienen la misma cardinalidad.
Propiedades del combinatorio - [Detalles]
Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.
El Principio del Buen Orden y el Principio de Inducción Matemática - [Detalles]
Enunciamos que: El principio del buen orden es equivalente al Principio de inducción matemática. Indicamos la idea de cómo demostrar este enunciado, el cual se demostrará en los dos videos siguientes.
El algoritmo de Euclides: enunciado y demostración. - [Detalles]
Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor.
El mínimo común múltiplo y el máximo común divisor - [Detalles]
Demostramos un teorema que relaciona el máximo común divisor (MCD) y el mínimo común múltiplo (MCM) de dos enteros "a", "b". El teorema nos dice que MCD(a,b)*MCM(a,b)=|a*b|
Más propiedades de congruencias - [Detalles]
Continuamos viendo propiedades sobre las congruencias. Vemos que si dos enteros expresados productos: "a*x", "a*y", son congruentes modulo "m", es equivalente a que los enteros "x", "y" sean congruentes modulo "m/MCD(a,m)", dándonos una relación entre el módulo y el máximo común divisor. Igualmente vemos algunas propiedades más que surgen de este teorema.
Divisibilidad de polinomios - [Detalles]
Damos la definición del grado de un polinomio, el cual es el máximo exponente cuyo coeficiente es distinto de cero. Damos algunos ejemplos de polinomios y obtenemos su grado. También vemos dos propiedades sobre el grado de un polinomio.
División de polinomios - [Detalles]
Definimos la división entre polinomios, dados dos polinomios "a(x), b(x)", decimos que "b(x)" divide a "a(x)" si y solo si "a(x)=b(x)*q(x)" para algún polinomio "q(x)". Vemos algunos ejemplos y también propiedades sobre la divisibilidad.
Raíces de polinomios - [Detalles]
Explicamos en que consiste la división sintética, la cual nos ayuda a dividir polinomios entre polinomios de la forma "x-a". Damos el procedimiento de la división sintética y hacemos dos ejemplos.
Congruencia de triángulos - [Detalles]
Damos algunas propiedades de los triángulos y los criterios para saber cuándo dos triángulos son congruentes
Producto de segmentos - [Detalles]
Demostramos geométricamente cómo determinar el producto de dos segmentos cualesquiera
Circunferencias ortogonales (parte 2) - [Detalles]
Comenzamos a establecer las hipótesis para saber si es posible trazar una circunferencia ortogonal a dos circunferencias dadas
Demostramos el teorema de la bisectriz generalizada, definimos cuándo dos rectas son armónicas conjugadas y demostramos algunos resultados que involucran este concepto
Homotecia entre triángulos - [Detalles]
Decimos cuándo dos triángulos son homotéticos
Teorema de Desargues - [Detalles]
Demostramos cuándo dos triángulos están en perspectiva
Teorema de existencia y unicidad. Demostración de la unicidad - [Detalles]
Demostramos la parte de unicidad del Teorema de Existencia y Unicidad de Picard, y previamente probamos dos lemas que nos ayudan a la demostración
Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]
Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero
Soluciones por series cerca de un punto singular regular (Parte 3) - [Detalles]
Finalizamos el estudio al método de Frobenius revisando el caso cuando la ecuación indicial tiene dos raíces que difieren por un entero
Teorema de Thales - [Detalles]
Demostramos el teorema de Thales, el teorema de la bisectriz y sus recíprocos. También construimos el producto y cociente de dos segmentos.
Área entre curvas - [Detalles]
Enseñanza sobre el cálculo del area delimitada entre dos funciones.
Construcciones geométricas - [Detalles]
Estudiamos dos métodos para la solución de construcciones geométricas con ejemplos, el método analítico y el método de similitud.
Circunferencias homoteticas - [Detalles]
Mostramos que la homotecia de una circunferencia es una circunferencia, dos circunferencias siempre son homotéticas y algunos ejercicios.
Variables aleatorias mixtas - [Detalles]
Presentamos la conjunción de los dos tipos de variables aleatorias así como maneras de como hacer una construcción de este tipo de variable aleatoria acompañada de ejemplos para el cálculo de probabilidades.
Transformaciones de variables aleatorias continuas - [Detalles]
Mostramos dos métodos para realizar transformaciones de variables aleatorias. El primero es manipular directamente la función de distribución y la para el segundo método demostramos el teorema de cambio de variable, ambos métodos acompañados de ejemplos.
Diapositivas sobre cardinalidad y los racionales - [Detalles]
En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.
Ejemplo de la unión de funciones - [Detalles]
Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.
Ejemplos de cardinalidad de conjuntos - [Detalles]
Se exponen dos conjuntos con características distintas y el ejercicio pide que se demuestre que estos conjuntos tienen la misma cardinalidad.
Diapositivas de distancia entre 2 puntos - [Detalles]
Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.
Diapositivas sobre operaciones matriciales - [Detalles]
Continuamos construyendo la definición de una matriz pero ahora definimos sus operaciones básicas somo la suma y multiplicación de dos matrices también su multiplicación por escalar, también hablamos que una matriz de nx1 o también llamado vector columna es un vector con n entradas que se ocupa para hablar de un elemento de Rn.
Cuestionario sobre semiplanos - [Detalles]
Ponemos en práctica nuestro nuevo tema de semiplanos con dos ejercicios muy sencillos en donde solo hay que clasificar correctamente los semiplanos separados por una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre planos y distancias en el espacio - [Detalles]
Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.
Cuestionario sobre planos y distancias en el espacio - [Detalles]
Ponemos en práctica el cálculo de estas dos nuevas métricas en R^3 y también practicamos la identificación de los semiespacios divididos por un plano sobre el mismo espacio, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre discriminante y excentricidad - [Detalles]
Ponemos en práctica estos dos criterios que nos ayudan a saber cuál es la cónica de la cuál se está tratando ocupando el criterio de discriminante o de excentricidad, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Coordenadas en el plano cartesiano - [Detalles]
Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas.
Gráfica de una función - [Detalles]
Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales.
Resolución de triángulos rectángulo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la medida de dos de sus lados, podemos saber las medidas de todos sus ángulos y su otro lado.
Coordenadas cilíndricas - [Detalles]
Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas.
Coordenadas esféricas - [Detalles]
Explicamos como un punto en el espacio se puede representar por medio de las coordenadas esféricas. Vemos la representación geométrica de los dos ángulos de las coordenadas esféricas.
Ejercicio 1 bases de espacios vectoriales - [Detalles]
Damos la definición de una base en el plano cartesiano, y mostramos cuando dos vectores forman una base para este espacio vectorial.
Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores.
Ecuacion de la recta en $\mathbb{R}^n$ - [Detalles]
Definimos la ecuación de la recta en el espacio tridimensional R^3 (lo que podemos generalizar para R^n). Vemos la forma paramétrica y también vemos que podemos escribir la ecuación de la recta conociendo dos puntos que pasen por ella.
Lugar Geométrico De Las Cónicas - [Detalles]
Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.
Discriminante De Cónicas - [Detalles]
Retomamos la ecuación general de las cónicas (la cual es una ecuación de segundo grado de dos variables). Definimos el Discriminante para las cónicas, el cual nos ayuda a saber el tipo de cónica que representa una ecuación general para las cónicas.
El grupo fundamental no detecta células de dimensió mayor que 2 - [Detalles]
En este video demostraremos que el grupo fundamental queda inalterado si adjuntamos o pegamos una célula de dimensión mayor que dos a un espacio.
Unicidad del levantamiento de funciones - [Detalles]
En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).
Homología singular - invarianza de la dimensión - [Detalles]
En este video demostraremos que si dos abiertos de ciertos espacios euclideanos son homeomorfos, entonces los espacios tienen la misma dimensión. Este teorema es muy bonito porque es intuitivo el enunciado, la demostración no es nada trivial, pero con toda la herramienta que hemos desarrollado es posible demostrarlo en términos simples.
Homología singular - acciones libres en la esfera - [Detalles]
En este video demostramos el único grupo que puede actuar libremente en una esfera de dimensión par es el grupo cíclico con dos elementos.
Complejos CW - productos - [Detalles]
En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.
Homología singular - la sucesión de Mayer-Vietoris - [Detalles]
En este video definimos la sucesión de Mayer-Vietoris de la unión de dos espacios, y damos un pequeño ejemplo de cómo usarla.
Números primos y sus propiedades - [Detalles]
Damos la definición de que un entero sea primo. Vemos dos equivalencias y propiedades para preparar el teorema fundamental de la aritmética.
Cambio de coordenadas y forma polar de un complejo - [Detalles]
Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.
Multiplicación en forma polar y fórmula de De Moivre - [Detalles]
Mostramos la interpretación geométrica de lo que reprenta la multiplicación de dos números complejos en su forma polar; también enunciamos la fórmula de De Moivre para ayudarnos a dar solución a problemas en los que se requiere calcular potencias de números complejos.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Multiplicatividad del signo. Parte 1 - [Detalles]
Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.
Productos de subconjuntos de un grupo - [Detalles]
Se extiende la definición de producto para incluir el producto de dos subconjuntos de un grupo.
Subgrupo conmutador - [Detalles]
Se define el conmutador de dos elementos y se define el subgrupo conmutador, se demuestra que el cociente módulo el conmutador es abeliano y es mínimo con esa propiedad.
25. Transformaciones lineales y transformaciones de Möbius - [Detalles]
En la entrada anterior ya vimos transformaciones y varios tipos, ahora vamos a concentrarnos en dos tipos muy especiales de transformaciones: las lineales y las de Möbius, las últimas en particular esconden bajo su mano un montón de propiedades interesantes que veremos con detalle.
29. Series de potencias. Introducción y criterios de convergencia. - [Detalles]
En esta entrada definimos lo que es una serie de potencias, un tipo muy particular de series, utilizando las dos entradas anteriores veamos que tanto podemos estudiar acerca de ellas.
38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]
Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
En esta entrada definiremos lo que significa que dos funciones sean conjugadas y armónicas conjugadas, esto luego nos permitirá caracterizar con aún más precisión a las funciones analíticas por medio de sus partes real e imaginaria.
Nota 4. Unión e intersección de Conjuntos. - [Detalles]
En esta nota se definen dos operaciones entre conjuntos, la unión y la intersección, las cuales nos dan nuevos conjuntos, se ven propiedades de estas operaciones y como los conjuntos que obtenemos se relacionan con los conjuntos originales. También hay un recurso de geogebra que nos ayuda a entender mejor estos conceptos.
Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]
En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.
Nota 8. Imagen directa e inversa de una función. - [Detalles]
En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.
Ejercicio de Conjuntos (De Morgan) - [Detalles]
En este video, emprenderemos un viaje meticuloso para demostrar la validez de las Leyes de De Morgan, dos principios fundamentales que conectan la lógica con las operaciones de conjuntos.
Ejercicio Desigualdad Medias - [Detalles]
En este video, desglosaremos y demostraremos la famosa desigualdad que relaciona estas dos medias, una herramienta esencial para muchos campos de las matemáticas y la ciencia.
Nota 16. Los números naturales. - [Detalles]
En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.
Nota 18. El principio de inducción matemática. - [Detalles]
En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.
Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]
En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.
Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]
En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.
Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]
En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.
Álgebra Moderna I: Subgrupo Conmutador - [Detalles]
En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.
Los Elementos de Euclides: Teorema 3 - [Detalles]
En este video cubrimos el Teorema 3 de Los Elementos de Euclides. Dados dos segmentos desiguales, quitamos del mayor un segmento igual al menor.
Los Elementos de Euclides: Teorema 6 - [Detalles]
En este video cubrimos el Teorema 6 de Los Elementos de Euclides. Aquí se demuestra que si en un triángulo dos de sus ángulos son iguales, entonces los lados opuestos a dichos ángulos son iguales entre sí.
Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo - [Detalles]
En esta sección se analizara un tipo de correspondencia que se puede presentar entre dos grupos, lo cual nos llevara a definir el concepto de Homomorfismo. Por tanto, es necesario analizar sus propiedades y comportamientos bajo composición.
Los Elementos de Euclides: Teorema 13 - [Detalles]
En este video cubrimos el Teorema 13 de Los Elementos de Euclides. Aquí se demuestra que al levantarse una recta sobre otra se forman ángulos tales que cada uno de ellos es de 90° (es decir, cada uno de ellos es recto) o bien son suplementarios (es decir, suman 180°, suman dos rectos)
Los Elementos de Euclides: Teorema 20 - [Detalles]
En este video cubrimos el Teorema 20 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, la suma de las longitudes de dos cualesquiera de sus lados es mayor que la longitud del tercer lado.
Los Elementos de Euclides: Teorema 21 - [Detalles]
En este video cubrimos el Teorema 21 de Los Elementos de Euclides. Aquí demostramos que si desde los extremos de uno de los lados de un triángulo se construyen dos rectas que se encuentren en el interior de él, las rectas construidas serán menores que los lados restantes del triángulo pero el ángulo comprendido por las rectas construidas será mayor.
Los Elementos de Euclides: Teorema 22 - [Detalles]
En este video cubrimos el Teorema 22 de Los Elementos de Euclides. Aquí se estudia la construcción de un triángulo a partir de tres segmentos dados que cumplen la condición de que la suma de las longitudes de dos cualesquiera de los segmentos es mayor que la longitud del tercer lado.
Los Elementos de Euclides: Teorema 34 - [Detalles]
En este video cubrimos el Teorema 34 de Los Elementos de Euclides. Aquí se demuestra que en todo paralelogramo, los lados opuestos son iguales, los ángulos opuestos son iguales; y además que cualquier diagonal divide al paralelogramo en dos triángulos iguales.
El complemento de un conjunto - [Detalles]
En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.
Composición de relaciones - [Detalles]
En esta sección definiremos una nueva relación a partir de dos relaciones con ciertas características y una operación a la que llamaremos composición. Veremos si la operación composición tiene propiedades como la conmutatividad o la asociatividad.
Clases de equivalencia y particiones - [Detalles]
Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.
En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.
Conjuntos finitos - [Detalles]
En esta sección veremos a los conjuntos finitos, los cuales podremos contar según el número natural al que sean equipotentes. Además, veremos resultados acerca de la cardinalidad de la unión de dos conjuntos.
Ejercicio Representación de funciones con función par e impar - [Detalles]
En este video explicamos cómo descomponer cualquier función en dos compañeras esenciales: una función par y una función impar.
Ejercicio Limite superior de una sucesión - [Detalles]
En este video estudiamos los límites limsup y el liminf. Navegaremos entre secuencias y funciones, descubriendo cómo estas dos nociones nos brindan perspectivas únicas sobre el comportamiento asintótico.
Ejercicio Teorema del Sandwich - [Detalles]
¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?
Ejercicio Optimización (Escalera) - [Detalles]
¿Alguna vez te has preguntado cuál es la escalera más larga que puedes pasar entre dos pasillos que se cruzan? En este problema, usaremos técnicas de máximos y mínimos para determinar la longitud máxima de una escalera que puede maniobrarse a través de estos pasillos.
Ejercicio Ejemplos de L'Hôpital - [Detalles]
En este video, nos sumergiremos en la aplicación de este teorema para resolver dos límites esenciales: el límite de \( \frac{\tan(x)}{x} \) y el límite de \( \frac{\cos^2(x) - 1}{x} \) cuando \( x \) tiende a 0.
Subgráficas y la gráfica complemento - [Detalles]
En este video definimos la gráfica complemento de una gráfica dada, así como algunas operaciones básicas. Definimos el concepto de subgráfica y distinguimos dos tipos importantes: subgráficas inducidas y subgráficas generadoras.
La gráfica de líneas y dos productos de gráficas - [Detalles]
...
Nociones de trigonometría - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.
Teoría de Gráficas - Cuestionario 1 - [Detalles]
Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.
Cuestionario de nociones de trigonometría - [Detalles]
Este es un cuestionario para repasar el Módulo 8 del texto "Cimientos Matemáticos" donde se abarcan temas como: convertir ángulos a radianes y viceversa, semejanza de triángulos, distancia entre dos puntos, etc.
Matrices similares y su polinomio característico - [Detalles]
En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).
Demostración del teorema de Cayley-Hamilton - [Detalles]
En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.
Propiedades de la negación, conjunción y disyunción - [Detalles]
Revisamos las propiedades de tres conectores: la negación, la disyunción y la conjunción. Hablamos de cuándo son dos proposiciones equivalentes.
Traza de matrices y propiedades - [Detalles]
Definimos qué es la traza de matrices. Vemos que la traza abre sumas y saca escalares. Resolvemos dos problemas ejemplo.
Vecindades de números reales - [Detalles]
En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.
En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.
Ortogonalidad, ecuaciones e hiperplanos - [Detalles]
Definimos hiperplanos en espacios vectoriales arbitrarios. Vemos que en espacios de dimensión finita todo subespacio es intersección de hiperplanos.
Problemas de determinantes y ecuaciones lineales - [Detalles]
None
Ecuaciones autónomas, soluciones de equilibrio, línea fase y esbozo de soluciones - [Detalles]
Esbozamos las soluciones a una ecuación de primer orden de la forma dy/dt=f(y), la cual denominamos ecuación autónoma, mediante el uso de sus soluciones de equilibrio y la línea fase asociada a la ecuación.
Ecuaciones lineales homogéneas de primer orden - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de primer orden.
Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante - [Detalles]
Resolvemos el caso general de una ecuación lineal no homogénea de primer orden, por el método de factor integrante.
Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros - [Detalles]
Resolvemos la ecuación diferencial lineal no homogénea por el método de variación de parámetros.
Ecuaciones diferenciales no exactas. Método del factor integrante - [Detalles]
Resolvemos el problema que surge cuando una ecuación no cumple con la definición de ser exacta.
Introducción a las bifurcaciones. Valor de bifurcación - [Detalles]
Definimos una familia uniparamétrica de ecuaciones diferenciales autónomas y mediante un ejemplo revisamos el concepto de valor de bifurcación
Introducción a las bifurcaciones. Diagrama de bifurcaciones - [Detalles]
Dibujamos un diagrama que contiene la información de todas las soluciones a una familia uniparamétrica de ecuaciones autónomas, así como los valores de bifurcación, y la naturaleza de las soluciones de equilibrio
Introducción a las bifurcaciones. Determinación de los valores de bifurcación - [Detalles]
Determinamos los valores de bifurcación con ayuda de las gráficas y las primeras derivadas de las funciones que determinan a la familia uniparamétrica de ecuaciones autónomas
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces reales distintas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son reales y distintas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces repetidas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son repetidas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces complejas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son complejas.
Ecuaciones lineales no homogéneas de segundo orden y sus soluciones - [Detalles]
Demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.
Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros - [Detalles]
Desarrollamos el método de variación de parámetros para resolver una ecuación lineal no homogénea de segundo orden.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 1) - [Detalles]
Describimos de manera general el método de coeficientes indeterminados, y revisamos el caso cuando g(t) es un polinomio de grado n. Finalizamos el video con un ejemplo.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.
Soluciones por series de potencias cerca de un punto ordinario - [Detalles]
Comenzamos la revisión de las ecuaciones de segundo orden con coeficientes variables, y mostramos la existencia de una solución con desarrollo en serie de potencias alrededor de un punto ordinario.
Soluciones por series de potencias cerca de un punto ordinario (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales de segundo orden con coeficientes variables por series de potencias.
Método de la transformada de Laplace - [Detalles]
Resolvemos el problema de condición inicial de manera general para ecuaciones de segundo orden con coeficientes constantes por el método de la transformada de Laplace.
Sistemas de ecuaciones lineales con coeficientes constantes. Eliminación de variables (Ejemplos) - [Detalles]
Empleamos el método de eliminación de variables que desarrollamos en el video anterior para resolver un par de ejemplos de sistemas lineales con coeficientes constantes.
Soluciones a las ecuaciones diferenciales - [Detalles]
Estudio de las propiedades generales de las soluciones de una ecuación diferencial ordinaria
Ecuaciones diferenciales como modelos matemáticos - [Detalles]
Estudio de problemas reales donde las ecuación diferenciales son el modelo matemático que describe y resuleve al problema
Campos de pendientes y su ecuación diferencial asociada - [Detalles]
Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden
Ecuación de Bernoulli y ecuación de Riccati - [Detalles]
Se presentan las ecuaciones diferenciales de Bernoulli y de Riccati y se desarrolla el método de resolución de cada una de ellas
Teorema de Existencia y Unicidad - Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall - [Detalles]
Se desarrolla una teoría preliminar necesaria para demostrar el teorema de existencia y unicidad, en dicha teoría se presentan las ecuaciones integrales, las funciones lipschitzianas y el lema de Gronwall
Demostración del Teorema de Existencia y Unicidad de Picard-Lindelof - [Detalles]
Presentación de la demostración del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden
Método de reducción de orden - [Detalles]
Presentación de un primer método de resolución de ecuaciones diferenciales de segundo orden
Soluciones a sistemas de ecuaciones diferenciales - [Detalles]
Se estudian las propiedades de las soluciones a los sistemas lineales tanto homogéneos como no homogéneos
Método de eliminación de variables - [Detalles]
Se presenta un primer método sencillo para resolver sistemas lineales compuestos de pocas ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas
Sistemas lineales no homogéneos – Método de variación de parámetros - [Detalles]
Se presenta una generalización del método de variación de parámetros para resolver sistemas de ecuaciones diferenciales lineales de primer orden no homogéneas con coeficientes constantes
Teorema de existencia y unicidad para sistemas lineales - [Detalles]
Se demuestra el teorema de existencia y unicidad para los casos particulares en los que los sistemas de ecuaciones diferenciales son lineales con coeficientes constantes tanto homogéneos como no homogéneos
Sistemas autónomos, puntos de equilibrio y su estabilidad - [Detalles]
Se presentan formalmente los conceptos básicos sobre la teoría cualitativa de los sistemas de ecuaciones diferenciales
Las nulclinas y el plano fase (Ejemplos) - [Detalles]
Mediante el método de las nulclinas esbozamos el plano fase de un par de sistemas de ecuaciones no lineales.
Funciones de Lyapunov - [Detalles]
Definimos las funciones de Lyapunov y estudiamos algunas propiedades útiles respecto a sistemas de ecuaciones y sus puntos de equilibrio.
Bifurcaciones en sistemas lineales (Ejemplos) - [Detalles]
Estudiamos algunas familias uniparamétricas de sistemas de ecuaciones de primer orden lineales.
Mini-cuestionario: Matrices invertibles mediante sistemas de ecuaciones - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para encontrar la inversa de una matriz
Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]
En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.
Diapositivas sobre discriminante y excentricidad - [Detalles]
Como hemos estado estudiando en todo este tiempo y un objetivo central dentro de nuestro estudio es saber identificar a las cónicas con ver sus ecuaciones. Ahora presentamos 2 criterios los cuales de una manera analítica nos facilitarán resolver esta tarea: por discriminante es necesario que la ecuación esté en su forma general y también por excentricidad que e sun cociente entre 2 distancias.
Ecuaciones de la recta - [Detalles]
Vemos las diferentes formas de representar la ecuación de la recta. Las formas de la ecuación de la recta que vemos son: Punto pendiente, ecuación segmentaria o canónica, ecuación general y paramétrica. También mencionamos algunas partes importantes de la ecuación de la recta, como la pendiente y la ordenada al origen.
Ecuaciones del plano - [Detalles]
Vemos la ecuación para un plano en el espacio tridimensional, vemos la forma de la ecuación paramétrica y de la ecuación general del plano. También vemos como dar la ecuación del plano a partir de tres puntos que pasen por el plano y como obtener el vector normal al plano.
COMAL: Ecuaciones Diferenciales Notas - [Detalles]
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
COMAL: Ecuaciones Diferenciales Videos - [Detalles]
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
Proyecto: Caminata por el jardín y sistemas lineales en el cubo - [Detalles]
En este proyecto estudiamos los sistemas de ecuaciones lineales en el cubo unitario de altas dimensiones para resolver un problema de geometría discreta.
Ecuaciones en congruencias - [Detalles]
Demostramos una serie de resultados que nos ayudan a saber si una ecuación de congruencias tiene solución única o si al menos tiene solución.
Teorema chino del residuo - [Detalles]
Motivamos la resolución de sistemas lineales de ecuaciones de congruencias y saber si se tienen solución, esto con ayuda del teorema chino del residuo el cual enunciamos y demostramos.
Problemas de norma de complejos y ecuaciones de segundo grado - [Detalles]
Resolvemos ejercicios de la norma en el campo de los complejos también resolvemos problemas de raíces cuadráticas complejas y raíces complejas.
Ejemplos de solución de ecuaciones de grados 3, 4 y más - [Detalles]
Resolvemos ejercicios en los cuales se pide que encontremos las raíces de un polinomio de grado 3 con el método de Cradano, de grado 4 con el método de Ferrari y de grados mayores.
6. Lugares geométricos en $\mathbb{C}$ - [Detalles]
Aplicando nuestros conocimientos de geometría analítica, analizaremos como se describen los lugares geométricos tales como rectas, circunferencias, elipses, etc. pero ahora dando unas nuevas ecuaciones en los complejos.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Cuestionario de ecuaciones de cónicas - [Detalles]
Este es un cuestionario para repasar el Módulo 12 del texto "Cimientos Matemáticos" donde se abarcan temas como: circunferencia, parábola, elipse, con sus respectivas propiedades cada una, etc.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.