Teorema de la derivada y la multiplicidad. Demostración - [Detalles]
Damos la demostración del teorema de la derivada y la multiplicidad, el cual vimos en el video anterior. La demostración es relativamente sencilla teniendo en cuenta que sí "a" es de multiplicidad "m" en un polinomio entonces el polinomio es de la forma "(x-a)^m*Q(x)", por lo que podemos obtener su derivada de forma explícita, y demostrar que "a" es raíz de multiplicidad "m-1".
Derivada de la función inversa - [Detalles]
Demostración y ejemplos de la derivada de la inversa de una función.
Localización de máximos y mínimos. Monotonía de funciones. - [Detalles]
Estudio de los conceptos máximo y mínimo de una función, la derivada y la monotonía de una función y el Criterio de la primera derivada.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Cuestionario de funciones trascendentes - [Detalles]
Este es un cuestionario para repasar el Módulo 18 del texto "Cimientos Matemáticos" donde se abarcan temas como: función seno, coseno y sus respectivas propiedades, función exponencial, función logaritmica, etc.
Diapositivas sobre composición de funciones y función inversa - [Detalles]
Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Intervalos de crecimiento - [Detalles]
En este video se muestra la relación entre el signo de la derivada y la tendencia creciente/decreciente de una función. Al final se establece el criterio de la primera derivada para máximos y mínimos locales.
Nota 10. Función inversa - [Detalles]
En esta nota explicamos el concepto de función inversa, partiendo de los conceptos de función inversa derecha y función inversa izquierda, vemos varios ejemplos relacionados y demostramos que si una función tiene tanto inversa derecha como izquierda entonces esta es la función inversa y además es única.
Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]
Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo.
Definición e interpretación geométrica de la derivada.
Derivada de las funciones exponencial y logarítmica - [Detalles]
Demostración de la derivada de las funciones exponencial y logarímica.
Derivada de las funciones trigonométricas - [Detalles]
Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.
Funciones trigonométricas (Parte 1) - [Detalles]
Estudio de algunas identidades trigonométricas más utilizadas. Un primer acercamiento a las funciones seno y coseno, así como la definición de función periódica.
Explicamos y definimos la inversa de una función, lo cual, dada una función "f(x)", definimos una nueva función la cual llamamos su función inversa, y damos las propiedades que debe cumplir.
16. Diferenciabilidad en el sentido complejo - [Detalles]
Introducimos por fin el concepto de diferenciabilidad en el sentido complejo, veremos la definición de derivada de una función compleja y estudiaremos cuando una función es derivable y cuando no y las propiedades de estas.
Razones trigonométricas - [Detalles]
Hablamos sobre las razones trigonométricas: coseno, seno, tangente, secante, cosecante y cotangente, las cuales están relacionadas con un triángulo rectángulo, escritas en termino de sus catetos e hipotenusa.
Funciones trigonométricas - [Detalles]
Explicamos las funciones trigonométricas: Seno, Coseno y Tangente. Vemos una representación gráfica sobre el circulo unitario de dichas funciones.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
Funciones circulares de suma y diferencias - [Detalles]
En este capitulo de Cimientos Matemáticos daremos continuación al tema anterior, mostrando ahora mas propiedades de las funciones circulares, así como realizar el cálculo de la suma y resta de seno, coseno y tangente. Además, abordaremos las funciones circulares del doble de un número y la transformación de productos a sumas y viceversa de estas funciones trigonométricas.
Cuestionario de funciones circulares de suma y diferencia - [Detalles]
Este es un cuestionario para repasar el Módulo 10 del texto "Cimientos Matemáticos" donde se abarcan temas como: transformación de productos a suma y viceversa, seno, coseno y tangente de sumas y diferencias, etc.
Definición de función - [Detalles]
Definimos que es una función, vista como una relación entre conjuntos. Cabe mencionar que una función es una relación entre conjuntos, pero no toda relación entre conjuntos es una función, damos ejemplos que esto último
Unicidad de la función inversa - [Detalles]
Continuamos con la explicación de la función inversa, y demostramos que la función inversa de una función "f(x)" es única.
Ejercicio Representación de funciones con función par e impar - [Detalles]
En este video explicamos cómo descomponer cualquier función en dos compañeras esenciales: una función par y una función impar.
Ejercicio Teorema de la Función Inversa - [Detalles]
En este video, aplicaremos el teorema de la función Inversa para demostrar que, si una función $f$ posee una primitiva, entonces su función inversa también la tiene.
Funciones, Funciones en JAVA, Declarar, definir y usar una función - [Detalles]
Declarar, definir y usar una función - Cómo se declara y define una función universalmente- Ejemplo de cómo usar una función así como convenciones y parámetros formales y actuales.
Localización de máximos y mínimos. Regiones de convexidad y puntos de inflexión. - [Detalles]
Revisión del Criterio de la segunda derivada para encontrar máximos y mínimos de una función. Estudio de los conceptos convexidad, concavidad y puntos de inflexión.
Usando los conceptos de función inyectiva y suprayectiva, definimos cuando una función es biyectiva, hablamos de algunos ejemplos para ilustrar funciones biyectivas y demostramos que la función identidad es biyectiva.
Equivalencia entre funciones biyectivas e invertibles - [Detalles]
Definimos la inversa de una función, demostramos principalmente que: Una función tiene inversa si y sólo si, es biyectiva. Además de esto demostramos otro par de Teoremas relacionados a la inversa de una función.
Funciones inyectivas, sobreyectivas y biyectivas. Función inversa. - [Detalles]
Estudio de los conceptos de función inyectiva, sobreyectiva, biyectiva y de función inversa así cómo de resultados relacionados.
Aplicaciones en economía - [Detalles]
Estudio de aplicaciones en economía y de conceptos como: función de costo, función de ingreso, función de utilidad, costo marginal, ingreso marginal y utilidad marginal.
Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]
Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.
Diapositivas sobre funciones invertibles y biyectivas - [Detalles]
En este tema se demuestra una de las propiedades más importantes de todo el tema de funciones que es que una función es inversa de otra si la composición por ambos lados da la función identidad y segundo que si está función es biyectiva su inversa cumple que la composición resulta la identidad.
33. Integrales de funciones híbridas - [Detalles]
Ahora en esta entrada, ya armados con el concepto de función híbrida, veremos la definición de la integral de una función híbrida, con esto luego podremos pasar a la integral de una función compleja.
Nota 11. Funciones inyectivas, suprayectivas y biyectivas. - [Detalles]
En esta nota introducimos los conceptos de funcón inyectiva, función suprayectiva y función biyectiva, así como varios ejemplos de estas. También demostramos que es equivalente que una función sea biyectiva a que sea invertible.
Funciones inyectivas - [Detalles]
En esta sección abordaremos el concepto de función inyectiva, notaremos que la función inyectiva será aquella que mande elementos distintos a elementos distintos bajo una función. Veremos varios ejemplos así como equivalencias a ser inyectiva, por ultimo veremos que pasa con la composición de funciones y la inyectividad.
En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.
Ejercicio Función discontinua en todas partes - [Detalles]
Embárcate en un viaje por los misterios matemáticos mientras exploramos la famosa función de Dirichlet. En este video, nos sumergiremos en la estructura y propiedades de esta curiosa función, demostrando paso a paso cómo es discontinua en todos los puntos del dominio real.
Ejercicio Función con máximo global - [Detalles]
Si una función $f(x)$ es siempre positiva y tiende a $0$ cuando $x$ se acerca al infinito o al negativo infinito, ¿logra esta función alcanzar su valor máximo en algún punto?
Teorema de la función implícita y demostración - [Detalles]
Damos el teorema de la función implícita para campos vectoriales (varias variables). Lo demostramos con el teorema de la función inversa.
Funciones de orden superior, Pasar una función como parámetro - [Detalles]
Pasar una función como parámetro - Implementar una interfaz funcional para pasar la función a parámetro. Introducción a las clases anónimas internas y a las LAMBDA
Tangentes a curvas paramétricas - [Detalles]
Estudio de la derivada a las curvas parametricas
Derivabilidad y continuidad - [Detalles]
Relación entre derivabilidad y continuidad y revisión de las primeras reglas de derivación (derivada de las operaciones con funciones).
Regla de la cadena - [Detalles]
Demostración de la derivada de composición de funciones y la regla de la cadena.
Reglas de derivación - [Detalles]
Resumen de las reglas de derivación y demostración de la derivada de funciones frecuentes.
Derivadas implícitas y de orden superior - [Detalles]
Revisión de los conceptos de derivada implícita y de orden superior.
Regla de L’’Hôpital - [Detalles]
Estudio de los límites a través de la derivada: regla de L’’Hôpital.
Rectas tangente y normal a una curva - [Detalles]
Revisión de ejercicios donde haciendo uso de la derivada obtenemos la recta normal y tangente a una curva.
Revisión de problemas de razón de cambio haciendo uso de la derivada.
Problemas de continuidad y derivadas de polinomios - [Detalles]
Resolvemos ejercicios de continuidad y de derivada en los polinomios así como de raíces reales.
El teorema de derivadas y multiplicidad - [Detalles]
Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
Composición de funciones - [Detalles]
Definimos la composición de dos funciones, la cual es una nueva función, vemos un ejemplo con una función numérica
Usamos el conjunto Imagen, de una función, para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de suprayectividad.
Establecemos la regla para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de Inyectividad, damos una característica que todas las gráficas de una función inyectiva deben cumplir.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Concepto de función - [Detalles]
Estudio del concepto de función y algunos ejemplos.
Definición intuitiva de límite de una función - [Detalles]
Presentación de la idea intuitiva del límite de una función
Definición formal de límite de una función - [Detalles]
Definición formal del límite de una función
Límite de una función a través de sucesiones - [Detalles]
Estudio del límite de una función a través de sucesiones
Continuidad de la función inversa - [Detalles]
Revisión de la relación entre una función, su inversa y la continuidad
Funciones de distribución de probabilidad - [Detalles]
Definimos la función de distribución probabilística de una variable aleatoria, también demostramos que la función de distribución probabilística es efectivamente una distribución de probabilidad así como mostramos ejemplos de estas funciones.
Variables aleatorias discretas - [Detalles]
Presentamos el primer tipo de variables aleatorias que son las discretas tomando un soporte finito o infinito numerable, también se muestra la relación entre la función de masa de probabilidad y la función de distribución.
Variables aleatorias continuas - [Detalles]
Presentamos el segundo tipo de variables aleatorias que son las continuas tomando un soporte infinito no numerable así como mostramos la relación de la función de masa con la función de distribución relacionado con el teorema fundamental del cálculo.
Diapositivas sobre imagen y preimagen de una función - [Detalles]
Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.
Gráfica de una función - [Detalles]
Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales.
Graficar funciones en coordenadas polares - [Detalles]
Vemos como graficar una función en el plano polar. Para mostrar un ejemplo tomamos una función del ángulo f(theta), y damos su grafica en el plano polar.
Graficar funciones en coordenadas polares: otro método - [Detalles]
Damos un método alternativo para graficar una función en el plano polar. A partir de la gráfica de una función en coordenadas cartesianas, se puede usar como guía para dar la gráfica en coordenadas polares.
Homología singular - El grado de una función entre esferas - [Detalles]
En este video definimos el grado de una función entre esferas y estudiamos sus propiedades básicas.
43. Clasificación de ceros y singularidades de una función analítica - [Detalles]
En esta entrada vamos a definir lo que es una singularidad aislada de una función analítica y caracterizar los diferentes tipos que hay.
Nota 8. Imagen directa e inversa de una función. - [Detalles]
En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.
Nota 9. Composición de funciones. - [Detalles]
En esta nota vemos una operación entre funciones llamada composición, así como la prueba de que es una operación asociativa; también vemos varios ejemplos de composiciones y recursos interactivos que nos ayudan a entender mejor el tema, por ultimo introducimos una función muy importante: la función identidad.
43. Clasificación de ceros y singularidades de una función analítica - [Detalles]
Realizaremos unos ejercicios para aterrizar las definiciones de singularidad de una función, si es removible, polo o esencial con funciones muy bien conocidas.
Ejercicio Límite de función acotada y otra con valor $0$ - [Detalles]
Si $g(x)$ tiende a $0$ y $h(x)$ es una función acotada, ¿qué ocurre con el producto $g(x)h(x)$? En este video, exploramos y demostramos por qué este producto también tiende a $0$.
Cuestionario de funciones - [Detalles]
Este es un cuestionario para repasar el Módulo 16 del texto "Cimientos Matemáticos" donde se abarcan temas como: valor de una función, grafica de una función y su relación, tabulación, etc.
Cuestionario de funciones algebraicas - [Detalles]
Este es un cuestionario para repasar el Módulo 17 del texto "Cimientos Matemáticos" donde se abarcan temas como: función lineal, función cuadrática, sus propiedades, funciones polinomiales, etc.
Introducción al teorema de la función inversa - [Detalles]
Enunciamos el teorema de la función inversa y lo explicamos. Probamos resultados auxiliares para su demostración.
Demostración del teorema de la función inversa - [Detalles]
Demostramos el teorema de la función inversa para varias variables (campos vectoriales). Damos un ejemplo de su aplicación.
Ejemplos e intuición del teorema de la función implícita - [Detalles]
Damos ejemplos del teorema de la función implícita de varias variables para entenderlo mejor. Hablamos de la intuición detrás.
Funciones, Parte 1 - [Detalles]
En este video se discute el concepto intuitivo de función, junto con otros conceptos asociados como dominio, codominio, regla de correspondencia y composición. Después se introduce la definición formal de función y se compara con la definición intuitiva. Finalmente se discuten algunos ejemplos.
Funciones inyectivas, crecientes y decrecientes - [Detalles]
En este video definimos el concepto de inyectividad, que es un criterio por el que una función puede tener una función inversa, y se discute la relación entre inyectividad y crecimiento-decrecimiento de funciones.
Álgebra de límites - [Detalles]
En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.
Teorema de la Función Inversa - [Detalles]
En este video se hace una demostración del Teorema de la Función Inversa.
Ejemplos: determinar el dominio de una función - [Detalles]
En este video hacemos un par de ejemplos en los que se determina el dominio de una función, es decir, el dominio máximo de números reales, que es posible para una regla de correspondencia dada.
Funciones de orden superior, Regresar una función como resultado - [Detalles]
Regresar una función como resultado - Aplicar métodos para obtener funciones como resultado. Anidar funciones.
Funciones numéricas - [Detalles]
Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.
Imagen y preimagen - [Detalles]
Damos la definición de la imagen y la preimagen de un elemento bajo una función cualquiera y damos algunos ejemplos sencillos.
Funciones - inclusión y restricción - [Detalles]
Vemos la definición de las funciones inclusión y restricción de una función, damos algunos ejemplos con funciones numéricas con sus graficas.
Los teoremas de Fermat y de Euler - [Detalles]
Vemos el pequeño teorema de Fermat y el Teorema de Euler. Primero demostramos el teorema de Euler, el cual nos da una relación de la función de Euler con una congruencia modulo "m", y usando este resultado demostramos el pequeño teorema de Fermat.
Método de las isoclinas - [Detalles]
Presentamos el método de las isoclinas para encontrar las soluciones de la ecuación dy/dt=f(t,y) mediante las curvas de nivel de la función f.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.
Transformada de Laplace y sus propiedades - [Detalles]
Definimos la transformada de Laplace de una función y demostramos algunas propiedades que nos servirán para resolver problemas de condición inicial.
Funciones pares e impares. - [Detalles]
Estudio de los conceptos de función par e impar y de resultados relacionados con las operaciones de este tipo de funciones.
Funciones crecientes y decrecientes. Funciones acotadas. - [Detalles]
Estudio de los conceptos de función creciente, decreciente y acotada, así cómo la revisión de ejemplos.
Teoremas sobre el límite de funciones - [Detalles]
Revisión de teoremas del límite de una función
Límites laterales - [Detalles]
Definición y ejemplos de límites laterales de una función
Ecuaciones lineales no homogéneas de segundo orden – Método de coeficientes indeterminados - [Detalles]
Al estudiar el caso no homogeneo de las ecuaciones diferenciales de segundo orden se presenta un primer método que propone soluciones en forma de series similares a la función g
Longitud de una curva - [Detalles]
Enseñanza sobre el cálculo de la longitud de arco de una función en un intervalo.
Serie de Taylor y de Maclaurin - [Detalles]
Estudio de las series de Taylor y de Maclaurin como aproximación a una función.
Problemas de optimización - [Detalles]
Solución de algunos problemas de optimización haciendo uso del los criterios para hallar máximos y mínimos de una función.
Polinomios de Taylor (Parte 1) - [Detalles]
Estudio de los polinomios de Taylor: su definición formal y un teorema sobre ser una buena aproximación a una función dada.
Estudio del concepto de diferencial de una función y algunas aplicaciones.
Sistemas gradiente - [Detalles]
Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.
Transformaciones de variables aleatorias - [Detalles]
Establecemos las bases para hacer transformaciones de variables aleatorias así como las hipótesis que deben cumplir como una composición de funciones, además demostramos que las funciones continuas son Borel-medibles y la composición de una función Borel-medible con una variable aleatoria es una variable aleatoria.
Transformaciones de variables aleatorias continuas - [Detalles]
Mostramos dos métodos para realizar transformaciones de variables aleatorias. El primero es manipular directamente la función de distribución y la para el segundo método demostramos el teorema de cambio de variable, ambos métodos acompañados de ejemplos.
Diapositivas sobre funciones - [Detalles]
Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.
Ejemplo de funciones inyectivas, suprayectivas y biyectivas - [Detalles]
Se deja un ejemplo para demostrar que una función es inyectiva, suprayectiva y biyectiva; y otro en donde no lo es para mayor comprensión del tema para el alumno.
Ejemplo de la unión de funciones - [Detalles]
Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.
Ejemplos de funciones invertibles - [Detalles]
Se muestran 2 ejemplos en donde se expresan 2 funciones y buscamos su función inversa en caso de que esta exista.
Cuestionario de gráfica de funciones - [Detalles]
Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Actividad Geogebra funciones en el plano polar - [Detalles]
En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
Homomorfismos inducidos - [Detalles]
En este video demostramos que cualquier función entre espacios topológicos induce una homomorfismo entre grupos fundamentales (con puntos bases adecuados).
Un criterio de levantamiento de funciones - [Detalles]
En este video demostramos un criterio que nos dice exactamente cuándo existe un levantamiento de una función con dominio arbitrario.
Unicidad del levantamiento de funciones - [Detalles]
En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).
Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]
En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.
Complejos CW - funciones características y subcomplejos - [Detalles]
En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.
Exponencial, logaritmo y trigonometría en los complejos - [Detalles]
Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.
Grupos cíclicos - parte 2 - [Detalles]
Se dan más propiedades de los grupos cíclicos y su relación con la función phi de Euler, se da una caracterización de los grupos cíclicos finitos.
Se define el concepto de grupo cociente, se demuestra que es en efecto un grupo y se muestra que la función cociente es un homomorfismo con kernel el subgrupo en cuestión.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Chequemos un poquito de la definición de función y de sus partes real e imaginaria.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.
13. Funciones multivaluadas - [Detalles]
Ya que comenzamos nuestro estudio de las funciones de variable compleja, debemos introducir unas funciones llamadas "funciones multivaluadas" que no necesariamente cumplen con la definición usual de función, pero son de vital importancia cuando se habla de complejos.
14. Límites en $\mathbb{C}$ - [Detalles]
En esta entrada conoceremos el límite de una función de variable compleja, cuya definición no es lejana a la de funciones de variable real, para luego poder abrirnos paso hacia la continuidad.
21. Logaritmo complejo y potencias complejas - [Detalles]
Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".
26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]
Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.
30. Series de potencias y funciones - [Detalles]
Una vez vistas las series de potencias, metámonos a ver como se relacionan con las funciones complejas y que puede pasar si una función está descrita por una serie de potencias.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
44. Teorema del residuo y aplicaciones - [Detalles]
En esta última entrada, definiremos el residuo de una función analítica y veremos el teorema del residuo, mediante el cual nos será posible evaluar integrales reales, tanto impropias como integrales definidas, de una manera sorprendentemente sencilla.
Nota 7. Relaciones y funciones - [Detalles]
En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.
Nota 16. Los números naturales. - [Detalles]
En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.
Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]
En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.
Álgebra Moderna I: Paridad de una permutación - [Detalles]
A partir de la entrada anterior, se puede definir el signo de una permutación. Lo cual guía a introducir la función signo y probar que es multiplicativa. Posteriormente se descubre al Grupo alternante.
Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]
En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.
Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. En esta entrada abordaremos la definición de función, algunas de sus propiedades y ejemplos.
Funciones (parte II) - [Detalles]
En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.
Funciones suprayectivas y biyectivas - [Detalles]
En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.
Funciones inversas - [Detalles]
En esta sección hablaremos acerca de las funciones inversas, para ello introduciremos conceptos como el de inversa derecha y el de inversa izquierda, veremos como se relacionan con los conceptos anteriores de función inyectiva, sobreyectiva y biyectiva.
Ejercicio Funciones invertibles por un lado - [Detalles]
En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.
Ejercicio Discontinuidad y continuidad con valor absoluto - [Detalles]
En este video estudiamos una función \(f\) que es discontinua en todas partes, pero su valor absoluto resulta ser continuo en todo el dominio real.
En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.
Definición formal de gráfica conexa - [Detalles]
Definimos formalmente lo que es una gráfica conexa y sus componentes. Probamos dos resultados que confirman dos intuiciones claras: (1) que si en una gráfica de orden n todos los vértices tienen grado "grande" entonces la gráfica es conexa; (2) que si una gráfica de orden n tiene "muchas" aristas entonces la gráfica es conexa. En ambos casos se determina de manera exacta el significado de "muchas", en función de n.
Agente dirigido mediante tabla - [Detalles]
Se presentan los agentes dirigidos mediante tablas, es decir, agentes que ejecutan su función a partir de una tabla de percepciones y acciones.
Mundo del laberinto con tráfico - [Detalles]
Se modifica el mundo del laberinto para introducir los algoritmos de búsqueda informada y problemas de búsqueda con una función de costo.
Introducción a funciones - [Detalles]
En esta entrada revisamos el concepto de función matemática, así como la igualdad entre funciones.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.
Funciones, Parte 2 - [Detalles]
En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.
Funciones, Parte 4 - [Detalles]
En este video sólo se muestra un ejemplo de problemas típicos de los libros de texto, consistente en "encontrar el dominio de una función".
Limites laterales - [Detalles]
En este video se explica la idea de los límites laterales, se hacen algunos ejemplos y se demuestra que cuando los límites laterales coinciden, el límite de la función existe y es igual al valor común de los límites laterales.
Introducción a las sucesiones de números reales. - [Detalles]
En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.
En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.
Derivación y continuidad - [Detalles]
En este video se demuestra que toda función derivable en continua.
La pila de ejecución, Registros de llamadas a métodos - [Detalles]
Registros de llamadas a métodos - Dónde se guarda la información cada que se manda a llamar una función
La pila de ejecución, Alcance de variables en bloques - [Detalles]
Alcance de variables en bloques - Variables locales (bloque y función)
Interfaz gráfica de usuario (IGU), Diseño de la lógica de una calculadora simple - - [Detalles]
Diseño de la lógica de una calculadora simple - Parte 1/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Interfaz gráfica de usuario (IGU), Creación de una GUI con Netbeans - [Detalles]
Creación de una GUI con Netbeans - Parte 2/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Interfaz gráfica de usuario (IGU), Implementación de las transiciones en el código - [Detalles]
Implementación de las transiciones en el código - Parte 3/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Enchufes, Introducción a los enchufes - [Detalles]
Introducción a los enchufes - Definiciones, conceptos y función de los enchufes. Terminología importante así como los protocolos para enviar información.