Resultados de búsqueda: producto punto

178 resultados encontrados

  • Video

    Producto triple - [Detalles]

    Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores. 

  • Video

    Producto punto - [Detalles]

    Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores. 

  • Video

    Ejercicios Producto Punto - [Detalles]

    Hacemos varios ejercicios para calcular el producto punto entre dos vectores. También calculamos el ángulo entre dos vectores y demostramos, usando el producto punto, que el ángulo entre un vector consigo mismo es cero. 

  • Diapositivas

    Diapositivas sobre producto triple de vectores - [Detalles]

    Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.

  • Video

    Distancia entre un plano y un punto - [Detalles]

    Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades. 

  • Diapositivas

    Diapositivas sobre producto punto - [Detalles]

    Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.

  • Video

    Producto cruz ( producto vectorial) - [Detalles]

    Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores. 

  • Diapositivas

    Diapositivas sobre producto cartesiano - [Detalles]

    Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.

  • Video

    Simetría central - [Detalles]

    Explicamos en que consiste la simetría central, alrededor de un punto O. La cual describe que dado un punto siempre existe otro punto con el cual, al formar un segmento de recta, el punto central O siempre está en el medio.  

  • Video

    Distancia punto recta - [Detalles]

    Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta. 

  • Cuestionario

    Cuestionario sobre producto punto - [Detalles]

    Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Cuestionario

    Cuestionario sobre producto cruz - [Detalles]

    Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Ejercicios Producto Triple - [Detalles]

    Realizamos varios ejercicios del producto triple, vemos en que caso el producto triple es cero, algunos ejercicios para obtener el volumen del paralelepípedo formado por los factores, y que significa que el producto triple sea cero, lo cual está relacionado a que los factores sean linealmente dependientes o independientes. 

  • Video

    Producto directo de grupos - parte 3 - [Detalles]

    Se demuestra que el producto de subgrupos normales es subgrupo normal del producto y que el cociente es isomorfo a un producto de cocientes.

  • Blog

    Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]

    En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.

  • Blog

    Producto en los naturales - [Detalles]

    Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.

  • Lección

    Segmentos dirigidos y potencia de un punto - [Detalles]

    Definimos el concepto de segmento dirigido y de potencia de un punto , demostramos la fórmula de Chasles y algunos resultados de la potencia de un punto

  • Blog

    Punto de Nagel - [Detalles]

    Estudiamos algunas propiedades del punto de Nagel y las de otros objetos relacionados con este punto, como la circunferencia de Spieker.

  • Blog

    Punto simediano - [Detalles]

    Veremos que las simedianas de un triángulo son concurrentes y algunos resultados sobre este punto de concurrencia, el punto simediano.

  • Diapositivas

    Diapositivas sobre ecuaciones de rectas en el espacio - [Detalles]

    Incentivamos el estudio de las relaciones que existen entre diferentes tipos de rectas como las rectas paralelas, las que se intersectan en un punto y en las que se intersectan en más de un punto (un segmento). Tratamos también un término muy concurrido que es el tema de distancias, hablamos de distancia entre un punto a una recta y la distancia entre dos rectas, ambos temas desarrollados en el espacio euclídeo.

  • Video

    ¿Un punto con muchas coordenadas? - [Detalles]

    Hablamos sobre algunas peculiaridades de las coordenadas polares, en concreto, sobre que un mismo punto puede tener varias coordenadas polares diferentes, pero todas representan al mismo punto.  

  • Video

    Distancia entre dos rectas en el espacio - [Detalles]

    Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula. 

  • Blog

    Producto de matrices y composición de sus transformaciones - [Detalles]

    Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.

  • Cuestionario

    Cuestionario sobre producto triple de vectores - [Detalles]

    Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    El grupo fundamental de un producto - [Detalles]

    En este video demostramos que el grupo fundamental de un producto de espacios topológicos es el producto de los grupos fundamentales de los factores, es decir, el grupo fundamental abre productos.

  • Blog

    El producto en los enteros - [Detalles]

    Definimos la operación producto y demostramos algunas propiedades básicas de esta operación en los enteros, también demostramos la propiedad distributiva para la suma y el producto, también vemos que en los enteros no tiene divisores de cero.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Blog

    Propiedades del producto cartesiano (parte II) - [Detalles]

    En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

  • Video

    El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]

    Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo. 

  • Interactivo

    Potencia de un punto - [Detalles]

    Enunciamos y demostramos el teorema de la potencia de un punto

  • Lección

    Razón en que un punto divide a un segmento - [Detalles]

    Definimos la razón en la que un punto divide a un segmento y demostramos algunos resultados al respecto

  • Video

    Soluciones por series de potencias cerca de un punto ordinario - [Detalles]

    Comenzamos la revisión de las ecuaciones de segundo orden con coeficientes variables, y mostramos la existencia de una solución con desarrollo en serie de potencias alrededor de un punto ordinario.

  • Video

    Radio de convergencia de series de potencias cerca de un punto ordinario - [Detalles]

    Calculamos el radio de convergencia para una solución por serie de potencias cerca de un punto ordinario para una ecuación diferencial de segundo orden con coeficientes variables.

  • Blog

    Metodos numéricos de integración: Regla del punto medio y del trapecio - [Detalles]

    Enseñanza al metodo numérico de integración por regla del punto medioa y regla del trapecio.

  • Blog

    Potencia de un punto - [Detalles]

    Presentamos los resultados más básicos sobre potencia de un punto respecto a una circunferencia y mostramos algunos ejemplos.

  • Video

    Coordenadas en el plano cartesiano - [Detalles]

    Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas. 

  • Video

    Simetría axial - [Detalles]

    Explicamos en que consiste la simetría axial, alrededor de un eje E. La cual describe que dado un punto Q, siempre existe otro punto P, tal que el eje E es la mediatriz del segmento PQ. Describimos esto de forma geométrica con imágenes en un plano. 

  • Video

    Lugar Geométrico De Las Cónicas - [Detalles]

    Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.  

  • Video

    Cambio de punto base para el grupo fundamental - [Detalles]

    En este video estudiamos la (in)dependencia del grupo fundamental respecto del punto base.

  • Video

    El teorema del punto fijo de Brouwer en dimensión 2 - [Detalles]

    En este video demostramos el teorema del punto fijo de Brouwer.

  • Video

    Homotopias entre funciones - [Detalles]

    En este video definimos homotopía entre funciones y homotopías que preservan el punto base. Luego demostramos que las homotopías que preservan el punto base inducen el mismo homomorfismo en grupos fundamentales.

  • Video

    Homología singular - la homología de un punto - [Detalles]

    En este video haremos nuestro primer cálculo explícito de los grupos de homología de un espacio. El espacio en cuestión es el espacio que consiste de un solo punto.

  • Video

    Homología singular - el teorema del punto fijo de Brouwer - [Detalles]

    Como aplicación del cálculo de la homología de una esfera demostraremos el teorema del punto fijo de Brouwer en dimensiones arbitrarias. La estrategia es idéntica a la que ya usamos para demostrar el teorema de Brouwer en dimensión 2 con el grupo fundamental.

  • Video

    Implementación con bits, Números de punto flotante - [Detalles]

    Números de punto flotante - Representación de datos numéricos; racionales en la computadora.

  • Video

    Operaciones con matrices - [Detalles]

    Explicamos la suma de matrices y la multiplicación de una matriz por un escalar. También damos la definición de un vector y el producto punto. Explicamos de manera sencilla la multiplicación de matrices.

  • Blog

    Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz

  • Blog

    Problemas de formas cuadráticas y producto interior - [Detalles]

    Resolvemos problemas de formas cuadráticas y de producto interior en espacios vectoriales. Estudiamos el núcleo de formas bilineales y cuadráticas.

  • Video

    Propiedades de la suma y multiplicación de los polinomios - [Detalles]

    Vemos como realizar operaciones con polinomios. Definimos la suma de polinomios, el producto de polinomio por un escalar y el producto de polinomios. Damos un ejemplo para cada operación. 

  • Video

    Producto de segmentos - [Detalles]

    Demostramos geométricamente cómo determinar el producto de dos segmentos cualesquiera

  • Blog

    Suma, producto y composición de funciones - [Detalles]

    Estudio de los conceptos de suma, producto, cociente y composición de funciones.

  • Diapositivas

    Diapositivas sobre producto cruz - [Detalles]

    Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.

  • Cuestionario

    Mini-cuestionario: Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las nociones básicas de producto interior y de la desigualdad de Cauchy-Schwarz

  • Blog

    Definición del producto y sus propiedades básicas - [Detalles]

    Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Video

    Multiplicatividad del signo. Parte 1 - [Detalles]

    Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.

  • Video

    Productos de subconjuntos de un grupo - [Detalles]

    Se extiende la definición de producto para incluir el producto de dos subconjuntos de un grupo.

  • Video

    Producto directo de grupos - [Detalles]

    Se da la definición del producto directo de grupos y se demuestran algunas propiedades.

  • Video

    Producto directo de grupos - parte 2 - [Detalles]

    Se continúa el estudio del producto directo, se enuncia y demuestra el teorema de factorización.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]

    En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.

  • Blog

    Pares ordenados y producto cartesiano - [Detalles]

    En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Video

    Ejercicio Límite de función acotada y otra con valor $0$ - [Detalles]

    Si $g(x)$ tiende a $0$ y $h(x)$ es una función acotada, ¿qué ocurre con el producto $g(x)h(x)$? En este video, exploramos y demostramos por qué este producto también tiende a $0$.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 2 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 4, 5 y 6 del curso. Los conceptos que requieres saber son: Secuencia de grados. Algunas familias especiales: gráfica r-regular; gráfica de lineas; gráfica bipartita. Conceptos no totalmente formales: Operaciones: unión disjunta; suma de Zykov; producto cartesiano de G_1 □ G_2; producto directo de G_1 x G_2.

  • Blog

    Dualidad y representación de Riesz en espacios euclideanos - [Detalles]

    En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

  • Blog

    Parejas ordenadas y producto cartesiano de conjuntos - [Detalles]

    En esta entrada introducimos el concepto de parejas ordenadas y del producto cartesiano entre conjuntos.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.

  • Blog

    Operaciones de suma y producto escalar con vectores y matrices - [Detalles]

    Definimos las operaciones de suma y producto escalar para vectores y martices. Enunciamos algunas propiedades con ejemplos y demostraciones.

  • Blog

    Producto de matrices con vectores - [Detalles]

    Definimos el producto de matrices con vectores para pocas entradas. Vemos ejemplos y propiedades que cumple.

  • Blog

    Producto de matrices con matrices - [Detalles]

    Definimos el producto de matrices y vemos casos con pocas entradas. Enunciamos algunas propiedades con demostración y vemos ejemplos.

  • Video

    Álgebra de límites - [Detalles]

    En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.

  • Lección

    La línea de Simson y la circunferencia de los nueve puntos - [Detalles]

    Definimos la proyección de un punto sobre una recta, demostramos el teorema de la línea de Simson y su recíproco y el teorema de la circunferencia de los nueve puntos

  • Lección

    Puntos y rectas al infinito - [Detalles]

    Definimos los conceptos de haz de rectas, hilera de puntos, punto al infinito, hilera al infinito y puntos armónicos, además demostramos algunas propiedades

  • Lección

    Potencia en términos de distancia al centro y radio - [Detalles]

    Demostramos algunos resultados que involucran la potencia de un punto respecto a una circunferencia

  • Video

    Circunferencias ortogonales (parte 1) - [Detalles]

    Demostramos que es posible trazar rectas tangentes a una circunferencia desde un punto exterior y que es posible trazar una circunferencia ortogonal a otra con un centro dado y que esté fuera de la circunferencia

  • Lección

    Más de puntos armónicos y circunferencias ortogonales - [Detalles]

    Definimos el conjugado armónico del punto medio de un segmento, el ángulo de intersección de dos circunferencias y cuándo dos circunferencias son ortogonales y demostramos algunos resultados que involucran estos conceptos

  • Video

    Soluciones por series de potencias cerca de un punto ordinario (Ejemplos) - [Detalles]

    Resolvemos un par de ecuaciones diferenciales de segundo orden con coeficientes variables por series de potencias.

  • Video

    Ecuación diferencial de Euler - [Detalles]

    Resolvemos de manera general la ecuación diferencial de Euler para cualquier intervalo que no contenga al punto singular t=0

  • Video

    Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]

    Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero

  • Video

    Soluciones por series cerca de un punto singular regular (Parte 2) - [Detalles]

    Continuamos desarrollando el método de Frobenius. En esta ocasión revisamos el caso cuando la ecuación indicial tiene raíces repetidas

  • Video

    Soluciones por series cerca de un punto singular regular (Parte 3) - [Detalles]

    Finalizamos el estudio al método de Frobenius revisando el caso cuando la ecuación indicial tiene dos raíces que difieren por un entero

  • Video

    Ecuación de Hermite - [Detalles]

    Resolvemos la ecuación diferencial de Hermite alrededor del punto ordinario t=0

  • Video

    Ecuación de Laguerre - [Detalles]

    Encontramos una solución a la ecuación diferencial de Laguerre cerca del punto singular regular t=0.

  • Video

    Ecuación de Bessel (Parte 1) - [Detalles]

    Hallamos la ecuación indicial para la ecuación de Bessel de orden lambda alrededor del punto singular regular t=0. Posteriormente encontramos una solución a la ecuación de Bessel de orden cero.

  • Video

    Ecuación de Legendre - [Detalles]

    Resolvemos la ecuación de Legendre alrededor del punto ordinario t=0, y hacemos mención de la relación que guarda esta ecuación con los polinomios que llevan el mismo nombre.

  • Video

    Ecuación de Chebyshev - [Detalles]

    Encontramos la solución general a la ecuación de Chebyshev alrededor del punto ordinario t=0.

  • Blog

    Recta de Simson - [Detalles]

    Veremos una condición necesaria y suficiente para que el triángulo pedal de un punto degenere en una recta, conocida como recta de Simson.

  • Blog

    Circunferencias de Lemoine - [Detalles]

    Veremos las Circunferencias de Lemoine y su generalización, las circunferencias de Tucker, ambas relacionadas con el punto de Lemoine.

  • Blog

    Puntos de Brocard - [Detalles]

    Estudiamos algunas de las propiedades del primer y segundo punto de Brocard que son otro par de puntos conjugados isogonales del triangulo.

  • Video

    Bifurcaciones en sistemas no lineales (Ejemplos) - [Detalles]

    Estudiamos un par de ejemplos de bifurcaciones que ocurren en sistemas no lineales: la bifurcación de punto silla y la bifurcación de Hopf.

  • Video

    Secciones locales y caja de flujos - [Detalles]

    Continuamos presentando las herramientas necesarias para la demostración del teorema de Poincaré - Bendixson en el plano. En esta ocasión definimos una sección local en un punto del plano y su caja de flujos.

  • Video

    Mapeo de Poincaré - [Detalles]

    Hablamos un poco acerca del mapeo de primer retorno de Poincaré y relacionamos las secciones locales en un punto con las órbitas cerradas de un sistema de ecuaciones.

  • Diapositivas

    Dispositivas sobre las propiedades de la negación, conjunción y disyunción - [Detalles]

    Tomando las definicones pasadas de conjunción y disyunción ahora enunciamos una serie de propiedades que tienen, estas propiedades son demostradas desde el punto de vista de equivalencias de formas proposicionales.

  • Diapositivas

    Diapositivas sobre proposiciones bicondicionales - [Detalles]

    Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.

  • Cuestionario

    Cuestionario de simetrías - [Detalles]

    Ponemos en práctica el tema de simetrías de figuras ya sea respecto a un punto, axial por uno de los ejes o por la recta identidad, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Interactivo

    Actividad 2 Geogebra coordenadas polares - [Detalles]

    En esta nueva actividad de geogebra interactiva seguimos planteando como se mueve sobre el plano polar una coordenada pero ahora también lo que se está implementando es el cálculo del punto medio, la intersección con los ejes polares y más propiedades.

  • Diapositivas

    Diapositivas sobre ecuaciones de la recta en el plano - [Detalles]

    Damos inicio a un nuevo tema que será de utilidad para toda la carrera que es el tema de ecuaciones de rectas como la paramétrica, la general, la de punto pendiente, entre otras.

  • Cuestionario

    Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]

    Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre planos y distancias en el espacio - [Detalles]

    Deducimos otras dos fórmulas acerca de la distancia en R^3 las cuales son la distancia de un punto a un plano y la distancia entre 2 planos, asimismo similar al tema de semiplanos ahora definimos lo que son los semiespacios.

  • Video

    El espacio cartesiano - [Detalles]

    Describimos el espacio cartesiano como "espacio" de 3 dimensiones: largo ancho y alto. Explicamos sus similitudes al plano cartesiano y como ubicar un punto en el espacio cartesiano. 

  • Video

    Cambio de coordenadas de polares a cartesianas - [Detalles]

    Explicamos como pasar de coordenadas polares a coordenadas cartesianas, de un punto. Usamos las funciones trigonométricas para dar las coordenadas cartesianas a partir de las coordenadas polares (radio, ángulo). 

  • Video

    Convertir de Coordenadas Cartesianas a Coordenadas Polares - [Detalles]

    Similar al video anterior (pero al inverso). Explicamos como pasar de coordenadas cartesianas a coordenadas polares, de un punto. 

  • Video

    Coordenadas cilíndricas - [Detalles]

    Hablamos sobre las coordenadas cilíndricas y su similitud a las coordenadas polares (recordemos que las coordenadas polares son de dos dimensiones). Explicamos como un punto en el espacio se puede representar por medio de las coordenadas cilíndricas. 

  • Video

    Coordenadas esféricas - [Detalles]

    Explicamos como un punto en el espacio se puede representar por medio de las coordenadas esféricas. Vemos la representación geométrica de los dos ángulos de las coordenadas esféricas. 

  • Video

    Cambio de coordenadas. esféricas , cilíndricas y rectangulares - [Detalles]

    Explicamos como podemos representar un mismo punto en el espacio tridimensional mediante diferentes coordenadas. También damos el cambio de coordenadas para pasar de coordenadas cartesianas (o rectangulares) a esféricas o cilíndricas, así como para pasar de cilíndricas a cartesianas, y esféricas a cartesianas. 

  • Video

    Ecuaciones de la recta - [Detalles]

    Vemos las diferentes formas de representar la ecuación de la recta. Las formas de la ecuación de la recta que vemos son: Punto pendiente, ecuación segmentaria o canónica, ecuación general y paramétrica. También mencionamos algunas partes importantes de la ecuación de la recta, como la pendiente y la ordenada al origen. 

  • Video

    Ejemplo diferentes formas de la ecuación de la recta - [Detalles]

    En este ejemplo vemos como a partir de la ecuación de la recta en forma de punto pendiente, podemos transformarla a las demás formas. Es decir, dada una misma recta, vemos como representarla en sus demás formas.  

  • Video

    Ejercicios ecuación del plano - [Detalles]

    Hacemos ejercicios para obtener la ecuación de un plano. A partir de un punto en el plano y su vector normal, damos la ecuación paramétrica y general del plano. 

  • Video

    Distancia entre dos planos en el espacio - [Detalles]

    Similar al caso de la distancia entre dos rectas, deducimos la fórmula para calcular la distancia mínima entre dos planos (siempre que no se crucen). Vemos que los planos deben ser paralelos, ya que en caso contrario se cruzan y su distancia es cero. Para la formula hacemos uso de la fórmula para la distancia de un punto a un plano. 

  • Video

    Simetría de las cónicas - [Detalles]

    Retomamos las simetrías en el plano: central y axial, para ver qué tipo de simetrías poseen las secciones cónicas. Cuando las secciones cónicas tienen simetría central, indicamos cual es el punto al cual se tiene esta simetría, para la simetría axial indicamos el eje en el cual se tiene simetría axial. 

  • Video

    Definición del grupo fundamental - [Detalles]

    En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.

  • Video

    Homotopias y homomorfismos inducidos - [Detalles]

    En este video demostramos un resultado que tiene que ver con cómo se comportan los homomorfismos inducidos respecto de homotopías que no preservan el punto base.

  • Video

    Unicidad del levantamiento de funciones - [Detalles]

    En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).

  • Video

    El cubriente universal - parte 2 - [Detalles]

    En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.

  • Video

    Álgebra homológica - complejos de cadenas - [Detalles]

    En este video comenzamos a estudiar álgebra homológica desde un punto de vista puramente algebraico. Definimos complejos de cadenas, subcomplejos, complejos cociente, homología y funciones inducidas.

  • Blog

    31. Funciones elementales como series de potencias - [Detalles]

    Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.

  • Blog

    Álgebra Moderna I: Factorización Completa - [Detalles]

    Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.

  • Video

    Los Elementos de Euclides: Teorema 2 - [Detalles]

    En este video cubrimos el Teorema 2 de Los Elementos de Euclides. Aquí se realiza la construcción de un segmento en un punto dado, igual a un segmento dado.

  • Video

    Los Elementos de Euclides: Teorema 11 - [Detalles]

    En este video cubrimos el Teorema 11 de Los Elementos de Euclides. Aquí se realiza la construcción de la recta perpendicular a una recta dada y en un punto de ella.

  • Video

    Los Elementos de Euclides: Teorema 12 - [Detalles]

    En este video cubrimos el Teorema 12 de Los Elementos de Euclides. Aquí se realiza la construcción de la perpendicular a una recta dada, por un punto no perteneciente a la recta dada

  • Video

    Los Elementos de Euclides: Teorema 14 - [Detalles]

    En este video cubrimos el Teorema 14 de Los Elementos de Euclides. Aquí demostramos que si dos segmentos de recta forman con una recta y en un punto de ella, ángulos adyacentes iguales a dos rectos, y no están del mismo lado de dicha recta, entonces los segmentos forman parte de una misma recta.

  • Video

    Los Elementos de Euclides: Teorema 23 - [Detalles]

    En este video cubrimos el Teorema 23 de Los Elementos de Euclides. Aquí se realiza la construcción sobre una recta dada y en un punto de ella, de un ángulo rectilíneo igual a un ángulo dado.

  • Video

    Los Elementos de Euclides: Teorema 31 - [Detalles]

    En este video cubrimos el Teorema 31 de Los Elementos de Euclides. Aquí se realiza la construcción de la recta paralela a una recta dada, por un punto dado.

  • Video

    Ejercicio Función con máximo global - [Detalles]

    Si una función $f(x)$ es siempre positiva y tiende a $0$ cuando $x$ se acerca al infinito o al negativo infinito, ¿logra esta función alcanzar su valor máximo en algún punto?

  • Capítulo del libro

    Geometría elemental - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.

  • Cuestionario

    Cuestionario de geometría elemental - [Detalles]

    Este es un cuestionario para repasar el Módulo 7 del texto "Cimientos Matemáticos" donde se abarcan temas como: la definición de punto, segmento, línea recta, circunferencia, ángulo, tipos de ángulos, tipos de rectas, etc.

  • Cuestionario

    Cuestionario de ecuaciones de la línea recta - [Detalles]

    Este es un cuestionario para repasar el Módulo 11 del texto "Cimientos Matemáticos" donde se abarcan temas como: lugares geométricos y sus ecuaciones, punto-pendiente de una recta, forma general de la ecuación de la línea recta, etc.

  • Práctica

    Mundo de laberinto - [Detalles]

    Como introducción a los problemas de búsqueda, se define el problema de recorrer un laberinto para llegar de un punto a otro.

  • Blog

    El teorema de clasificación de transformaciones ortogonales - [Detalles]

    En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

  • Video

    Rectas Tangentes - [Detalles]

    En este video se platica sobre el problema de determinar la recta tangente a una curva en un punto específico.

  • Video

    En un espacio arco conexo no importa el punto base - [Detalles]

    Probamos que si X es un espacio topológico arco conexo entonces pi_n(X,a) es isomorfo a pi_n(X,b) para cualesquiera a y b en X

  • Blog

    Problemas de producto de matrices y matrices invertibles - [Detalles]

    En esta entrada de blog hablamos resolvemos problermas de cómo multiplicar matrices. También hacemos algunos problemas sobre matrices invertibles para aprovechar la teoría desarrollada anteriormente.

  • Blog

    Forma matricial de una transformación lineal - [Detalles]

    Definimos la forma matricial de transformaciones lineales. Vemos que la composición de transformaciones corresponde al producto de sus formas matriciales.

  • Video

    Funciones iguales - [Detalles]

    Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas

  • Video

    El anillo de los números enteros - [Detalles]

    Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior. 

  • Video

    Definición de anillo - [Detalles]

    Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero. 

  • Video

    Factorización en números primos - [Detalles]

    Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética. 

  • Video

    El teorema fundamental de la aritmética - [Detalles]

    Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única! 

  • Video

    Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]

    Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias. 

  • Video

    Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]

    Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.

  • Video

    Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]

    Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]

    Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.

  • Blog

    Propiedades algebraicas de los números reales (Parte 1) - [Detalles]

    Estudio de las propiedades básicas de los números reales con sus operaciones: suma y producto.

  • Blog

    Teorema de Thales - [Detalles]

    Demostramos el teorema de Thales, el teorema de la bisectriz y sus recíprocos. También construimos el producto y cociente de dos segmentos.

  • Blog

    Propiedades básicas de la integral definida - [Detalles]

    Propiedades básicas de la integral definida, aditividad, suma, producto por una constante

  • Blog

    Integrales trigonométricas: Producto de potencias de senos y cosenos - [Detalles]

    Enseñanza a la integración donde el integrando contiene productos de funciones senos y cosenos

  • Blog

    Integrales trigonométricas: Producto de potencias de tan(x) y sec(x) - [Detalles]

    Enseñanza a la integración donde el integrando contiene productos de funciones tan(x) y sec(x).

  • Blog

    Principios de conteo 1 - Suma y Producto - [Detalles]

    Desarrollamos los principios de conteo más básicos para calcular el número total de formas distintas de hacer cierta tarea.

  • Cuestionario

    Mini-cuestionario: Introducción al curso, vectores y matrices - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las operaciones de suma vectorial y producto escalar.

  • Cuestionario

    Mini-cuestionario: Multiplicación de matrices y composición de sus transformaciones - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo hacer el producto de matrices y cómo esto se relaciona con la composición de sus transformaciones asociadas.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Diapositivas

    Diapositivas sobre matrices y operaciones - [Detalles]

    Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Diapositivas

    Diapositivas sobre espacios vectoriales - [Detalles]

    Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.

  • Video

    Productos libres - [Detalles]

    En este video continuamos nuestro pequeño detour por la teoría de grupos. Definiremos el producto libre de grupos y su propiedad universal.

  • Video

    Complejos CW - productos - [Detalles]

    En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.

  • Proyecto

    Proyecto: Mecánica cuántica desde álgebra lineal - [Detalles]

    En este proyecto de aplicación extendemos lo aprendido sobre producto interior hacia espacios vectoriales sobre los complejos. Hacemos esto para hablar de la notación bra-ket en física y para introducir ideas básicas de mecánica cuántica.

  • Cuestionario

    Mini-cuestionario: Ángulos, norma, distancia y desigualdad de Minkowski - [Detalles]

    Mini-cuestionario para verificar el entendimiento de varias nociones geométricas que salen a partir del producto interior.

  • Blog

    Problemas de suma y producto de naturales - [Detalles]

    Descripción pendiente

  • Blog

    Problemas de construcción, suma y producto de enteros - [Detalles]

    Descripción pendiente

  • Blog

    Construcción de números complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Inmersión de los reales en los complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Problemas de operaciones en complejos - [Detalles]

    Resolvemos problemas de operaciones básicas de complejos como la suma y producto junto con sus operaciones inversas.

  • Video

    Factorización en transposiciones - [Detalles]

    Definimos lo que es una transposición y demostramos que toda permutación se puede factorizar como producto de transposiciones.

  • Video

    Multiplicatividad del signo. Parte 2 - [Detalles]

    Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.

  • Blog

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.

  • Blog

    Nota 16. Los números naturales. - [Detalles]

    En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.

  • Blog

    Álgebra Moderna I: Palabras. - [Detalles]

    Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.

  • Blog

    Álgebra Moderna I: Permutaciones disjuntas - [Detalles]

    A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Video

    Ejercicio Derivación - [Detalles]

    En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.

  • Blog

    Matrices similares y su polinomio característico - [Detalles]

    En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).

  • Blog

    Espacios euclideanos y espacios hermitianos - [Detalles]

    En esta entrada haremos un breve recordatorio de los conceptos de producto interior y de espacios euclideanos. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

  • Blog

    Matrices positivas y congruencia de matrices - [Detalles]

    En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).

  • Blog

    Ortogonalidad en espacios euclideanos - [Detalles]

    En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.

  • Blog

    Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]

    En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

  • Blog

    Suma y producto de naturales y sus propiedades - [Detalles]

    En esta entrada vemos la definición de suma y multiplicación en términos de los números naturales así como algunas propiedades.

  • Video

    Grupos de homotopía de un producto - [Detalles]

    Vemos una fórmula para pi_n(X x Y)