El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]
Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo.
Conjugado de un número complejo - [Detalles]
Definimos el conjugado de un numero complejo, si un numero complejo es "a+b*i", su conjugado es "a-b*i". También vemos algunas propiedades relevantes sobre el conjugado, y su relación con el módulo de un numero complejo.
Forma polar de un número complejo - [Detalles]
Vemos como escribir un numero complejo en su forma polar (mediante su modulo y su argumento). Para esto hacemos uso de las razones trigonométricas y vemos su representación en el plano complejo.
Propiedades del módulo de un número complejo - [Detalles]
Damos y demostramos varias propiedades sobre el módulo de los complejos. Veremos que el módulo de un complejo es siempre positivo o igual a cero, y que es cero si y solo si el complejo es cero. También mostramos algunas desigualdades importantes.
Potencias de números complejos - [Detalles]
Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación).
Cómo calcular las raíces enésimas de un número - [Detalles]
Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo.
Homología celular - una fórmula para el homomorfismo frontera - [Detalles]
En este video damos una fórmula explícita para el homomorfismo frontera en el complejo de cadenas celular. Esto termina de establecer cómo se comporta el complejo de cadenas celular de un complejo CW.
21. Logaritmo complejo y potencias complejas - [Detalles]
Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".
Homología - el complejo de cadenas singulares - [Detalles]
En este video definiremos el complejo de cadenas singulares usando funciones del n-simplejo estándar a un espacio topológico X.
Unidad I: Introducción y preliminares - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
Unidad I: Introducción y preliminares - Examen - [Detalles]
En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
Diapositivas sobre coordenadas en el espacio - [Detalles]
Estudiamos el espacio pero con tres diferentes tipos de sistemas coordenados que son: las rectangulares (el espacio euclideano), esféricas y cilíndricas; estudiamos cada entrada de la terna ordenada, y que ocurre cuando cada una de ellas se deja libre. También estudiamos que es posible pasar de un espacio a otro con cambios de variables.
El espacio cartesiano - [Detalles]
Describimos el espacio cartesiano como "espacio" de 3 dimensiones: largo ancho y alto. Explicamos sus similitudes al plano cartesiano y como ubicar un punto en el espacio cartesiano.
El número de hojas de un cubriente y su grupo fundamental - [Detalles]
En este video demostramos que el número de hojas de un cubriente (con espacio base y espacio cubriente arco-conexos) está en correspondencia con el número de clases laterales de la imagen del grupo fundamental del espacio cubriente, en el grupo fundamental del espacio base.
El cubriente universal - parte 2 - [Detalles]
En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.
Complejos CW - cono y suspensión - [Detalles]
En este video definimos el cono y la suspensión de un espacio. Luego mostramos que si el espacio es un complejo CW, entonces su cono y su suspensión también lo son.
Ejemplo calcular raíces de un número complejo - [Detalles]
Continuamos analizando las raíces de un numero complejo, hacemos varios ejemplos para calcular y dar la representación geométrica de las raíces quinta de "4-4*i".
Problemas de fórmula de De Moivre y raíces n-ésimas - [Detalles]
Resolvemos problemas que ocupan el teorema de De Moivre para potencias de un número complejo y el cálculo de la raíz de un número complejo.
11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]
Finalizando la unidad, vamos a estudiar el concepto del $\infty$, la manera será construyendo lo que llamaremos el "Plano Complejo Extendido" y analizando sus propiedades.
21. Logaritmo complejo y potencias complejas - [Detalles]
Veamos unas preguntitas acerca de la definición del logaritmo complejo y un poco de potencias también.
16. Diferenciabilidad en el sentido complejo - [Detalles]
Introducimos por fin el concepto de diferenciabilidad en el sentido complejo, veremos la definición de derivada de una función compleja y estudiaremos cuando una función es derivable y cuando no y las propiedades de estas.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezaremos finalmente con la parte de integración, necesitamos repasar unos preliminares importantes, tales como curvas y trayectorias en el plano complejo.
Adjunciones complejas y transformaciones unitarias - [Detalles]
En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.
El teorema espectral y de descomposición polar complejos - [Detalles]
En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.
Introducción a espacio dual - [Detalles]
Introducimos el concepto de espacio dual de un espacio vectorial. Hablamos de bases duales, del emparejamiento canónico y de la bidualidad canónica.
Ortogonalidad y espacio ortogonal - [Detalles]
Definimos y damos ejemplos de ortogonalidad y espacio ortogonal para subconjuntos de un espacio vectorial. Enunciamos y demostramos un teorema de dualidad.
Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]
Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.
Lugares en el espacio cartesiano - [Detalles]
Recordamos la definición de un lugar geométrico, la cual también aplica para el espacio cartesiano. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas, pero esta vez en el espacio cartesiano, es decir, con 3 coordenadas.
Distancia entre dos puntos en el espacio cartesiano - [Detalles]
Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional.
Homología singular - la homología de un punto - [Detalles]
En este video haremos nuestro primer cálculo explícito de los grupos de homología de un espacio. El espacio en cuestión es el espacio que consiste de un solo punto.
Nota 25. Espacios vectoriales - [Detalles]
Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.
Grupos de homotopía de un espacio H - [Detalles]
En este video vemos que si X es un espacio H entonces la operación en pi_n es la misma que la operación en X visto como espacio H
Complejos CW - definición - [Detalles]
En este video definiremos complejo CW, un tipo muy particular de espacio que se estudian en topología algebraica. Muchos de los espacios que nos son familiares son complejos CW, por ejemplo, las esferas, los espacios proyectivos y las superficies.
9. Continuidad en un espacio métrico - [Detalles]
Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.
Combinaciones lineales - [Detalles]
Definimos combinaciones lineales y espacio generado. Mostramos que el espacio generado por ciertos vectores es el menor subespacio que los contiene.
Espacios vectoriales definición y un ejemplo - [Detalles]
Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.
Diapositivas sobre espacios vectoriales - [Detalles]
Definimos lo que es un espacio vectorial y los elementos que habitan en él (vectores), mostramos que para demostrar por definición que un espacio es vectorial debe de cumplir las 10 propiedades de éste. Se proporcionan ejemplos de espacios vectoriales y las demostraciones sobre estas 10 propiedades de la definición; se proporciona una aplicación de espacios vectoriales que es ver a la fuerza como una magnitud de dirección y magnitud, es decir, como un vector.
Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]
Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas de subconjuntos del plano y espacio cartesiano - [Detalles]
En estas diapositivas sirve de retroalimentación respecto a los temas 2 temas anteriores, son un repaso de esteos subconjuntos generados por una condición dentro del plano cartesiano o dentor del espacio cartesiano.
Cuestionario de subconjuntos del plano y espacio cartesiano - [Detalles]
Ponemos en práctica los temas de lugares geométricos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas de distancia entre 2 puntos - [Detalles]
Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.
Cuestionario sobre el plano y espacio cartesiano - [Detalles]
Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.
Diapositivas sobre espacios vectoriales - [Detalles]
Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.
Diapositivas sobre matrices - [Detalles]
Definimos lo que es una matriz y definimos el espacio de matrices de "n" renglones por "m" columnas y algunas matrices cuadradas especiales de este espacio.
Diapositivas sobre subespacios vectoriales - [Detalles]
Damos una nueva definición que son los subespacios vectoriales que es un subconjunto de un espacio vectorial que heredan las propiedades de este último dando así un nuevo espacio vectorial, mostramos que por ser subespacios no es necesario corroborar todas las propiedades pero mostramos cuáles son las que sí se deben corroborar. Estas diapositivas están acompañadas de bastos ejemplos.
Diapositivas sobre producto cruz - [Detalles]
Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.
Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]
Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.
Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]
Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).
Cuestionario sobre ecuaciones de planos en el espacio - [Detalles]
Ponemos en práctica el tema de los planos en el espacio euclídeo y las ecuaciones de estos tanto de manera paramétrica, cuando conocemos 3 pu tos que forman parte del plano. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre planos y distancias en el espacio - [Detalles]
Ponemos en práctica el cálculo de estas dos nuevas métricas en R^3 y también practicamos la identificación de los semiespacios divididos por un plano sobre el mismo espacio, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]
Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos.
Espacios vectoriales definición y un ejemplo - [Detalles]
Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.
Ejemplo 3 espacio vectorial - [Detalles]
Demostramos que el conjunto de funciones numéricas cumple con las diez reglas de los espacios vectoriales, y vemos que es un espacio vectorial.
Ejemplo 5 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se muestra un subconjunto de un espacio vectorial (un plano en el espacio tridimensional), es un subespacio vectorial.
Ejercicio 3 bases de espacios vectoriales - [Detalles]
Usando la definición de una base para un espacio vectorial cualquiera, demostramos una condición equivalente para saber cuándo un conjunto es base de un espacio vectorial.
Distancia entre dos rectas en el espacio - [Detalles]
Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula.
Todo grupo es el grupo fundamental de algún espacio - [Detalles]
En este video demostraremos que todo grupos es el grupo fundamental de algún espacio. Las herramientas principales para demostrar este teorema es la existencia de una presentación y una aplicación muy directa del teorema de van Kampen.
Proyecto: Hoyos de gráficas, espacios cociente y homología - [Detalles]
En este proyecto introducimos las nociones de espacio vectorial cociente, espacio vectorial libre y vemos cómo nos ayudan a definir lo que es la homología.
Mini-cuestionario: Introducción al espacio dual - [Detalles]
Mini-cuestionario para verificar el entendimiento del concepto de formas lineales y de espacio dual.
Nota 27. Subespacios vectoriales. - [Detalles]
En esta nota exploramos el concepto de subespacio vectorial, que no es mas que un subconjunto de un espacio vectorial que se comporta como un espacio vectorial en si, en particular vemos los subespacios de $\mathbb{R}^n$ y probamos que la intersección de subespacios también es un subespacio.
Bases para cualquier espacio vectorial - [Detalles]
Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en Álgebra lineal, específicamente, el hecho de que todo espacio vectorial tiene una base
El espacio vectorial $\mathbb{R}^n$ - [Detalles]
Damos una introducción al espacio vectorial R^n. Definimos combinaciones lineales, bases e independencia lineal. Vemos varios ejemplos.
En un espacio arco conexo no importa el punto base - [Detalles]
Probamos que si X es un espacio topológico arco conexo entonces pi_n(X,a) es isomorfo a pi_n(X,b) para cualesquiera a y b en X
Números complejos - [Detalles]
Definimos los números complejos: "a+b*i" ("a", "b" son números reales e "i" es el numero imaginario). Damos la notación que vamos a utilizar para los numero complejo (parte real y parte imaginaria) y definimos el conjunto de los números complejos.
Teorema sobre polinomios y números complejos - [Detalles]
Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio.
Multiplicación de números complejos en su forma polar - [Detalles]
Usando la forma polar de los números complejos, damos una formula muy sencilla para multiplicar complejos (en su forma polar). Vemos que tiene una representación geométrica muy parecida a una rotación, o una suma de vectores en el plano complejo.
Complejos CW - funciones características y subcomplejos - [Detalles]
En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.
Complejos CW - cocientes - [Detalles]
En este video daremos una estructura celular al cociente de un complejo CW con un subcomplejo.
Homología celular - la homología singular de un complejo CW - [Detalles]
En este video demostramos algunas propiedades de la homología celular de los complejos CW. Estos resultados serán la base para definir la homología celular.
Homología celular - ejemplo - una cuña de círculos - [Detalles]
En este video explicamos cómo calcular la homología de una cuña de círculos usando el complejo de cadenas celular.
Homología celular - característica de Euler - [Detalles]
En este video definimos la característica de Euler de un complejo CW finito. Luego, demostramos que la característica de Euler es un invariante homotópico.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Cambio de coordenadas y forma polar de un complejo - [Detalles]
Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.
Raíces de números complejos y raíces de la unidad - [Detalles]
Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.
Problemas de exponencial, logaritmo y trigonometría en C - [Detalles]
Resolvemos problemas de las funciones exponencial, logarítmica y trigonométricas en el campo complejo.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
Ahora queremos repasar lo que significa que $\mathbb{C}$ sea un campo y que implica, así como reforzar unas cuantas fórmulas para expresar partes real e imaginaria de un número complejo.
3. El plano complejo $\mathbb{C}$ - [Detalles]
Revisitaremos un poco de la parte histórica y notaremos un poco de la importancia de la simbiótica relación entre los números complejos y el plano cartesiano.
6. Lugares geométricos en $\mathbb{C}$ - [Detalles]
Volveremos a echar un vistazo a aspectos importantes de los lugares geométricos en el plano complejo, cómo se describen y algunas propiedades.
11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]
Para finalizar el bloque 1, veremos un par de preguntas acerca de $\mathbb{C}$ "pegándole" el infinito, la proyección estereográfica y poco mas.
3. El plano complejo $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Anteriormente vimos continuidad en espacios métricos en abstracto, ahora nos vamos a bajar al terreno complejo y considerar la definición de continuidad únicamente en funciones complejas.
16. Diferenciabilidad en el sentido complejo - [Detalles]
Ahora si, veamos esas derivadas...
24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]
Revisemos ahora aspectos geométricos acerca de las funciones, o transformaciones $T:\mathbb{C} \longrightarrow \mathbb{C}$.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Abordaremos formalmente el concepto de continuidad en sentido complejo, debemos estar advertidos de que, a pesar de que la definición no diferirá mucho de la de variable real, el comportamiento en los complejos puede cambiar de formas extrañas, analizaremos propiedades y caracterizaciones de funciones complejas continuas.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.
23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas - [Detalles]
Habiendo definido las funciones trigonométricas e hiperbólicas complejas en la entrada anterior, utilizaremos el logaritmo complejo para construir las inversas ahora de las trigonométricas y de las hiperbólicas.
24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]
Ya hablamos bastante acerca de las funciones complejas, su continuidad y derivadas, ahora revisaremos un poco más afondo la geometría, por medio de las transformaciones, veremos varios tipos de estas y como afectan al plano y a subconjuntos de este.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
25. Transformaciones lineales y transformaciones de Möbius - [Detalles]
Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.
25. Transformaciones lineales y transformaciones de Möbius - [Detalles]
Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.
Formas cuadráticas hermitianas - [Detalles]
El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades. Al final enunciaremos una versión compleja del teorema de Gauss.
Matrices de formas sesquilineales - [Detalles]
En esta entrada daremos una relación entre formas sesquilineales, formas cuadráticas hermitianas y matrices. Daremos la definición y veremos sus propiedades. Gran parte de la relación que había para el caso real se mantiene al pasar a los complejos. Las demostraciones en la mayoría de los casos son análogas, sin embargo, haremos énfasis en las partes que hacen que el caso real y el complejo sean distintos.
Suma y suma directa de subespacios - [Detalles]
Definimos la operación de suma de subespacios de un espacio vectorial. Hablamos de subespacios en posición de suma directa y de las propiedades de sumarlos.
El lema del intercambio de Steinitz - [Detalles]
En un espacio vectorial los conjuntos independientes son "chicos" y los generadores son "grandes". El lema de intercambio de Steinitz formaliza esto.
Bases duales, recetas y una matriz invertible - [Detalles]
Probamos que las formas coordenadas de una base son base del espacio dual. Vemos problemas prácticos de bases duales y una relación con matrices invertibles
Problemas de ortogonalidad, ecuaciones e hiperplanos - [Detalles]
Resolvemos problemas de ortogonalidad relacionados con encontrar bases para el espacio ortogonal y definir subespacios mediante ecuaciones e hiperplanos.
Subespacios vectoriales - [Detalles]
Definimos los subespacios vectoriales, los cuales son subconjuntos de un espacio vectorial que son por sí mismos espacios vectoriales. Mostramos que basta con comprobar las reglas 1, 3, 4 y 6 para ver que un subconjunto es subespacio vectorial.
Subespacio vectorial (ejemplo 1) - [Detalles]
Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.
Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]
Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.
Introducción al curso, espacio muestral y σ-álgebras - [Detalles]
Presentamos los conceptos e ideas más fundamentales de la teoría de la probabilidad que desarrollaremos en el curso.
Construcción de σ-álgebras - [Detalles]
Desarrollamos el concepto de sigma-álgebra generado por una familia de subconjuntos del espacio muestral. Con este se construye el sigma-álgebra de los borelianos.
Cuestionario de distancia - [Detalles]
Ponemos en práctica el tema de distancia entre 2 puntos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.
Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Resolución de guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Cuestionario sobre coordenadas en el espacio - [Detalles]
Ponemos en práctica el tema de diferentes tipos de espacios; rectangulares, cilíndrico y esférico y como pasar de uno a otro, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre espacios vectoriales - [Detalles]
Ponemos en práctica el primer acercamiento que tenemos con lo que es un espacio vectorial, nos centramos en la comprensión de la definición y de las características que cumplen estos espacios, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre matrices - [Detalles]
Ponemos en práctica los primeros conocimientos de lo que es una matriz y sobre este nuevo espacio a estudiar, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre bases de espacios vectoriales - [Detalles]
A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.
Diapositivas sobre ejemplos bases de espacios vectoriales - [Detalles]
En estas diapositivas damos herramientas extras (lemas) sobre como identificar si un conjunto es base de un espacio vectorial o no.
Diapositivas sobre producto punto - [Detalles]
Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.
Cuestionario sobre producto punto - [Detalles]
Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre producto cruz - [Detalles]
Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre producto triple de vectores - [Detalles]
Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]
Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre planos y distancias en el espacio - [Detalles]
Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
Sistemas de coordenadas en el espacio. Cartesianas, coordenadas cilíndricas y coordenadas esféricas - [Detalles]
Damos una pequeña presentación de los tres principales sistemas de coordenadas tridimensionales: Cartesianas, esféricas y cilíndricas. Igualmente hablamos sobre las ventajas de cada sistema de coordenadas.
Coordenadas cilíndricas - [Detalles]
Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas.
Coordenadas esféricas - [Detalles]
Explicamos como un punto en el espacio se puede representar por medio de las coordenadas esféricas. Vemos la representación geométrica de los dos ángulos de las coordenadas esféricas.
Cambio de coordenadas. esféricas , cilíndricas y rectangulares - [Detalles]
Explicamos como podemos representar un mismo punto en el espacio tridimensional mediante diferentes coordenadas. También damos el cambio de coordenadas para pasar de coordenadas cartesianas (o rectangulares) a esféricas o cilíndricas, así como para pasar de cilíndricas a cartesianas, y esféricas a cartesianas.
Subespacios vectoriales - [Detalles]
Definimos los subespacios vectoriales, los cuales son subconjuntos de un espacio vectorial que son por sí mismos espacios vectoriales. Mostramos que basta con comprobar las reglas 1, 3, 4 y 6 para ver que un subconjunto es subespacio vectorial.
Ejemplo 1 subespacio Vectorial - [Detalles]
Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta vertical), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.
Ejemplo 2 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.
Ejemplo 4 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se muestra un subconjunto de un espacio vectorial (una recta, descrita por su ecuación de recta), NO es un subespacio vectorial.
Ejercicio 1 bases de espacios vectoriales - [Detalles]
Damos la definición de una base en el plano cartesiano, y mostramos cuando dos vectores forman una base para este espacio vectorial.
Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores.
Ecuacion de la recta en $\mathbb{R}^n$ - [Detalles]
Definimos la ecuación de la recta en el espacio tridimensional R^3 (lo que podemos generalizar para R^n). Vemos la forma paramétrica y también vemos que podemos escribir la ecuación de la recta conociendo dos puntos que pasen por ella.
Distancia punto recta - [Detalles]
Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta.
Ecuaciones del plano - [Detalles]
Vemos la ecuación para un plano en el espacio tridimensional, vemos la forma de la ecuación paramétrica y de la ecuación general del plano. También vemos como dar la ecuación del plano a partir de tres puntos que pasen por el plano y como obtener el vector normal al plano.
Distancia entre dos planos en el espacio - [Detalles]
Similar al caso de la distancia entre dos rectas, deducimos la fórmula para calcular la distancia mínima entre dos planos (siempre que no se crucen). Vemos que los planos deben ser paralelos, ya que en caso contrario se cruzan y su distancia es cero. Para la formula hacemos uso de la fórmula para la distancia de un punto a un plano.
Damos una breve definición de los semiespacio, los cuales son regiones del espacio separadas por un plano. Los semiespacios están caracterizados por una desigualdad relacionada a la ecuación del plano que los separa.
Caminos y homotopías | Grupo fundamental | Topología algebraica - [Detalles]
En este video se comienza a preparar el camino para definir, posteriormente, el grupo fundamental de un espacio topológico.
La homotopía de caminos rel 0,1 es una relación de equivalencia - [Detalles]
En este video se continua preparando el camino para definir el grupo fundamental de un espacio topológico. El objetivo del video es mostrar que la relación de homotopía de caminos rel 0,1 es una relación de equivalencia.
Definición del grupo fundamental - [Detalles]
En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.
El grupo fundamental no detecta células de dimensió mayor que 2 - [Detalles]
En este video demostraremos que el grupo fundamental queda inalterado si adjuntamos o pegamos una célula de dimensión mayor que dos a un espacio.
La propiedad de levantamiento de homotopías para cubrientes - [Detalles]
En este video demostramos una de las propiedades más importantes de los espacio cubrientes: el teorema de levantamiento de homotopías. En videos posteriores veremos algunas consecuencias de este enunciado.
El cubriente universal - parte 1 - [Detalles]
En este video definimos una condición necesaria para que un espacio tenga cubriente universal: la noción de ser semi-localmente simplemente conexo.
El cubriente universal - parte 3 - [Detalles]
En este video construimos con todo detalle el cubriente universal de un espacio arco-conexo, localmente arco-conexo y semi localmente simplemente conexo.
Transformaciones de cubierta - parte 2 - [Detalles]
En este video demostramos el teorema que relaciona el grupo de transformaciones de cubierta de un cubriente con el grupo fundamental del espacio base.
Homología singular - simplejos - [Detalles]
En este video comenzaremos a preparar el camino para definir la homología singular de un espacio. Definiremos lo que es un n-simplejo, el n-simplejo estándar y hablaremos un poco de su estructura combinatorica.
Homología singular - la homología y las componentes arco-conexas - [Detalles]
En este video veremos cómo calcular el 0-ésimo grupo de homología singular y su relación con las componentes arco-conexas de nuestro espacio.
Homología singular - el 0-ésimo grupo de homología - [Detalles]
En este video veremos que el 0-ésimo grupo de homología singular es la suma de copias de los coeficientes, una por cada componente arco-conexa del espacio.
Mini-cuestionario: Ortogonalidad y espacio ortogonal - [Detalles]
Mini-cuestionario para verificar el entendimiento del concepto de ortogonalidad relacionado con la dualidad.
Mini-cuestionario: Ortogonalidad y transformación transpuesta - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo se define la transformación transpuesta en términos del espacio dual y qué matriz la representa.
7. Topología de $\mathbb{C}$ - [Detalles]
Vamos a repasar los conceptos básicos de espacio métrico y topología en los complejos, con algunos ejemplos y proposiciones.
8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]
Revisemos un poco del concepto de sucesión en los complejos mediante un ejemplo concreto.
9. Continuidad en un espacio métrico - [Detalles]
Le echaremos un vistazo a modo de repaso a un par de nociones acerca de la continuidad en espacios métricos abstractos y uno que otro ejemplo.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Volvamos a checar un poco las definiciones de un conjunto conexo y compacto mediante algunos ejemplos.
7. Topologia de $\mathbb{C}$ - [Detalles]
En esta entrada empezamos recordando las nociones de topología en espacios métricos pera luego enfocarnos en el espacio métrico $(\mathbb{C},d)$ y definir todos los conceptos importantes de topología pero ahora en los complejos.
8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]
Estudiaremos las sucesiones de números complejos, el cual resulta un objeto fundamental para el estudio del concepto de las aproximaciones, utilizando los conceptos de distancia que definimos en la entrada anterior e introducimos el "límite de una sucesión" y cuando puede o no existir.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Introducimos las nociones de conexidad y compacidad, que nos permitirán dar caracterizaciones de subconjuntos de $\mathbb{C}$, además veremos su relación con las funciones continuas y estudiaremos sus propiedades topológicas.
Nota 26. Propiedades de $\mathbb{R}^n$ - [Detalles]
En la siguiente nota veremos algunas propiedades de $\mathbb{R}^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb{R}$ por cualquier vector de $\mathbb{R}^n$ nos da el neutro aditivo del espacio vectorial, y que la multiplicación de cualquier escalar por el neutro aditivo de $\mathbb{R}^n$, es el mismo neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, denotado por $\tilde{v}$ es de hecho $(-1)v$.
Introducción: ¿Qué son las Ciencias de la Computación?, Complejidad - [Detalles]
1.3 Complejidad - Continuación de los conceptos clave de la materia, significado de la complejidad y sus características (tiempo, espacio, tamaño y dificultad) para su ejecución.
La distancia entre dos vértices - [Detalles]
Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.
Matrices positivas y congruencia de matrices - [Detalles]
En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).
Dualidad y representación de Riesz en espacios euclideanos - [Detalles]
En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».
Proceso de Gram-Schmidt en espacios euclideanos - [Detalles]
En esta entrada recordaremos el teorema de Gram-Schmidt el cual nos ayuda a encontrar una base ortonormal en un espacio euclidiano, y veremos ejemplos de su aplicación
Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]
En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.
El teorema de clasificación de transformaciones ortogonales - [Detalles]
En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.
Implementación con orientación a objetos, Lista versión iterativa - [Detalles]
Lista versión iterativa - Cómo implementar una versión iterativa de lista y nodos para para ahorrar tiempo y espacio (eficiencia).
Grupos de homotopía relativos - [Detalles]
Si tenemos un espacio X y un subespacio A podemos definir un grupo pi_n(X,A,*)
Sucesión exacta larga de grupos de homotopía relativos - [Detalles]
Vemos que si tenemos una filtración de espacio A <B <X entonces podemos formar una sucesión exacta larga con los grupos de homotopía relativos de estos espacios. Esta sucesión sirve mucho para hacer calculos.