Resultados de búsqueda: producto cartesiano

133 resultados encontrados

  • Video

    Producto cartesiano - [Detalles]

    Definimos el producto cartesiano de dos conjuntos, mediante ejemplos vemos algunas propiedades del producto cartesiano. También hablamos de conjuntos que resultan del producto cartesiano de dos conjuntos, como el plano cartesiano.

  • Diapositivas

    Diapositivas sobre producto cartesiano - [Detalles]

    Definimos el producto cartesiano y lo que es una pareja ordenada que son elementos de este producto, se muestran ejemplos de este tipo de producto, así mismo se hacen unas demostraciones del producto cartesiano.

  • Blog

    Propiedades del producto cartesiano (parte II) - [Detalles]

    En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

  • Video

    El espacio cartesiano - [Detalles]

    Describimos el espacio cartesiano como "espacio" de 3 dimensiones: largo ancho y alto. Explicamos sus similitudes al plano cartesiano y como ubicar un punto en el espacio cartesiano. 

  • Cuestionario

    Cuestionario sobre producto cruz - [Detalles]

    Ponemos en práctica el tema del producto cruz en el espacio cartesiano en la cual aplicamos desde el cálculo de este producto, la dirección del producto cruz y propiedades de este, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Blog

    Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]

    En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.

  • Diapositivas

    Diapositivas sobre producto triple de vectores - [Detalles]

    Nos volvemos a ubicar en R^3, se crea un nuevo producto que es el cálculo del prodcuto cruz y luego aplcarle un producto punto dando un nuevo y diferente resultado llamado producto producto triple de vectores, mostramos sus propiedades y algunos ejemplos de su cáclulo.

  • Video

    Producto triple - [Detalles]

    Definimos el producto triple, el cual es una operación entre tres vectores de R^3 (a diferencia del producto punto o cruz, que es entre dos vectores). Damos la definición en término del producto punto y producto cruz. También mostramos como calcularlo mediante un determinante y sus propiedades: Cíclico, Anticonmutativo, Distribuye la suma, Saca escalares y que es el volumen del paralelepípedo formado por sus factores. 

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Pares ordenados y producto cartesiano - [Detalles]

    En esta nueva entrada definiremos a un par ordenado y probaremos cuando dos parejas ordenadas son iguales. Así mismo dados dos conjuntos definiremos su producto cartesiano y daremos algunos ejemplos sobre este concepto.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Blog

    Parejas ordenadas y producto cartesiano de conjuntos - [Detalles]

    En esta entrada introducimos el concepto de parejas ordenadas y del producto cartesiano entre conjuntos.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada analizamos distintas propiedades del producto cartesiano. En particular, cómo se comporta con la unión y la intersección de conjuntos.

  • Cuestionario

    Cuestionario sobre producto triple de vectores - [Detalles]

    Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.

  • Diapositivas

    Diapositivas de subconjuntos del plano y espacio cartesiano - [Detalles]

    En estas diapositivas sirve de retroalimentación respecto a los temas 2 temas anteriores, son un repaso de esteos subconjuntos generados por una condición dentro del plano cartesiano o dentor del espacio cartesiano.

  • Video

    Lugares en el espacio cartesiano - [Detalles]

    Recordamos la definición de un lugar geométrico, la cual también aplica para el espacio cartesiano. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas, pero esta vez en el espacio cartesiano, es decir, con 3 coordenadas. 

  • Video

    Simetría en el plano cartesiano - [Detalles]

    Extendemos la noción de simetría central y axial. Ahora definimos la simetría central y axial para un subconjunto F de puntos en el plano cartesiano, es decir, describimos lo que significa que un subconjunto del plano cartesiano tenga simetría central o axial. 

  • Video

    Producto cruz ( producto vectorial) - [Detalles]

    Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores. 

  • Video

    Ejercicios Producto Triple - [Detalles]

    Realizamos varios ejercicios del producto triple, vemos en que caso el producto triple es cero, algunos ejercicios para obtener el volumen del paralelepípedo formado por los factores, y que significa que el producto triple sea cero, lo cual está relacionado a que los factores sean linealmente dependientes o independientes. 

  • Video

    Producto directo de grupos - parte 3 - [Detalles]

    Se demuestra que el producto de subgrupos normales es subgrupo normal del producto y que el cociente es isomorfo a un producto de cocientes.

  • Blog

    Producto en los naturales - [Detalles]

    Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 2 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 4, 5 y 6 del curso. Los conceptos que requieres saber son: Secuencia de grados. Algunas familias especiales: gráfica r-regular; gráfica de lineas; gráfica bipartita. Conceptos no totalmente formales: Operaciones: unión disjunta; suma de Zykov; producto cartesiano de G_1 □ G_2; producto directo de G_1 x G_2.

  • Blog

    Producto de matrices y composición de sus transformaciones - [Detalles]

    Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.

  • Diapositivas

    Diapositivas sobre producto punto - [Detalles]

    Dentro de Rn (el cual es un espacio vectorial) hay una operación de gran utilidad que es la del producto punto que es la suma del producto entrada por entrada de los vectores, se muestran aplicaciones de esta operación como la medición del ángulo formado entre 2 vectores y su norma, esta explicación es acompañada de ejemplos.

  • Video

    Producto punto - [Detalles]

    Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores. 

  • Video

    Ejercicios Producto Punto - [Detalles]

    Hacemos varios ejercicios para calcular el producto punto entre dos vectores. También calculamos el ángulo entre dos vectores y demostramos, usando el producto punto, que el ángulo entre un vector consigo mismo es cero. 

  • Video

    El grupo fundamental de un producto - [Detalles]

    En este video demostramos que el grupo fundamental de un producto de espacios topológicos es el producto de los grupos fundamentales de los factores, es decir, el grupo fundamental abre productos.

  • Blog

    El producto en los enteros - [Detalles]

    Definimos la operación producto y demostramos algunas propiedades básicas de esta operación en los enteros, también demostramos la propiedad distributiva para la suma y el producto, también vemos que en los enteros no tiene divisores de cero.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Diapositivas

    Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]

    Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.

  • Cuestionario

    Cuestionario de plano cartesiano y espacios geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de subconjuntos del plano y espacio cartesiano - [Detalles]

    Ponemos en práctica los temas de lugares geométricos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas de distancia entre 2 puntos - [Detalles]

    Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.

  • Cuestionario

    Cuestionario sobre el plano y espacio cartesiano - [Detalles]

    Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.

  • Video

    Coordenadas en el plano cartesiano - [Detalles]

    Describimos el plano cartesiano, el cual consta de dos rectas "reales" que se cruzan en un punto denominado origen. Explicamos que son los cuadrantes y como ubicar un punto mediante las coordenadas cartesianas. 

  • Video

    Lugares geométricos como su conjuntos del plano y del espacio cartesiano - [Detalles]

    Describimos algunos lugares geométricos como subconjuntos del plano y espacio cartesiano. Mostramos que podemos tomar la unión de dos subconjuntos del plano, es decir, la unión de dos lugares geométricos. 

  • Video

    Distancia entre dos puntos del plano cartesiano - [Detalles]

    Usamos el Teorema de Pitágoras para deducir la fórmula de la distancia entre dos puntos en el plano cartesiano. Con esta fórmula podemos conocer la distancia entre dos puntos cualesquiera en el plano,  

  • Video

    Distancia entre dos puntos en el espacio cartesiano - [Detalles]

    Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional. 

  • Video

    Funciones iguales - [Detalles]

    Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Blog

    Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz

  • Blog

    Problemas de formas cuadráticas y producto interior - [Detalles]

    Resolvemos problemas de formas cuadráticas y de producto interior en espacios vectoriales. Estudiamos el núcleo de formas bilineales y cuadráticas.

  • Video

    Propiedades de la suma y multiplicación de los polinomios - [Detalles]

    Vemos como realizar operaciones con polinomios. Definimos la suma de polinomios, el producto de polinomio por un escalar y el producto de polinomios. Damos un ejemplo para cada operación. 

  • Video

    Producto de segmentos - [Detalles]

    Demostramos geométricamente cómo determinar el producto de dos segmentos cualesquiera

  • Blog

    Suma, producto y composición de funciones - [Detalles]

    Estudio de los conceptos de suma, producto, cociente y composición de funciones.

  • Cuestionario

    Cuestionario sobre producto punto - [Detalles]

    Ponemos en práctica esta nueva operación dentro del espacio Rn, ponemos preguuntas desde lo que es posible que ocurra con el producto punto hsta ejercicios prácticos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre producto cruz - [Detalles]

    Dentro de R^3 (un espacio vectorial utilizado con mucha frecuencia) hay una operación también importante entre 2 vectores de etse espacio que es el producto cruz, mostramos lo que es esta nueva operación, sus propiedades y ñas consecuencias que ésta repercute como el área de un pararlelogramo.

  • Video

    Distancia entre dos rectas en el espacio - [Detalles]

    Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula. 

  • Cuestionario

    Mini-cuestionario: Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las nociones básicas de producto interior y de la desigualdad de Cauchy-Schwarz

  • Blog

    Definición del producto y sus propiedades básicas - [Detalles]

    Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Video

    Multiplicatividad del signo. Parte 1 - [Detalles]

    Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.

  • Video

    Productos de subconjuntos de un grupo - [Detalles]

    Se extiende la definición de producto para incluir el producto de dos subconjuntos de un grupo.

  • Video

    Producto directo de grupos - [Detalles]

    Se da la definición del producto directo de grupos y se demuestran algunas propiedades.

  • Video

    Producto directo de grupos - parte 2 - [Detalles]

    Se continúa el estudio del producto directo, se enuncia y demuestra el teorema de factorización.

  • Blog

    Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]

    En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.

  • Video

    Ejercicio Límite de función acotada y otra con valor $0$ - [Detalles]

    Si $g(x)$ tiende a $0$ y $h(x)$ es una función acotada, ¿qué ocurre con el producto $g(x)h(x)$? En este video, exploramos y demostramos por qué este producto también tiende a $0$.

  • Blog

    Dualidad y representación de Riesz en espacios euclideanos - [Detalles]

    En esta entrada veremos como se relacionan los conceptos de espacio dual y producto interior. Lo primero que haremos es ver cómo conectar la matriz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

  • Blog

    Operaciones de suma y producto escalar con vectores y matrices - [Detalles]

    Definimos las operaciones de suma y producto escalar para vectores y martices. Enunciamos algunas propiedades con ejemplos y demostraciones.

  • Blog

    Producto de matrices con vectores - [Detalles]

    Definimos el producto de matrices con vectores para pocas entradas. Vemos ejemplos y propiedades que cumple.

  • Blog

    Producto de matrices con matrices - [Detalles]

    Definimos el producto de matrices y vemos casos con pocas entradas. Enunciamos algunas propiedades con demostración y vemos ejemplos.

  • Video

    Álgebra de límites - [Detalles]

    En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.

  • Video

    Ejemplo de demostración de relación de equivalencia - [Detalles]

    Damos un ejemplo de relación de equivalencia con elementos del plano cartesiano y demostramos que es una relación de equivalencia, es decir, cumple las 3 propiedades

  • Video

    Ejemplo de clase de equivalencia y partición - [Detalles]

    Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.

  • Video

    El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]

    Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo. 

  • Cuestionario

    Cuestionario de distancia - [Detalles]

    Ponemos en práctica el tema de distancia entre 2 puntos dentro del espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de gráfica de funciones - [Detalles]

    Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Guía de estudio

    Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.

  • Evaluación

    Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]

    Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.

  • Guía de estudio

    Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]

    Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.

  • Guía de estudio

    Resolución de guía de estudio sobre el plano y el espacio cartesiano - [Detalles]

    Se muestran las respuestas correctas de la última guía de estudio.

  • Cuestionario

    Cuestionario sobre funciones en el plano polar - [Detalles]

    Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Interactivo

    Actividad Geogebra funciones en el plano polar - [Detalles]

    En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.

  • Cuestionario

    Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]

    Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Lugar geométrico en el plano cartesiano - [Detalles]

    Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas. 

  • Video

    Graficar funciones de dos variables - [Detalles]

    Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano. 

  • Video

    Ejercicio 1 dependencia o independencia lineal - [Detalles]

    Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente. 

  • Video

    Ejercicio 1 bases de espacios vectoriales - [Detalles]

    Damos la definición de una base en el plano cartesiano, y mostramos cuando dos vectores forman una base para este espacio vectorial.  

  • Video

    Semiplanos - [Detalles]

    Definimos los semiplanos, los cuales son regiones del plano cartesiano delimitados por una recta. Vemos su representación geométrica y como representarlos por desigualdad relacionada a la ecuación de la recta. 

  • Video

    Traslaciones - [Detalles]

    Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado. 

  • Video

    Rotación De Ejes Y Figuras - [Detalles]

    Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola. 

  • Cuestionario

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    Revisitaremos un poco de la parte histórica y notaremos un poco de la importancia de la simbiótica relación entre los números complejos y el plano cartesiano.

  • Blog

    Nota 25. Espacios vectoriales - [Detalles]

    Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.

  • Capítulo del libro

    Nociones de trigonometría - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.

  • Blog

    Problemas de producto de matrices y matrices invertibles - [Detalles]

    En esta entrada de blog hablamos resolvemos problermas de cómo multiplicar matrices. También hacemos algunos problemas sobre matrices invertibles para aprovechar la teoría desarrollada anteriormente.

  • Blog

    Forma matricial de una transformación lineal - [Detalles]

    Definimos la forma matricial de transformaciones lineales. Vemos que la composición de transformaciones corresponde al producto de sus formas matriciales.

  • Video

    Operaciones con matrices - [Detalles]

    Explicamos la suma de matrices y la multiplicación de una matriz por un escalar. También damos la definición de un vector y el producto punto. Explicamos de manera sencilla la multiplicación de matrices.

  • Video

    El anillo de los números enteros - [Detalles]

    Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior. 

  • Video

    Definición de anillo - [Detalles]

    Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero. 

  • Video

    Factorización en números primos - [Detalles]

    Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética. 

  • Video

    El teorema fundamental de la aritmética - [Detalles]

    Hablamos sobre el teorema fundamental de la aritmética. Primero demostramos el lema de Euclides, y haciendo uso de este demostramos el teorema fundamental de la aritmética, el cual nos dice que: Todo número entero mayor que 1 se puede factorizar como producto de primos, y estos son únicos. ¡Es decir, la factorización es única! 

  • Video

    Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]

    Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias. 

  • Video

    Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]

    Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.

  • Video

    Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]

    Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]

    Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.

  • Blog

    Propiedades algebraicas de los números reales (Parte 1) - [Detalles]

    Estudio de las propiedades básicas de los números reales con sus operaciones: suma y producto.

  • Blog

    Teorema de Thales - [Detalles]

    Demostramos el teorema de Thales, el teorema de la bisectriz y sus recíprocos. También construimos el producto y cociente de dos segmentos.

  • Blog

    Propiedades básicas de la integral definida - [Detalles]

    Propiedades básicas de la integral definida, aditividad, suma, producto por una constante

  • Blog

    Integrales trigonométricas: Producto de potencias de senos y cosenos - [Detalles]

    Enseñanza a la integración donde el integrando contiene productos de funciones senos y cosenos

  • Blog

    Integrales trigonométricas: Producto de potencias de tan(x) y sec(x) - [Detalles]

    Enseñanza a la integración donde el integrando contiene productos de funciones tan(x) y sec(x).

  • Blog

    Principios de conteo 1 - Suma y Producto - [Detalles]

    Desarrollamos los principios de conteo más básicos para calcular el número total de formas distintas de hacer cierta tarea.

  • Cuestionario

    Mini-cuestionario: Introducción al curso, vectores y matrices - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las operaciones de suma vectorial y producto escalar.

  • Cuestionario

    Mini-cuestionario: Multiplicación de matrices y composición de sus transformaciones - [Detalles]

    Mini-cuestionario para verificar el entendimiento de cómo hacer el producto de matrices y cómo esto se relaciona con la composición de sus transformaciones asociadas.

  • Diapositivas

    Diapositivas sobre matrices y operaciones - [Detalles]

    Mostramos estos arreglos llamados matrices, su notación, las diferentes operaciones que se pueden efectuar con ella como: suma, resta, multiplicación de matrices, producto por un escalar y las hipótesis que se deben cumplir para efectuar estas operaciones. Mostramos unas matrices especiales como los vectores, la matriz identidad y la matriz transpuesta junto con las propiedades de esta última.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Diapositivas

    Diapositivas sobre espacios vectoriales - [Detalles]

    Iniciamos nuevo tema que es de espacios vectoriales, damos la definición y las 10 condiciones que debe cumplir un espacio para ser llamado vectorial, asimismo mostramos las operaciones que son posibles en un espacio vectorial como la suma de vectores y el producto por escalar; mostramos un ejemplo de aplicación de vectores aplicados como fuerzas.

  • Video

    Distancia punto recta - [Detalles]

    Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta. 

  • Video

    Distancia entre un plano y un punto - [Detalles]

    Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades. 

  • Video

    Productos libres - [Detalles]

    En este video continuamos nuestro pequeño detour por la teoría de grupos. Definiremos el producto libre de grupos y su propiedad universal.

  • Video

    Complejos CW - productos - [Detalles]

    En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.

  • Proyecto

    Proyecto: Mecánica cuántica desde álgebra lineal - [Detalles]

    En este proyecto de aplicación extendemos lo aprendido sobre producto interior hacia espacios vectoriales sobre los complejos. Hacemos esto para hablar de la notación bra-ket en física y para introducir ideas básicas de mecánica cuántica.

  • Cuestionario

    Mini-cuestionario: Ángulos, norma, distancia y desigualdad de Minkowski - [Detalles]

    Mini-cuestionario para verificar el entendimiento de varias nociones geométricas que salen a partir del producto interior.

  • Blog

    Problemas de suma y producto de naturales - [Detalles]

    Descripción pendiente

  • Blog

    Problemas de construcción, suma y producto de enteros - [Detalles]

    Descripción pendiente

  • Blog

    Construcción de números complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Inmersión de los reales en los complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Problemas de operaciones en complejos - [Detalles]

    Resolvemos problemas de operaciones básicas de complejos como la suma y producto junto con sus operaciones inversas.

  • Video

    Factorización en transposiciones - [Detalles]

    Definimos lo que es una transposición y demostramos que toda permutación se puede factorizar como producto de transposiciones.

  • Video

    Multiplicatividad del signo. Parte 2 - [Detalles]

    Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.

  • Blog

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.

  • Blog

    Nota 16. Los números naturales. - [Detalles]

    En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.

  • Blog

    Álgebra Moderna I: Palabras. - [Detalles]

    Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.

  • Blog

    Álgebra Moderna I: Permutaciones disjuntas - [Detalles]

    A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Video

    Ejercicio Derivación - [Detalles]

    En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.

  • Blog

    Matrices similares y su polinomio característico - [Detalles]

    En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).

  • Blog

    Espacios euclideanos y espacios hermitianos - [Detalles]

    En esta entrada haremos un breve recordatorio de los conceptos de producto interior y de espacios euclideanos. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

  • Blog

    Matrices positivas y congruencia de matrices - [Detalles]

    En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).

  • Blog

    Ortogonalidad en espacios euclideanos - [Detalles]

    En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.

  • Blog

    Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]

    En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

  • Blog

    Suma y producto de naturales y sus propiedades - [Detalles]

    En esta entrada vemos la definición de suma y multiplicación en términos de los números naturales así como algunas propiedades.

  • Video

    Grupos de homotopía de un producto - [Detalles]

    Vemos una fórmula para pi_n(X x Y)