Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 1) - [Detalles]
Damos las primeras definiciones acerca de sistemas de ecuaciones de primer orden y mostramos dos ejemplos de problemas donde los sistemas aparecen.
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 2) - [Detalles]
Hablamos un poco del problema de condición inicial para sistemas de ecuaciones de primer orden, así como del Teorema de existencia y unicidad correspondiente, tanto en una versión general como en su versión para sistemas de ecuaciones lineales homogéneas.
Introducción al teorema de existencia y unicidad para sistemas de ecuaciones de primer orden - [Detalles]
Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden y damos los primeros detalles para la demostración de dicho teorema.
Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de existencia - [Detalles]
Demostramos la existencia de una solución al problema de condición inicial para sistemas de ecuaciones de primer orden.
Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Prueba de unicidad - [Detalles]
Demostramos la unicidad de la solución al problema de condición inicial para sistemas de ecuaciones de primer orden.
Puntos de equilibrio de sistemas de ecuaciones de primer orden - [Detalles]
Definimos los puntos de equilibrio para sistemas de ecuaciones de primer orden, y revisamos algunos ejemplos.
Estabilidad de puntos de equilibrio para sistemas de ecuaciones de primer orden - [Detalles]
Revisamos los conceptos de puntos de equilibrio estables, asintóticamente estables e inestables para sistemas de ecuaciones de primer orden.
Teorema de existencia y unicidad para sistemas de ecuaciones diferenciales de primer orden - [Detalles]
Se hace un generalización de la teoría preliminar vista en el teorema de existencia y unicidad de Picar-Lindelöf y se demuestra el teorema de existencia y unicidad para el caso general, es decir, para sistemas de ecuaciones diferenciales de primer orden tanto lineales como no lineales
Introducción a las bifurcaciones en sistemas de dos ecuaciones de primer orden - [Detalles]
Damos una breve introducción a las bifurcaciones en sistemas de dos ecuaciones de primer orden.
Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]
Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.
Sistemas de dos ecuaciones de primer orden. Campo vectorial asociado - [Detalles]
Asociamos un campo vectorial a un sistema de ecuaciones de primer orden con coeficientes constantes, y analizamos su relación con las curvas del plano fase del sistema.
Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 3) - [Detalles]
Escribimos a los sistemas en forma de matrices. Además transformamos una ecuación de orden n en un sistema de n ecuaciones diferenciales.
Método de eliminación de variables - [Detalles]
Se presenta un primer método sencillo para resolver sistemas lineales compuestos de pocas ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas
Curvas integrales y soluciones a una ecuación diferencial de primer orden - [Detalles]
Revisamos la relación existente entre las curvas integrales del campo asociado a la ecuación de primer orden dy/dt=f(t,y) y sus soluciones.
Ecuaciones lineales homogéneas de primer orden - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de primer orden.
Ecuaciones lineales homogéneas de primer orden: ejemplos - [Detalles]
Resolvemos un par de ejemplos de ecuaciones lineales homogéneas de primer orden.
Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante - [Detalles]
Resolvemos el caso general de una ecuación lineal no homogénea de primer orden, por el método de factor integrante.
Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de ecuaciones lineales no homogéneas de primer orden, por el método de factor integrante.
Teorema de existencia y unicidad para ecuaciones lineales de primer orden - [Detalles]
Demostramos el Teorema de existencia y unicidad en su versión para ecuaciones lineales de primer orden
Ecuaciones diferenciales lineales de primer orden - [Detalles]
Estudio de métodos para resolver ecuaciones diferenciales lineales de primer orden homogéneas y no homogéneas
Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad - [Detalles]
Continuación con el estudio de métodos para resolver ecuaciones diferenciales lineales de primer orden homogéneas y no homogéneas y presentación del teorema de existencia y unicidad para este tipo de ecuaciones diferenciales
Ecuaciones diferenciales NO lineales de primer orden, métodos de resolución - [Detalles]
Estudio de métodos para resolver ecuaciones diferenciales NO lineales de primer orden
Sistemas de ecuaciones diferenciales - [Detalles]
Se presenta una introducción a los sistemas de ecauciones diferenciales compuestos por varias ecuaciones diferenciales lineales de primer orden
Sistemas lineales no homogéneos – Método de variación de parámetros - [Detalles]
Se presenta una generalización del método de variación de parámetros para resolver sistemas de ecuaciones diferenciales lineales de primer orden no homogéneas con coeficientes constantes
Bifurcaciones en sistemas lineales (Ejemplos) - [Detalles]
Estudiamos algunas familias uniparamétricas de sistemas de ecuaciones de primer orden lineales.
Introducción a la programación con Java. Elementos teóricos; Cómo escribir y ejecutar el primer programa - [Detalles]
1.4 Cómo escribir y ejecutar el primer programa - Tutorial de cómo diseñar y ejecutar un primer programa en JAVA poniendo a prueba lo aprendido hasta ahora.
En este video se enuncia los axiomas de orden para el conjunto de números positivos. Se demuestra algunas consecuencias de los axiomas, se define el orden, se muestra que el orden es congruente con las operaciones y se definen los intervalos.
Sistemas de ecuaciones lineales con coeficientes constantes. Método de eliminación de variables - [Detalles]
Resolvemos el sistema lineal (homogéneo y no homogéneo) de dos ecuaciones de primer orden con coeficientes constantes en su forma general por el método de eliminación de variables.
Propiedades de la exponencial de una matriz - [Detalles]
Analizamos las principales propiedades que cumple la exponencial de una matriz cuadrada con coeficientes constantes, además de relacionarla con los problemas de condición inicial para sistemas lineales de primer orden.
El plano Traza-Determinante - [Detalles]
Toda la teoría desarrollada sobre los sistemas lineales de dos ecuaciones diferenciales de primer orden se resume en el conocido plano Traza-Determinante
Sistemas de ecuaciones lineales y sistemas homogéneos asociados - [Detalles]
Definimos sistemas de ecuaciones lineales y homogéneos. Vemos que se pueden expresar en términos matriciales. Probamos el principio de superposición.
Linealización de los puntos de equilibrio de sistemas no lineales - [Detalles]
Se presenta el proceso de linearización como método para estudiar el plano fase de sistemas no lineales alrededor de los puntos de equilibiro de dichos sistemas
Sistemas de ecuaciones lineales - [Detalles]
Hablamos de sistemas de ecuaciones lineales y qué quiere decir resolverlos. Vemos su forma matricial y una aplicación a sistemas de 2x2.
Bases numéricas, Sistemas numéricos, base b a base 10 - [Detalles]
Sistemas numéricos, base b a base 10 – Bases numéricas: conversión entre sistemas numéricos; de base b a base 10.
Método de reducción de orden - [Detalles]
Presentación de un primer método de resolución de ecuaciones diferenciales de segundo orden
Ecuaciones lineales no homogéneas de segundo orden – Método de coeficientes indeterminados - [Detalles]
Al estudiar el caso no homogeneo de las ecuaciones diferenciales de segundo orden se presenta un primer método que propone soluciones en forma de series similares a la función g
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios reales y distintos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son reales y distintos
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios complejos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son complejos
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios repetidos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son repetidos
Método de reducción de orden - [Detalles]
Dada una solución a una ecuación lineal homogénea de segundo orden, podemos encontrar una segunda solución linealmente independiente a la primera, mediante el método de reducción de orden.
Orden en los números enteros - [Detalles]
Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales.
Nota 17. El orden en los números naturales. - [Detalles]
En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.
En esta sección hablaremos acerca de ordenes totales, retomaremos el concepto de orden parcial y orden parcial estricto y añadiremos el concepto de ser comparable. Además hablaremos acerca del orden lexicográfico vertical y horizontal.
Derivadas parciales de segundo orden - [Detalles]
Definimos las derivadas parciales de segundo orden para un campo escalar, con ejemplos. Vemos cuándo conmuta el orden de derivación.
Primer Teorema de Thales - [Detalles]
Demostramos el primer teorema de Thales
Integrales impropias del primer tipo - [Detalles]
Introducción a las integrales impropias y del primer tipo.
Homología singular - grupo fundamental vs primer grupo de homología: parte 1 - [Detalles]
En este video demostramos algunos lemas preliminares que usaremos para demostrar que el abelianizado del grupo fundamental de X es isomorfo al primer grupo de homología de X, siempre que X sea arco-conexo.
Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]
En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.
El primer teorema de isomorfismo - [Detalles]
Se enuncia y demuestra el primer teorema de isomorfismo de grupos.
Ejemplos del primer teorema de isomorfismo - [Detalles]
Se muestran algunos ejemplos de aplicación del primer teorema de isomorfismo.
Los Elementos de Euclides: Teorema 24 - [Detalles]
En este video cubrimos el Teorema 24 de Los Elementos de Euclides. Este teorema prueba que si dos triángulos tienen dos lados respectivamente iguales pero el ángulo comprendido por estos lados es mayor en el primer triángulo respecto del segundo, entonces el tercer lado del primer triángulo es mayor respecto del tercer lado del segundo triángulo.
Los Elementos de Euclides: Teorema 25 - [Detalles]
En este video cubrimos el Teorema 25 de Los Elementos de Euclides. Aquí se demuestra que si dos triángulos tienen dos lados respectivamente iguales y en el primer triángulo el tercer lado es mayor que el tercer lado del segundo triángulo, entonces el ángulo comprendido por los lados iguales en el primer triángulo es mayor que el ángulo respectivo en el segundo triángulo.
Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos - [Detalles]
Se estudia el primer caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema lineal son todos reales y distintos
Ecuaciones y problemas - [Detalles]
En este capitulo de Cimientos Matemáticos, aprenderemos a resolver ecuaciones de primer grado y sistemas de ecuaciones con dos o más variables. Veremos diferentes métodos de resolución, como sustitución y suma-resta.
Cuestionario de ecuaciones y problemas - [Detalles]
Este es un cuestionario para repasar el Módulo 5 del texto "Cimientos Matemáticos" donde se abarcan temas como: problemas que dan lugar a ecuaciones, solución de ecuaciones de primer grado, sistemas de ecuaciones 2x2 y 3x3, etc.
Campo de pendientes asociado a una ecuación diferencial de primer orden - [Detalles]
Revisamos cómo asociar un campo de pendientes a una ecuación de la forma dy/dt=f(t,y(t)) mediante varios ejemplos sencillos.
Ecuaciones autónomas, soluciones de equilibrio, línea fase y esbozo de soluciones - [Detalles]
Esbozamos las soluciones a una ecuación de primer orden de la forma dy/dt=f(y), la cual denominamos ecuación autónoma, mediante el uso de sus soluciones de equilibrio y la línea fase asociada a la ecuación.
Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros - [Detalles]
Resolvemos la ecuación diferencial lineal no homogénea por el método de variación de parámetros.
Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros (Ejemplos) - [Detalles]
Resolvemos dos ecuaciones por el método de variación de parámetros, una de ellas la resolvimos por el método de factor integrante en un video anterior, esto para comprobar que los dos métodos llevan a la misma solución.
Ecuaciones no lineales de primer orden separables - [Detalles]
Comenzamos el estudio a las ecuaciones no lineales considerando el caso de las ecuaciones separables
Ecuaciones no lineales de primer orden separables (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales por el método de variables separables
Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]
Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.
Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 2) - [Detalles]
Definimos el Wronskiano de un subconjunto de soluciones a un sistema lineal homogéneo. Además definimos cuándo este subconjunto de soluciones es linealmente dependiente o independiente. Finalmente demostramos un teorema que relaciona estos dos conceptos.
Campos de pendientes y su ecuación diferencial asociada - [Detalles]
Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden
Ecuaciones diferenciales autónomas - [Detalles]
Estudio de las propiedades gráficas de las soluciones a ecuaciones diferenciales de primer orden en las que no aparece explícitamente la variable independiente, mejor conocidas como ecuaciones autónomas
Demostración del Teorema de Existencia y Unicidad de Picard-Lindelof - [Detalles]
Presentación de la demostración del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden
Las nulclinas y el plano fase - [Detalles]
Definimos las nulclinas de un sistema de ecuaciones de primer orden, y estudiamos los aspectos más importantes que nos ayudarán a esbozar el plano fase de un sistema.
Problemas de sistemas de ecuaciones y forma escalonada reducida - [Detalles]
Ejercicios resueltos de sistemas de ecuaciones lineales consistentes y equivalentes. Ejemplos de matrices en forma escalonada reducida.
Reducción gaussiana en sistemas lineales $AX=b$ - [Detalles]
Aplicamos el algoritmo de reducción gaussiana en sistemas lineales de la forma AX=b para llevarlos a un sistema más sencillo y con las mismas soluciones.
Problemas de sistemas de ecuaciones e inversas de matrices - [Detalles]
Resolvemos cuatro problemas usando el método de reducción gaussiana. Dos de ellos son de resolver sistemas lineales y dos de encontrar inversas de matrices.
Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]
Aplicamos teoría de determinantes en sistemas de ecuaciones. Calculamos el rango a partir de subdeterminantes. Vemos la regla de Cramer y ejemplos.
Sistemas de $2 imes 2$ y su geometría - [Detalles]
Se da una representación geométrica para las ecuaciones lineales y los sistemas de ecuaciones lineales de 2x2. También se explica la representación geométrica de las soluciones para un sistema de ecuaciones lineales de 2x2.
Sistemas de ecuaciones lineales con coeficientes constantes. Eliminación de variables (Ejemplos) - [Detalles]
Empleamos el método de eliminación de variables que desarrollamos en el video anterior para resolver un par de ejemplos de sistemas lineales con coeficientes constantes.
Teorema de existencia y unicidad para sistemas lineales homogéneos con coeficientes constantes - [Detalles]
Probamos el teorema de existencia y unicidad para sistemas lineales homogéneos con coeficientes constantes.
Teorema de existencia y unicidad para sistemas lineales no homogéneos con coeficientes constantes - [Detalles]
Probamos el teorema de existencia y unicidad para sistemas lineales NO homogéneos con coeficientes constantes.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios distintos (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de sistemas lineales homogéneos con coeficientes constantes cuando los valores propios de la matriz asociada son reales y distintos.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de sistemas lineales homogéneos con coeficientes constantes cuando los valores propios de la matriz asociada son complejos.
Sistemas lineales homogéneos con coeficientes constantes. Matriz no diagonalizable (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de sistemas cuya matriz asociada tiene valores propios repetidos y NO es diagonalizable.
Método de variación de parámetros para sistemas lineales no homogéneos (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de sistemas no homogéneos por el método de variación de parámetros.
Plano fase para sistemas lineales con valores propios reales distintos no nulos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios reales distintos no nulos, dependiendo del signo de los valores propios.
Plano fase para sistemas lineales con valores propios reales distintos no nulos (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas cuyos valores propios son reales distintos y no nulos.
Plano fase para sistemas lineales con valores propios complejos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios complejos, dependiendo del signo de la parte real de los valores propios.
Plano fase para sistemas lineales con valores propios complejos (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas cuyos valores propios son complejos.
Plano fase para sistemas lineales con valores propios repetidos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios repetidos, dependiendo si la matriz asociada al sistema es diagonalizable o no.
Plano fase para sistemas lineales con valores propios repetdos (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas que tienen un único valor propio.
Plano fase para sistemas lineales con cero como valor propio - [Detalles]
Analizamos el plano fase para sistemas lineales tales que tienen al menos un valor propio igual a cero.
Plano fase para sistemas lineales con cero como valor propio (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas que tienen al menos un valor propio igual a cero.
Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio - [Detalles]
Comenzamos el estudio cualitativo a los sistemas de dos ecuaciones no lineales. Linealizamos el sistema en sus puntos de equilibrio y estudiamos el comportamiento de las soluciones cerca de estos.
Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio (Ejemplos) - [Detalles]
Analizamos el plano fase de un par sistemas no lineales, después de linealizar el sistema cerca de los puntos de equilibrio.
Soluciones a sistemas de ecuaciones diferenciales - [Detalles]
Se estudian las propiedades de las soluciones a los sistemas lineales tanto homogéneos como no homogéneos
Valores y vectores propios para resolver sistemas lineales - [Detalles]
Se desarrolla la teoría preliminar hacía el método de valores y vectores propios para resolver sistemas lineales homogéneos, así mismo se hace un breve repaso sobre éstos conceptos desde una perspectiva del álgebra lineal
Teorema de existencia y unicidad para sistemas lineales - [Detalles]
Se demuestra el teorema de existencia y unicidad para los casos particulares en los que los sistemas de ecuaciones diferenciales son lineales con coeficientes constantes tanto homogéneos como no homogéneos
Sistemas autónomos, puntos de equilibrio y su estabilidad - [Detalles]
Se presentan formalmente los conceptos básicos sobre la teoría cualitativa de los sistemas de ecuaciones diferenciales
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios nulos - [Detalles]
Se concluye el estudio de la teoría cualitativa de los sistemas lineales con el caso en el que los valores propios son nulos
Las nulclinas en el estudio cualitativo de los sistemas no lineales - [Detalles]
Se define el concepto de nulclinas y se usan como herramientas para la construcción de un esbozo general del plano fase de los sistemas no lineales
Sistemas hamiltonianos - [Detalles]
Definimos y estudiamos a detalle a los sistemas hamiltonianos y sus principales propiedades.
Sistemas hamiltonianos (Ejemplos) - [Detalles]
Estudiamos un par de sistemas hamiltonianos y esbozamos sus planos fase respectivos.
Sistemas gradiente - [Detalles]
Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.
Sistemas gradiente (ejemplos) - [Detalles]
Estudiamos a detalle un par de sistemas gradiente.
Bifurcaciones en sistemas no lineales (Ejemplos) - [Detalles]
Estudiamos un par de ejemplos de bifurcaciones que ocurren en sistemas no lineales: la bifurcación de punto silla y la bifurcación de Hopf.
Mini-cuestionario: Sistemas de ecuaciones lineales - [Detalles]
Mini-cuestionario para verificar el entendimiento de las definiciones relacionadas con sistemas de ecuaciones lineales
Mini-cuestionario: Sistemas de ecuaciones lineales no homogéneos - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para resolver sistemas de ecuaciones no homogéneos
Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]
Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.
Guía de estudio sobre sistemas de ecuaciones lineales, matrices y determinantes - [Detalles]
Se deja una lista de ejercicios respecto a los temas de matrices y solución a sistemas de ecuaciones lineales. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre sistemas de ecuaciones lineales y espacios vectoriales - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a matrices (operaciones y determinantes) y para solucionar sistemas de ecuaciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Sistemas de coordenadas en el espacio. Cartesianas, coordenadas cilíndricas y coordenadas esféricas - [Detalles]
Damos una pequeña presentación de los tres principales sistemas de coordenadas tridimensionales: Cartesianas, esféricas y cilíndricas. Igualmente hablamos sobre las ventajas de cada sistema de coordenadas.
Cambio de coordenadas. La superficie del cono en coordenadas esféricas cilíndricas y cartesianas - [Detalles]
Damos la representación para la superficie de un cono en los tres sistemas de coordenadas que hemos estudiado: cartesianas, cilíndricas y esféricas. Vemos que en algunos sistemas de coordenadas es más facil o sencillo representar la superficie del cono.
Proyecto: Caminata por el jardín y sistemas lineales en el cubo - [Detalles]
En este proyecto estudiamos los sistemas de ecuaciones lineales en el cubo unitario de altas dimensiones para resolver un problema de geometría discreta.
Mini-cuestionario: Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo los determinantes ayudan a resolver sistemas de ecuaciones.
Sistemas de ecuaciones lineales complejos - [Detalles]
Motivamos el estudio de la solución de sistemas de ecuaciones lineales pero ahora con números complejos, nuestra inspiración fueron algunos métodos que ya conocemos por el estudio en los reales tales como el determinante, substitución o igualando coeficientes.
Problemas de sistemas de ecuaciones complejos y forma polar - [Detalles]
Resolvemos una serie de problemas de sistemas de ecuaciones lineales con números complejos, asi también enunciamos la relga de Kramer para la resolución de estos problemas.
Sistemas de ecuaciones lineales - [Detalles]
Repasamos sistemas de ecuaciones lineales, matrices elementales y matrices equivalentes por filas. Los relacionamos con matrices invertibles.
Principio del buen orden - [Detalles]
Enunciamos el principio del buen orden: Todo subconjunto, no vacío, de los naturales tiene un elemento mínimo. Vemos algunos subconjuntos como ejemplos.
El Principio del Buen Orden y el Principio de Inducción Matemática - [Detalles]
Enunciamos que: El principio del buen orden es equivalente al Principio de inducción matemática. Indicamos la idea de cómo demostrar este enunciado, el cual se demostrará en los dos videos siguientes.
El principio del buen orden implica el principio de inducción matemática - [Detalles]
Siguiendo con lo visto anteriormente, demostramos que: El principio del buen orden (PBO) es equivalente al Principio de inducción matemática (PIM). En este video demostramos que PBO implica PIM.
El principio de inducción implica el principio del buen orden - [Detalles]
Siguiendo con lo visto anteriormente, demostramos que: El principio del buen orden (PBO) es equivalente al Principio de inducción matemática (PIM). En este video demostramos que PIM implica PBO.
Definiciones elementales: Ecuación diferencial ordinaria, solución, y orden de una ecuación - [Detalles]
Definimos una ecuación diferencial ordinaria, solución y el orden de una ecuación.
Ecuaciones lineales homogéneas de segundo orden. Propiedades de las soluciones - [Detalles]
Estudiamos a las ecuaciones homogéneas de segundo orden y el comportamiento de las soluciones
Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]
Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces reales distintas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son reales y distintas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces repetidas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son repetidas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces complejas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son complejas.
Ecuaciones lineales no homogéneas de segundo orden y sus soluciones - [Detalles]
Demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.
Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros - [Detalles]
Desarrollamos el método de variación de parámetros para resolver una ecuación lineal no homogénea de segundo orden.
Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones de segundo orden por el método de variación de parámetros.
Ecuación de Bessel (Parte 1) - [Detalles]
Hallamos la ecuación indicial para la ecuación de Bessel de orden lambda alrededor del punto singular regular t=0. Posteriormente encontramos una solución a la ecuación de Bessel de orden cero.
Propiedades de orden y sus consecuencias - [Detalles]
Estudio del orden en los números reales y algunos resultados relacionados.
Ecuaciones diferenciales de orden superior - [Detalles]
Introducción general a las ecuaciones diferenciales ordinarias de orden superior
Soluciones a ecuaciones diferenciales de orden superior - [Detalles]
Estudio de las propiedades de las soluciones de las ecuaciones diferenciales de orden superior
Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros - [Detalles]
Se hace una generalización del método de variación de parámetros para resolver de manera general ecuaciones diferenciales no homogéneas de segundo orden
Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos ordinarios - [Detalles]
Se hace un breve repaso de series de potencias para posteriormente desarrollar un método de resolución de ecuaciones diferenciales de segundo orden con coeficientes variables con respecto a puntos ordinarios
Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos singulares - [Detalles]
Se describe el método de Frobenius para resolver ecuaciones diferenciales de segundo orden con coeficientes variables con respecto a puntos singulares
Derivadas implícitas y de orden superior - [Detalles]
Revisión de los conceptos de derivada implícita y de orden superior.
Diapositivas sobre combinatoria - [Detalles]
Motivamos el estudio del cálculo combinatorio, definimos un número factorial y un número combinatorio, demos unos ejemplos en los cuales para ordenar elementos en un conjuntos importando el orden y no importando el orden donde a los primeros los llamamos permutaciones. Para hacer este tipo de cálculos es muy usual que los alumnos confundan las fórmulas y las ocupen de manera errónea, así que para que el alumno se relacione mejor con las fórmulas se hizo una tabla muy fácil de usar acompañada de varios ejemplos.
La relación de orden en $\mathbb{N}$ - [Detalles]
Definimos el orden en los números naturales y se demuestra primero que es parcial y después que éste es total.
El principio del buen orden - [Detalles]
Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.
Compatibilidad del orden con las operaciones de los naturales - [Detalles]
Proporcionamos una definición de orden equivalente relacionada a la operación suma en el conjunto de los números naturales.
El orden de los enteros - [Detalles]
Definimos el orden en los números enteros y se demuestra primero que es parcial y después que éste es total.
Desigualdades de polinomios - [Detalles]
Desarrollamos herramientas para poder resolver problemas del orden en el anillo de los polinomios y para que valores se cumplen estas relaciones de orden asimismo se da el teorema de la factorización de polinomios reales.
Orden de un elemento - [Detalles]
Se define el orden de un elemento y se dan ejemplos.
El orden de un grupo - [Detalles]
Se define el orden de un grupo y se dan ejemplos.
Consecuencias del teorema de Cauchy - [Detalles]
Se muestran algunas aplicaciones y consecuencias del teorema de Cauchy: ser p-grupo es equivalente a tener orden una potencia de p, todo p-grupo no trivial tiene centro no trivial, todo grupo de orden el cuadrado de un primo es abeliano, los subgrupos maximales de un p-grupo son normales y de índice p.
Álgebra Moderna I: Orden de un elemento y Grupo cíclico - [Detalles]
¿Cualquier subconjunto X de un grupo G es un subgrupo? Esta premisa es abordada principalmente, necesitamos ver condiciones necesarias que pedirle a a X. Requiriendo la definición de orden de un elemento hasta llegar al concepto de subgrupo cíclico.
Álgebra Moderna I: Orden de un grupo - [Detalles]
Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.
Álgebra Moderna I: Teorema de Lagrange - [Detalles]
A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H
Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]
En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.
Todas las gráficas no isomorfas de orden 4 - [Detalles]
En este video presentamos todas las gráficas no isomorfas de orden 4. A partir de esta pequeña familia, introducimos de manera intuitiva conceptos importantes como: la gráfica completa, ciclos, trayectorias, estrellas, gráficas conexas, árboles y gráficas planares. Todos estos conceptos se definirán de manera formal en video subsecuentes.
Definición formal de gráfica conexa - [Detalles]
Definimos formalmente lo que es una gráfica conexa y sus componentes. Probamos dos resultados que confirman dos intuiciones claras: (1) que si en una gráfica de orden n todos los vértices tienen grado "grande" entonces la gráfica es conexa; (2) que si una gráfica de orden n tiene "muchas" aristas entonces la gráfica es conexa. En ambos casos se determina de manera exacta el significado de "muchas", en función de n.
Derivadas parciales de orden superior - [Detalles]
Definimos qué son las derivadas parciales de orden superior para campos escalares. Damos ejemplos y un teorema de conmutatividad.
Valor absoluto y más sobre el orden de los reales - [Detalles]
En este video definiremos la función valor absoluto, reconoceremos algunas de sus propiedades y veremos cómo son los conjuntos solución de ecuaciones y desigualdades que la involucran. Veremos también cómo se comporta el orden de los reales con operaciones como elevar al cuadrado y tomar recíprocos.
Funciones de orden superior, Definiciones - [Detalles]
Funciones de orden superior - Definiciones y explicación previa a la introducción de este tipo de funciones en JAVA mediante sus interfaces funcionales por sus limitantes
Funciones de orden superior, Ejemplo de aplicación - [Detalles]
Ejemplo de aplicación - Breve ejemplo de implementación de funciones-objeto de orden superior.
Demostramos el primer teorema de Thales
Razón, semejanza y triángulos semejantes - [Detalles]
Demostramos el primer y segundo teorema de Thales y sus recíprocos, el teorema de Pitágoras y los criterios de semejanza de triángulos
Primer criterio de semejanza (AAA) - [Detalles]
Demostramos el criterio de semejanza AAA
Semejanza de triángulos y teorema de Thales - [Detalles]
Demostramos el primer teorema de Thales y enunciamos el segundo teorema de Thales
Funciones trigonométricas (Parte 1) - [Detalles]
Estudio de algunas identidades trigonométricas más utilizadas. Un primer acercamiento a las funciones seno y coseno, así como la definición de función periódica.
Puntos de Brocard - [Detalles]
Estudiamos algunas de las propiedades del primer y segundo punto de Brocard que son otro par de puntos conjugados isogonales del triangulo.
Circunferencia de Brocard - [Detalles]
Relacionamos los puntos de Brocard y el primer triángulo de Brocard, mediante la circunferencia de Brocard.
Mapeo de Poincaré - [Detalles]
Hablamos un poco acerca del mapeo de primer retorno de Poincaré y relacionamos las secciones locales en un punto con las órbitas cerradas de un sistema de ecuaciones.
Variables aleatorias - [Detalles]
Desarrollamos el concepto de variable aleatoria así como definiciones equivalentes a la primer propuesta, asimismo se presentan unos ejemplos básicos de lo que representa una variable aleatoria.
Variables aleatorias discretas - [Detalles]
Presentamos el primer tipo de variables aleatorias que son las discretas tomando un soporte finito o infinito numerable, también se muestra la relación entre la función de masa de probabilidad y la función de distribución.
Diapositivas sobre cardinalidad y los racionales - [Detalles]
En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.
Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]
Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.
Cuestionario sobre espacios vectoriales - [Detalles]
Ponemos en práctica el primer acercamiento que tenemos con lo que es un espacio vectorial, nos centramos en la comprensión de la definición y de las características que cumplen estos espacios, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Homología singular - la homología de un punto - [Detalles]
En este video haremos nuestro primer cálculo explícito de los grupos de homología de un espacio. El espacio en cuestión es el espacio que consiste de un solo punto.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Permutaciones - un primer ejemplo - [Detalles]
Pequeña motivación del concepto de permutación que definiremos formalmente en el siguiente video.
Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]
El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.
Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]
En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.
Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]
El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.
Álgebra Moderna I: Tercer Teorema de Isomorfía - [Detalles]
"Alguna vez te haz preguntado: ¿Qué ocurre con un cociente de cocientes?" Después de una breve introducción al tercer teorema de isomorfía, comenzaremos enunciándolo y probándolo a partir del primer teorema.
Diseño y programación orientada a objetos; Diseño - [Detalles]
1.3 Diseño: tarjetas de responsabilidad y UML - Diseño de una solución orientada a objetos. Cómo se hace una tarjeta de responsabilidad. ¿Qué es la notación UML? y cómo hacer un diagrama de clases. Se da el primer acercamiento al concepto de herencia o generalización, implementación o realización y contención (agregación y composición). Por último se habla de dependencia y asociación.
El grado de un vértice - [Detalles]
En este video se definen la vecindad, el grado de un vértice y el grado promedio de una gráfica. Se prueba el primer teorema en Teoría de Gráficas, a saber, que la suma de todos los grados en una gráfica es el doble del número de aristas. Se definen y estudian también las gráficas regulares y la secuencia de grados de una gráfica.
Expresiones algebraicas - [Detalles]
En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.
Eigenvectores y eigenvalores - [Detalles]
En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.
Existencia de la forma canónica de Jordan - [Detalles]
Lo que haremos ahora es mostrar una versión análoga de la forma canónica de Jordan para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración.
Introducción a los sistemas de ecuaciones lineales - [Detalles]
Damos la definición de una ecuación lineal y damos ejemplos de cuales no son ecuaciones lineales. Definimos un sistema de ecuaciones lineales como un conjunto de ecuaciones lineales. Finalmente se da la definición y un ejemplo de solución al sistema de ecuaciones lineales.
Operaciones elementales renglón - [Detalles]
Se definen sistemas de ecuaciones lineales equivalentes, y se da un teorema que demuestra que aplicar operaciones elementales a un sistema, resulta en un sistema equivalente. Finalmente explicamos como al usar operaciones elementales se puede resolver un sistema de ecuaciones lineales.
La matriz de coeficientes de un sistema de ecuaciones - [Detalles]
Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.
La solución de un sistema con matriz en forma escalonada reducida - [Detalles]
Describimos la solución para un sistema con matriz en forma escalonada reducida. Discutimos los diferentes casos donde se tiene o no solución a los sistemas en forma escalonada.
Analisis cualitativo de sistemas de ecuaciones lineales - [Detalles]
Discutimos una serie de observaciones con las cuales podemos describir un sistema lineal sin resolverlo directamente. También se demuestra que un sistema lineal tiene una única solución, infinitas soluciones, o ninguna solución.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Método de valores y vectores propios para sistemas lineales homogéneos con coeficientes constantes - [Detalles]
Encontramos la solución general a un sistema lineal homogéneo con coeficientes constantes en términos de los valores y vectores propios de la matriz asociada A, si esta es diagonalizable.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos - [Detalles]
Analizamos el caso cuando la matriz asociada al sistema tiene valores propios complejos. Encontramos dos soluciones reales dada una solución compleja formada con un valor y un vector propios complejos.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios repetidos y diagonalizable - [Detalles]
Consideramos el caso cuando la matriz asociada al sistema homogéneo con coeficientes constantes es diagonalizable y tiene valores propios repetidos. Además resolvemos un par de ejemplos.
Sistemas lineales homogéneos con coeficientes constantes. Matriz no diagonalizable - [Detalles]
Consideramos el caso cuando la matriz asociada al sistema tiene valores propios repetidos y NO es diagonalizable. Definimos a los vectores propios generalizados de una matriz, desarrollamos un algoritmo mediante el cual encontramos n soluciones linealmente independientes al sistema, y por tanto la solución general.
Método de variación de parámetros para sistemas lineales no homogéneos - [Detalles]
Desarrollamos el método de variación de parámetros para encontrar una solución particular al sistema lineal no homogéneo con coeficientes constantes.
El plano traza - determinante - [Detalles]
Clasificamos los planos fase y puntos de equilibrio de sistemas de ecuaciones homogéneas con coeficientes constantes, según la traza y el determinante de la matriz asociada al sistema.
Exponencial de una matriz y matriz fundamental de soluciones - [Detalles]
Se define el concepto de exponencial de una matriz y se ve su utilidad en los sistema lineales además de probar que es una matriz fundamental de soluciones a estos sistemas lineales
Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos - [Detalles]
Se continua con el segundo caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema son complejos
Sistemas lineales homogéneos con coeficientes constantes – Valores propios repetidos - [Detalles]
Se finaliza el método de valores y vectores propios con el caso en el que los valores propios de la matriz del sistema son algunos repetidos y se presenta el teorema de Cayley-Hamilton
Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]
Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales
Teorema de Poincaré-Bendixson en el plano - [Detalles]
Se enuncia el teorema de Poincaré-Bendixson cuyo resultado permite deducir si los sistemas no lineales estudiados presentan o no soluciones periódicas
Las nulclinas y el plano fase (Ejemplos) - [Detalles]
Mediante el método de las nulclinas esbozamos el plano fase de un par de sistemas de ecuaciones no lineales.
Funciones de Lyapunov - [Detalles]
Definimos las funciones de Lyapunov y estudiamos algunas propiedades útiles respecto a sistemas de ecuaciones y sus puntos de equilibrio.
Mini-cuestionario: Matrices invertibles mediante sistemas de ecuaciones - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo usar el procedimiento de reducción gaussiana para encontrar la inversa de una matriz
Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]
En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.
Diapositivas sobre coordenadas en el espacio - [Detalles]
Estudiamos el espacio pero con tres diferentes tipos de sistemas coordenados que son: las rectangulares (el espacio euclideano), esféricas y cilíndricas; estudiamos cada entrada de la terna ordenada, y que ocurre cuando cada una de ellas se deja libre. También estudiamos que es posible pasar de un espacio a otro con cambios de variables.
Guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de este segundo módulo de estudios que es todo lo relacionado a trigonometría tanto temas como ley de senos, ley de cosenos, razones trigonométricas hasta coordenadas esféricas, polares y cilíndricas, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre trigonometría y más sistemas de coordenadas - [Detalles]
Ponemos en práctica el módulo de trigonometría para una mejor preparación al presentar un examen parcial de etse tema. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de autoevaluación sobre trigonometría y más sistemas de coordenadas - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Lista de ejercicios sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Resolución de guía de estudio sobre trigonometría y más sistemas de coordenadas - [Detalles]
Se muestran las respuestas correctas de la última guía de estudio.
Mini-cuestionario: Ortogonalidad, ecuaciones e hiperplanos - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo la ortogonalidad está relacionada con los sistemas de ecuaciones y con los hiperplanos en espacios vectoriales.
Teorema chino del residuo - [Detalles]
Motivamos la resolución de sistemas lineales de ecuaciones de congruencias y saber si se tienen solución, esto con ayuda del teorema chino del residuo el cual enunciamos y demostramos.
Cambio de coordenadas y forma polar de un complejo - [Detalles]
Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.
COMAL: Inteligencia Artificial - [Detalles]
Este curso revisa las principales áreas de la Inteligencia Artificial desde un enfoque teórico y práctico, que permita el diseño y la implementación de sistemas inteligentes para problemas específicos. Se busca abarcar una perspectiva general del área. El enfoque está basado en agentes racionales. Los temas que se abordan son algoritmos de búsqueda, métodos probabilísticos y modelos basados en aprendizaje estadístico. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.
Bases numéricas, Base 10 a base b y especificación de algoritmo - [Detalles]
Base 10 a base b y especificación de algoritmo - Bases numéricas: conversión entre sistemas numéricos; de base 10 a base b. Cómo usar algoritmos para la conversión
Combinatoria, que fórmula usar - [Detalles]
Definimos fórmulas de conteo, para saber cuántas combinaciones de k elementos de n elementos disponibles, podemos tener. Estas fórmulas de conteo dependen de si importa el orden o no, o si importa que haya repetidos o no.
Ejemplo combinatoria - [Detalles]
Usamos combinatoria para responder: ¿De cuantas maneras se pueden repartir 3 medallas en una carrera de 12 caballos? Damos la fórmula de conteo según importe el orden o no, o si se admiten repeticiones.
Ecuaciones lineales homogéneas de segundo orden. Conjunto fundamental de soluciones y el Wronskiano - [Detalles]
Definimos al conjunto fundamental de soluciones de una ecuación, y al Wronskiano de dos soluciones. Vemos la relación que guardan estos dos conceptos, y demostramos algunas propiedades que cumplen estos.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 1) - [Detalles]
Describimos de manera general el método de coeficientes indeterminados, y revisamos el caso cuando g(t) es un polinomio de grado n. Finalizamos el video con un ejemplo.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 2) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función exponencial. Finalizamos el video con un ejemplo.
Ecuaciones lineales no homogéneas de segundo orden. Coeficientes indeterminados (Parte 3) - [Detalles]
Describimos de manera general el método de coeficientes en el caso cuando g(t) es el producto de un polinomio de grado n por una función coseno o seno.
Soluciones por series de potencias cerca de un punto ordinario - [Detalles]
Comenzamos la revisión de las ecuaciones de segundo orden con coeficientes variables, y mostramos la existencia de una solución con desarrollo en serie de potencias alrededor de un punto ordinario.
Radio de convergencia de series de potencias cerca de un punto ordinario - [Detalles]
Calculamos el radio de convergencia para una solución por serie de potencias cerca de un punto ordinario para una ecuación diferencial de segundo orden con coeficientes variables.
Soluciones por series de potencias cerca de un punto ordinario (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales de segundo orden con coeficientes variables por series de potencias.
Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]
Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero
Ecuación de Bessel (Parte 2) - [Detalles]
Encontramos una solución a la ecuación de Bessel de orden uno.
Método de la transformada de Laplace - [Detalles]
Resolvemos el problema de condición inicial de manera general para ecuaciones de segundo orden con coeficientes constantes por el método de la transformada de Laplace.
Orden de un elemento y Grupo cíclico - [Detalles]
None
Orden de un grupo - [Detalles]
None
Ecuaciones diferenciales homogéneas con coeficientes constantes - [Detalles]
Se estudia un método para resolver ecuaciones diferenciales homogéneas de segundo orden con coeficientes constantes de acuerdo al valor del discriminante de la ecuación auxiliar
Ecuación de Cauchy-Euler - [Detalles]
Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler
Principios de conteo 3 - Combinaciones - [Detalles]
Desarrollamos el concepto de combinaciones. En este caso, al contar las combinaciones, todos aquellos arreglos con los mismos objetos (pero en orden distinto) se consideran indistinguibles. Utilizamos las herramientas de la entrada anterior para encontrar el número de combinaciones.
El péndulo simple - [Detalles]
Obtenemos una ecuación de segundo orden que modela el movimiento de un péndulo. Posteriormente estudiamos el sistema de ecuaciones asociado y su plano fase.
Diapositivas sobre familias de conjuntos - [Detalles]
Hablamos sobre los conjuntos que tienen como elementos conjuntos a los cuales llamamos familias de conjuntos, al igual que lo que hemos ya estudiado de conjuntos a estos también podemos unirlos e intersectarlos entre sí como familia, además de indexarlos (ponerles índices y por ende un orden de conjuntos), Se demuestran unas propiedades y se muestran en estas uniones e intersecciones las leyes de De Morgan.
Cuestionario sobre producto triple de vectores - [Detalles]
Ponemos en práctica el tema del producto triple de vectores en el espacio cartesiano donde se busca una comprensión de como se debe de realizar este cálculo (pues en este si es importante el orden) y el cáclulo sobre este nuevo producto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Principios de inducción y teoremas de recursión - [Detalles]
Demostramos el princicipio de inducción y el teorema de recursión débil, por otro lado enunciamos el teorema de recursión fuerte y el principio de buen orden.
Problemas del orden en $\mathbb{N}$ - [Detalles]
Descripción pendiente
Problemas de compatibilidad del orden de los naturales con sus operaciones - [Detalles]
Descripción pendiente
Problemas de orden de los enteros y la inmersión de $\mathbb{N}$ en $\mathbb{Z}$ - [Detalles]
Descripción pendiente
Divisibilidad en los enteros - [Detalles]
Damos la definición de divisibilidad en los enteros. Discutimos algunas propiedades básicas y otras relacionadas con las operaciones y orden.
Factorización completa y unicidad de la factorización - [Detalles]
Definimos lo que es una factorización completa y demostramos que la factorización completa de una permutación es única salvo el orden de los factores.
Grupos cíclicos - parte 1 - [Detalles]
Se da la definición de grupo cíclico y se exploran algunas de sus propiedades, se demuestra que todos los subgrupos de un grupo cíclico son cíclicos y que hay subgrupos para cada divisor del orden de un grupo cíclico.
Nota 18. El principio de inducción matemática. - [Detalles]
En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.
Álgebra Moderna I: Palabras. - [Detalles]
Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.
Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]
En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.
En esta entrada veremos el concepto de conjunto bien ordenado, en dicho conjunto toma mucha importancia el concepto de minimo. También veremos como se relaciona este nuevo concepto con los conceptos de orden que se han visto anteriormente
Isomorfismos de orden - [Detalles]
En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.
Buen orden en los naturales - [Detalles]
En esta entrada demostraremos que el conjunto de los números naturales es un conjunto bien ordenado.
Buenos órdenes para cualquier conjunto - [Detalles]
En esta entrada veremos mas equivalencias del axioma de elección, en particular veremos el teorema del buen orden.
Gráficas regulares y secuencias de grado q - [Detalles]
Aquí damos respuesta a las siguientes preguntas ¿Para qué valores de n y r existe una gráfica r-regular de orden n? ¿Qué secuencias de n números enteros no negativos son la secuencia de grados de una gráfica?
Bosques y árboles - [Detalles]
Definimos y exploramos los conceptos de bosque, árbol y hoja. Demostramos que todo árbol de orden n tiene n-1 aristas.
Teoría de Gráficas - Cuestionario 1 - [Detalles]
Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.
Cuestionario de los números reales - [Detalles]
Este es un cuestionario para repasar el Módulo 15 del texto "Cimientos Matemáticos" donde se abarcan temas como: postulados de campo, postulados de orden, valor absoluto, etc.
Órdenes parciales y totales - [Detalles]
En esta entrada revisamos los conceptos de orden parcial, total. Así como elementos maximales, minimales, máximos y mínimos.
Complejidad, notación asintótica - [Detalles]
Notación asintótica - Definición y características de la notación asintótica así como categorías de orden.
Correctez en programas recursivos, Correctez de un algoritmo recursivo - [Detalles]
Correctez de un algoritmo recursivo - Cómo realizar el análisis de correctez mediante inducción matemática siguiendo el principio del buen orden.
Funciones de orden superior, Pasar una función como parámetro - [Detalles]
Pasar una función como parámetro - Implementar una interfaz funcional para pasar la función a parámetro. Introducción a las clases anónimas internas y a las LAMBDA
Funciones de orden superior, Regresar una función como resultado - [Detalles]
Regresar una función como resultado - Aplicar métodos para obtener funciones como resultado. Anidar funciones.
Funciones de orden superior, Aplicación para listar directorios con java nio - [Detalles]
Aplicación para listar directorios con java nio - Cómo usar la API de JAVA-nio para listar directorios
Hilos. Sincronización, Vitalidad - [Detalles]
Vitalidad - Cómo crear varios hilos y obtener orden de ejecución.