Resultados de búsqueda: conjunto de números naturales

238 resultados encontrados

  • Blog

    Nota 16. Los números naturales. - [Detalles]

    En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.

  • Blog

    Nota 17. El orden en los números naturales. - [Detalles]

    En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.

  • Video

    Números naturales e induccion - [Detalles]

    En este video veremos a los números naturales como un subconjunto del campo de los números reales. Justificaremos el Principio de Inducción Matemática, que es una herramienta muy poderosa para demostrar proposiciones de tipo universal acerca de los números naturales.

  • Video

    Cardinalidad - conjuntos infinitos - los naturales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.

  • Capítulo del libro

    Los números naturales - [Detalles]

    En este capítulo de Cimientos matemáticos, nos embarcaremos en lo que es la aritmética, explorando los números primos, así como algunas de sus propiedades más importantes. Comenzaremos revisando algunos conceptos básicos, como los números naturales, los múltiplos, el mínimo común múltiplo (MCM) y el máximo común divisor (MCD). Luego, profundizaremos en la noción de divisibilidad, factorización y la clasificación de los números en primos y compuestos.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Blog

    Nota 18. El principio de inducción matemática. - [Detalles]

    En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.

  • Blog

    La construcción de las naturales - [Detalles]

    Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.

  • Blog

    Buen orden en los naturales - [Detalles]

    En esta entrada demostraremos que el conjunto de los números naturales es un conjunto bien ordenado.

  • Blog

    Introducción al curso y números naturales - [Detalles]

    Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.

  • Blog

    Construcción de los números naturales - [Detalles]

    En esta sección comenzaremos con la construcción rigurosa de los números naturales, es decir, desde la teoría de conjuntos, sin dejar de lado la noción intuitiva que ya tenemos, para ello veremos el concepto de conjunto transitivo.

  • Video

    Orden en los números enteros - [Detalles]

    Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales. 

  • Cuestionario

    Cuestionario de los números naturales - [Detalles]

    Este es un cuestionario para repasar el Módulo 1 del texto "Cimientos Matemáticos". Se cubren temas como números naturales, mcm, MCD, números primos, factorización, etc.

  • Video

    Introducción a las sucesiones de números reales. - [Detalles]

    En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.

  • Blog

    Conjuntos transitivos - [Detalles]

    Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.

  • Blog

    Compatibilidad del orden con las operaciones de los naturales - [Detalles]

    Proporcionamos una definición de orden equivalente relacionada a la operación suma en el conjunto de los números naturales.

  • Blog

    Principio de inducción - [Detalles]

    En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

  • Blog

    Números naturales - [Detalles]

    En esta entrada daremos la definición formal de un número natural. Además probaremos algunos resultados sobre números naturales.

  • Blog

    Introducción a números naturales - [Detalles]

    En esta entrada revisamos los axiomas de Peano así como la construcción conjuntista de los números naturales.

  • Video

    El anillo de los números enteros - [Detalles]

    Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior. 

  • Video

    Números complejos - [Detalles]

    Definimos los números complejos: "a+b*i" ("a", "b" son números reales e "i" es el numero imaginario). Damos la notación que vamos a utilizar para los numero complejo (parte real y parte imaginaria) y definimos el conjunto de los números complejos.  

  • Video

    Cardinalidad - los números reales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los reales, y demostramos que este conjunto NO tiene la misma cardinalidad que los naturales.

  • Diapositivas

    Diapositivas sobre conjuntos infinitos - [Detalles]

    Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.

  • Video

    Definición de anillo - [Detalles]

    Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero. 

  • Blog

    Construcción de los enteros y su suma - [Detalles]

    Construimos el conjunto de los números enteros a partir de los números naturales, definimos a un número entero como una clase de equivalencia, definimos su operación suma y su inverso; también demostramos algunas propiedades básicas de la operación suma en los enteros.

  • Capítulo del libro

    Conjuntos importantes - [Detalles]

    En este capitulo de Cimientos Matemáticos revisaremos los conjuntos de números más importantes y los más usuales con los que solemos trabajar, tal es el caso de los naturales y enteros que ya hemos visto en capítulos anteriores, pero ahora añadiendo a los números, racionales, irracionales, reales y hasta los números complejos, que de complejos únicamente es el nombre, ya que veremos que la manera de trabajar con este es muy sencilla.

  • Cuestionario

    Cuestionario de conjuntos importantes - [Detalles]

    Este es un cuestionario para repasar el Módulo 14 del texto "Cimientos Matemáticos" donde se abarcan temas como: los números naturales, los números enteros, los números racionales e irracionales, etc.

  • Blog

    Producto en los naturales - [Detalles]

    Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.

  • Blog

    Otras definiciones recursivas en los naturales (exponenciación y factorial) - [Detalles]

    Definimos el factorial y la exponenciación en los números naturales asimismo probamos unas leyes de los exponentes.

  • Blog

    Suma y producto de naturales y sus propiedades - [Detalles]

    En esta entrada vemos la definición de suma y multiplicación en términos de los números naturales así como algunas propiedades.

  • Video

    Conjunto potencia - [Detalles]

    Definimos el conjunto potencia de un conjunto, hablamos de ejemplos de los conjuntos potencia de conjuntos sencillos, y damos propiedades y teoremas relacionados al conjunto potencia

  • Blog

    Nota 3. El complemento de un conjunto. - [Detalles]

    En esta nota se presentan las ideas de conjunto universo y conjunto complemento, así como varias propiedades y ejemplos referentes a estos conceptos. También hay un recurso interactivo de Geogebra que ilustra el concepto de complemento de un conjunto.

  • Video

    Axiomas de Campo en los números reales - [Detalles]

    La lista de axiomas de campo son las reglas que rigen a los números con una estructura adecuada. En particular el conjunto de números reales satisface esta lista y en este video discutimos cada uno.

  • Video

    Cardinalidad - los racionales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los racionales, y demostramos que este conjunto tiene la misma cardinalidad que los naturales.

  • Blog

    El principio del buen orden - [Detalles]

    Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.

  • Blog

    Nota 22. Conteo. Ordenaciones. - [Detalles]

    En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.

  • Diapositivas

    Diapositivas sobre el principio de inducción - [Detalles]

    Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.

  • Blog

    Definición de la suma y sus propiedades básicas - [Detalles]

    Definimos la suma en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Blog

    Definición del producto y sus propiedades básicas - [Detalles]

    Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Blog

    El tamaño de $N$ y de cada natural - [Detalles]

    Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.

  • Blog

    Nota 21. Conteo, ordenaciones con repetición. - [Detalles]

    En esta nota comenzaremos a ver las técnicas de conteo, las cuales son una aplicación de los números naturales; analizaremos la situación conocida como ordenaciones con repetición, que nos dan todas las posibilidades de formar una secuencia ordenada de m posiciones, llenadas con los n objetos de un determinado conjunto.

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Blog

    Teorema de recursión - [Detalles]

    En esta entrada veremos el concepto de calculo de longitud, así como la motivación y prueba del teorema de recursión, el cual nos ayudara a definir la suma en el conjunto de los numeros naturales.

  • Blog

    Propiedades del producto cartesiano - [Detalles]

    En esta entrada demostraremos algunas de las propiedades del producto cartesiano. Hablaremos acerca de la conmutatividad y asociatividad de esta operación. A partir de esta entrada haremos uso de los números naturales aunque formalmente no los hemos definido, por el momento los utilizaremos simplemente como números y no como conjuntos.

  • Video

    Complemento de un conjunto - [Detalles]

    Damos la definición del conjunto complemento de un conjunto, y algunos ejemplos

  • Blog

    Cota superior e inferior de un conjunto - [Detalles]

    Estudio de los conceptos máximo, mínimo, cota superior e inferior de un conjunto. Definción de conjunto acotado.

  • Blog

    Nota 1. Noción de Conjunto - [Detalles]

    En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Conjunto cociente - [Detalles]

    En esta entrada definiremos al conjunto cociente, dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.

  • Video

    Factorización en números primos - [Detalles]

    Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética. 

  • Blog

    Intervalos y desigualdades en los números reales - [Detalles]

    Definición de los diferentes tipos de intervalos en los números reales y solución de ejercicios de desigualdades de números reales.

  • Video

    Multiplicación de números complejos - [Detalles]

    Vemos la forma de multiplicar números complejos, usando las reglas anteriormente vistas (las cuales guardan similitudes a la multiplicación de polinomios), podemos llegar a una fórmula para la multiplicación. Hacemos algunos ejemplos para mostrar la multiplicación de números complejos en acción. 

  • Blog

    Esbozo de construcción de racionales y reales - [Detalles]

    Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.

  • Capítulo del libro

    Los números enteros - [Detalles]

    En este capítulo de Cimientos Matemáticos, veremos el tema de los números enteros. Exploraremos sus propiedades y operaciones básicas. Veremos cómo cómo se ordenan en una recta numérica, estableciendo desigualdades. Hablaremos de su suma y resta, cuidando cómo trabajar con positivos y negativos. Luego, revisaremos la multiplicación y división de números enteros. Para todas estas operaciones hablaremos de varias propiedades.

  • Cuestionario

    Cuestionario de los números enteros - [Detalles]

    Este es un cuestionario para repasar el Módulo 2 del texto "Cimientos Matemáticos". Se cubren temas como números enteros, ley de los signos, multiplicación y división de números enteros, etc.

  • Video

    Enumeraciones, Ejemplo, diseño de aplicación con Números - [Detalles]

    • Ejemplo, diseño de aplicación con Números – Breve ejemplo de aplicación con números.

  • Video

    Enumeraciones, Ejemplo, código de la aplicación con Números - [Detalles]

    Ejemplo, código de la aplicación con Números – código de la aplicación con números del ejemplo pasado.

  • Video

    Números enteros y racionales - [Detalles]

    En este video presentamos el anillo de los números enteros y el campo de los números racionales. Vemos que a pesar de que éstos últimos forman un campo, todavía no se ajustan al modelo de la recta geométrica.

  • Video

    Ejercicio de repaso de operaciones con conjuntos - [Detalles]

    Damos un repaso a las operaciones con conjuntos: Unión, Intersección, etc. Usamos ejemplos sencillos de subconjuntos de números naturales.

  • Blog

    La relación de orden en $\mathbb{N}$ - [Detalles]

    Definimos el orden en los números naturales y se demuestra primero que es parcial y después que éste es total.

  • Blog

    La inmersión de los naturales en los enteros - [Detalles]

    Estudiamos a los números enteros pero ahora trabajamos para etiquetarlos como los conocemos comunmente sin perder de vista la construcción y formalidad matemática que se ha trabajado en este tema.

  • Video

    La Inducción matemática - [Detalles]

    La inducción matemática es una herramienta fundamental para poder demostrar proposiciones que tienen que ver con los números naturales. En este video discutimos cuál es su estructura y como se implementa.

  • Blog

    Conjuntos numerables - [Detalles]

    En esa entrada seguiremos trabajando con conjuntos infinitos, en especial aquellos que tienen la misma cantidad de elementos que los numeros naturales .

  • Blog

    Principio de inducción en los números naturales - [Detalles]

    Introducción En esta entrada vamos a hablar de el principio de inducción que se deriva del quinto axioma de Peano. Veremos cómo es que nos ayudará a un nuevo tipo de demostraciones, lo que significa en términos simples y algunos ejemplos de su uso. El efecto dominó Pensemos un poco en cómo funciona la inducción […]

  • Blog

    Principio de recursión en los números naturales - [Detalles]

    En esta entrada revisamos las funciones recursivas, su definición y ejemplos.

  • Sitio web

    COMAL: Teoría de los Conjuntos - [Detalles]

    En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Video

    Qué es un conjunto y otras cuestiones - [Detalles]

    Damos la definición de conjunto, y algunos ejemplos de conjuntos importantes. También explicamos la notación que se utiliza para conjuntos.

  • Video

    Subconjuntos (ejemplo y 3 propiedades básicas) - [Detalles]

    Continuamos con un ejemplo, que los enteros son subconjunto de los racionales. También vemos propiedades Importantes: todo conjunto contiene al vacío, todo conjunto se contiene a sí mismo y transitividad.

  • Video

    Los enteros módulo $m$ - [Detalles]

    Definimos los enteros modulo "m". Este conjunto consiste de las clases de equivalencia de la congruencia modulo "m". Definimos la operación suma y multiplicación en el conjunto de los enteros modulo "m" (recordemos que sus elementos son clases de equivalencia). Mostramos que las operaciones cumplen las propiedades necesarias para que los enteros modulo "m" sean un anillo. 

  • Video

    El grado de un polinomio - [Detalles]

    Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo. 

  • Video

    Ecuaciones lineales homogéneas de segundo orden. Conjunto fundamental de soluciones y el Wronskiano - [Detalles]

    Definimos al conjunto fundamental de soluciones de una ecuación, y al Wronskiano de dos soluciones. Vemos la relación que guardan estos dos conceptos, y demostramos algunas propiedades que cumplen estos.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]

    Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.

  • Blog

    Conjuntos infinitos - [Detalles]

    Revisión del concepto de cardinalidad de un conjunto, conjunto infinito y numerable.

  • Diapositivas

    Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]

    En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.

  • Diapositivas

    Diapositivas sobre dependencia e independencia lineal - [Detalles]

    Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.

  • Video

    Conjunto de permutaciones de n elementos - [Detalles]

    Se estudia el conjunto de permutaciones de n elementos.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Blog

    El complemento de un conjunto - [Detalles]

    En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

  • Blog

    Clases de equivalencia y particiones - [Detalles]

    Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.

  • Blog

    Buenos órdenes - [Detalles]

    En esta entrada veremos el concepto de conjunto bien ordenado, en dicho conjunto toma mucha importancia el concepto de minimo. También veremos como se relaciona este nuevo concepto con los conceptos de orden que se han visto anteriormente

  • Blog

    Conjuntos finitos (parte II) - [Detalles]

    En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.

  • Capítulo del libro

    Conjuntos y Lógica - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.

  • Blog

    Teorema fundamental de la aritmética e infinidad de números primos - [Detalles]

    Enunciamos y demostramos el teorema fundamental de la aritmética. Luego, lo usamos para ver que el conjunto de primos es infinito.

  • Video

    Ejercicio Polinomios de grado par - [Detalles]

    En este video, abordaremos paso a paso el razonamiento detrás de por qué todo polinomio de grado par alcanza su máximo en el conjunto de los números reales.

  • Video

    Axiomas de Orden - [Detalles]

    En este video se enuncia los axiomas de orden para el conjunto de números positivos. Se demuestra algunas consecuencias de los axiomas, se define el orden, se muestra que el orden es congruente con las operaciones y se definen los intervalos.

  • Video

    Continuidad de funciones de números reales - [Detalles]

    En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.

  • Video

    Números primos - [Detalles]

    Damos la definición formal de un numero primo. Un entero "p>1" se dice que es primo si sus únicos divisores positivos son 1 y el mismo (1 y "p"). Definimos que es un numero compuesto y hablamos sobre algunas curiosidades sobre los números primos. 

  • Video

    División de números complejos - [Detalles]

    Vemos la forma de dividir número complejos, usando la multiplicación anteriormente vista podemos llegar a una fórmula para la división. Hacemos algunos ejemplos para mostrar la división de números complejos en acción. 

  • Video

    Potencias de números complejos - [Detalles]

    Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación). 

  • Blog

    Propiedades algebraicas de los números reales (Parte 1) - [Detalles]

    Estudio de las propiedades básicas de los números reales con sus operaciones: suma y producto.

  • Blog

    Sucesiones de números reales - [Detalles]

    Definición y ejemplos de sucesiones de números reales

  • Video

    Multiplicación de números complejos en su forma polar - [Detalles]

    Usando la forma polar de los números complejos, damos una formula muy sencilla para multiplicar complejos (en su forma polar). Vemos que tiene una representación geométrica muy parecida a una rotación, o una suma de vectores en el plano complejo. 

  • Blog

    Construcción de números complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    Multiplicación en forma polar y fórmula de De Moivre - [Detalles]

    Mostramos la interpretación geométrica de lo que reprenta la multiplicación de dos números complejos en su forma polar; también enunciamos la fórmula de De Moivre para ayudarnos a dar solución a problemas en los que se requiere calcular potencias de números complejos.

  • Cuestionario

    1. Introducción a los números complejos - [Detalles]

    Repasaremos unos breves antecedentes históricos y unas de las primeras motivaciones que nos llevaron a la concepción, y posteriormente creación, de los números complejos.

  • Blog

    1. Introducción a los números complejos - [Detalles]

    En esta entrada de blog se presentan problemas que motivan la necesidad del sistema de números complejos, en particular los problemas de solucionar ecuaciones de segundo, tercer y cuarto grado.

  • Blog

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.

  • Blog

    27. Preliminares de series de números complejos - [Detalles]

    Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.

  • Cuestionario

    27. Preliminares de series de números complejos - [Detalles]

    Dimos la generalización de series a números complejos, vamos a preguntar un par de cosas para repasar los conceptos importantes.

  • Video

    Distintas clases de números - [Detalles]

    En este video platicamos acerca de distintas clases de números y motivamos de donde surgen.

  • Capítulo del libro

    Los números reales - [Detalles]

    En este capitulo de Cimientos Matemáticos exploraremos las propiedades de los números reales, como son estas reglas fundamentales que rigen su manipulación en operaciones matemáticas, mientras que el concepto de valor absoluto añade una capa de comprensión al medir la distancia de un número al cero en la línea numérica.

  • Video

    Presentación del curso de Calculo Diferencial e Integral I - [Detalles]

    En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.

  • Video

    Expresión decimal de los números reales - [Detalles]

    En este video se discutirá sobre la expresión decimal de los números reales.

  • Video

    Vecindades de números reales - [Detalles]

    En este video se definen las vecindades o entornos de un número real, así como se muestra que la diferencia en valor absoluto mide la distancia entre dos números reales, que geométricamente significa la longitud del segmento que los une. También se definen las vecindades agujeradas.

  • Video

    Distancia en R - [Detalles]

    En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.

  • Video

    Implementación con bits, Números de punto flotante - [Detalles]

    Números de punto flotante - Representación de datos numéricos; racionales en la computadora.

  • Video

    Enumeraciones, Ejemplo de excepciones con Números - [Detalles]

    Ejemplo de excepciones con Números y explicación con más detalle así como recomendaciones generales.

  • Video

    Principio de inducción - [Detalles]

    Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.

  • Video

    Principio del buen orden - [Detalles]

    Enunciamos el principio del buen orden: Todo subconjunto, no vacío, de los naturales tiene un elemento mínimo. Vemos algunos subconjuntos como ejemplos.  

  • Diapositivas

    Diapositivas sobre cardinalidad y los racionales - [Detalles]

    En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.

  • Blog

    Problemas de la construcción de los naturales - [Detalles]

    Descripción pendiente

  • Blog

    Problemas de suma y producto de naturales - [Detalles]

    Descripción pendiente

  • Blog

    Problemas de conjuntos transitivos y cardinalidad de los naturales - [Detalles]

    Descripción pendiente

  • Blog

    Problemas de compatibilidad del orden de los naturales con sus operaciones - [Detalles]

    Descripción pendiente

  • Blog

    Suma en los naturales - [Detalles]

    En esta nueva entrada presentaremos la definición formal de la suma, veremos que, gracias al teorema de recursión, es única y demostraremos algunas de las propiedades que satisface usando el principio de inducción.

  • Blog

    Conjuntos generadores e independencia lineal - [Detalles]

    Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.

  • Blog

    Bases y dimensión de espacios vectoriales - [Detalles]

    Definimos espacios vectoriales de dimensión finita. Vemos que es correcto definir dim V como el tamaño de un conjunto generador linealmente independiente.

  • Blog

    Problemas de bases y dimensión de espacios vectoriales - [Detalles]

    Problemas resueltos de dimensión de espacios vectoriales. Recordamos y aplicamos repetidamente un truco para mostrar que un conjunto de vectores es base.

  • Blog

    Proceso de Gram-Schmidt - [Detalles]

    Mostramos el teorema de Gram-Schmidt, que cambia un conjunto de vectores linealmente independientes a uno ortonormal. Vemos ejemplos de su aplicación.

  • Video

    Suprayectividad - [Detalles]

    Usamos el conjunto Imagen, de una función, para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de suprayectividad.

  • Video

    Cardinalidad - definición y ejemplos - [Detalles]

    Damos la definición de la cardinalidad de un conjunto, usando ejemplos mostramos cuando dos conjuntos tienen la misma cardinalidad.

  • Video

    Cardinalidad - conjuntos finitos - [Detalles]

    Usando lo visto anteriormente, usando la cardinalidad, damos la definición de un conjunto finito o infinito. Hablamos de varios teoremas relacionados a los conjuntos finitos.

  • Video

    Permutaciones - [Detalles]

    Definimos que es una permutación, y hablamos de sus usos y características. También damos una fórmula de conteo para saber cuántas permutaciones tenemos en un conjunto de n elementos, ya sea permutaciones con o sin repeticiones.

  • Video

    Introducción a los sistemas de ecuaciones lineales - [Detalles]

    Damos la definición de una ecuación lineal y damos ejemplos de cuales no son ecuaciones lineales. Definimos un sistema de ecuaciones lineales como un conjunto de ecuaciones lineales. Finalmente se da la definición y un ejemplo de solución al sistema de ecuaciones lineales.

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.

  • Video

    Subespacio vectorial (ejemplo 1) - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.

  • Video

    Divisibilidad: el máximo común divisor - [Detalles]

    Definimos el máximo común divisor (MCD). Primero hacemos la observación de que cada entero tiene un numero finito de divisores, definimos el común divisor, y vemos que el conjunto de divisores de uno o más enteros siempre es finito y podemos obtener un máximo en común (que sea común divisor). Vemos algunos ejemplos y la notación que usaremos para el MCD 

  • Video

    Sistemas de residuos módulo $m$ - [Detalles]

    Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler. 

  • Video

    Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]

    Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 2) - [Detalles]

    Definimos el Wronskiano de un subconjunto de soluciones a un sistema lineal homogéneo. Además definimos cuándo este subconjunto de soluciones es linealmente dependiente o independiente. Finalmente demostramos un teorema que relaciona estos dos conceptos.

  • Blog

    Supremo e ínfimo - [Detalles]

    Estudio de las definiciones para ínfimo y supremo de un conjunto, resultados relacionados y ejemplos.

  • Blog

    Cuadrángulo ortocéntrico - [Detalles]

    Estudiamos algunas propiedades del cuadrángulo ortocéntrico, conjunto formado por los vértices de un triángulo y su ortocentro.

  • Blog

    Principios de conteo 2 - Permutaciones - [Detalles]

    Desarrollamos el concepto de permutación, y utilizamos los principios de conteo de la entrada anterior para encontrar el número de permutaciones de un conjunto de objetos.

  • Blog

    Axioma de conjunto potencia - [Detalles]

    None

  • Diapositivas

    Diapositivas de cuantificadores - [Detalles]

    Mostramos los símbolos más recurrentes en matemáticas para denotar la existencia, unicidad la totalidad y pertenencia de elementos en un conjunto asi mismo es acompañado por una lista de ejemplos.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Ilustración

    Ejemplo de la unión de funciones - [Detalles]

    Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Diapositivas

    Diapositivas sobre ejemplos bases de espacios vectoriales - [Detalles]

    En estas diapositivas damos herramientas extras (lemas) sobre como identificar si un conjunto es base de un espacio vectorial o no.

  • Cuestionario

    Cuestionario sobre ejemplos bases de espacios vectoriales - [Detalles]

    Ponemos en práctica los conocimientos adquiridos respecto a bases y lo que en ello respecta, se pone a prueba la comprensión de la teoría y otro poco la intuición sobre como demostrar que un conjunto cumple con ser base, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Lugar geométrico en el plano cartesiano - [Detalles]

    Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas. 

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo. 

  • Video

    Ejemplo 3 espacio vectorial - [Detalles]

    Demostramos que el conjunto de funciones numéricas cumple con las diez reglas de los espacios vectoriales, y vemos que es un espacio vectorial. 

  • Video

    Ejemplo 1 subespacio Vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta vertical), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial. 

  • Video

    Ejemplo 2 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial. 

  • Video

    Ejemplo 3 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que el subconjunto de funciones constantes, que es subconjunto del conjunto de funciones, es un subespacio vectorial.  

  • Video

    Dependencia e independencia lineal - [Detalles]

    Damos las definiciones formales de combinación lineal, dependencia lineal e independencia lineal. También usamos ejemplos para explicar cuando un conjunto de vectores cumple con alguna de estas definiciones 

  • Video

    Ejercicio 1 dependencia o independencia lineal - [Detalles]

    Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente. 

  • Video

    Ejercicio 3 bases de espacios vectoriales - [Detalles]

    Usando la definición de una base para un espacio vectorial cualquiera, demostramos una condición equivalente para saber cuándo un conjunto es base de un espacio vectorial. 

  • Video

    Lugar Geométrico De Las Cónicas - [Detalles]

    Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.  

  • Video

    Definición del grupo fundamental - [Detalles]

    En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.

  • Video

    El teorema de clasificación de cubrientes - parte 3 - [Detalles]

    En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.

  • Video

    Factorización en ciclos disjuntos - [Detalles]

    Demostramos que toda permutación de un conjunto finito es una composición de ciclos disjuntos. Además damos un ejemplo para ilustrar la demostración.

  • Video

    Subgrupo generado por un subconjunto - parte 2 - [Detalles]

    Se da una caracterización del subgrupo generado por un conjunto en términos de palabras.

  • Cuestionario

    10. Conexidad y compacidad en un espacio métrico - [Detalles]

    Volvamos a checar un poco las definiciones de un conjunto conexo y compacto mediante algunos ejemplos.

  • Blog

    Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]

    En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.

  • Blog

    Nota 14. Familia de Conjuntos y particiones. - [Detalles]

    En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.

  • Blog

    Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]

    En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.

  • Blog

    Nota 23. Combinaciones. - [Detalles]

    En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.

  • Blog

    Nota 28. Combinaciones lineales - [Detalles]

    En esta nota definimos lo que es una cambinación lineal de elementos de $\mathbb{R}^n$, veremos que si tomamos un subconjunto no vacio de $\mathbb{R}^n$ y consideramos el conjunto de todas las combinaciones lineales de ese suconjunto entonces obtendremos un subespacio vectorial.

  • Blog

    Nota 29. Subespacio generado - [Detalles]

    En esta nota continuaremos con los subespacios vectoriales, definiremos lo que es el subespacio generado por un conjunto y veremos varías propiedades de este así como diversos ejemplos.

  • Blog

    Nota 30. Dependencia e independencia lineal - [Detalles]

    En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.

  • Blog

    Álgebra Moderna I: Orden de un grupo - [Detalles]

    Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.

  • Blog

    Álgebra Moderna I: Permutaciones y Grupo Simétrico - [Detalles]

    En primera instancia tenemos que definir lo que es una permutación de un conjunto X. Posteriormente podremos construir el concepto de Grupo Simétrico y la definición de un r-ciclo.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Blog

    Relaciones - [Detalles]

    En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.

  • Blog

    Funciones (parte II) - [Detalles]

    En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

  • Blog

    Funciones suprayectivas y biyectivas - [Detalles]

    En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.

  • Blog

    Mínimos, máximos, minimales y maximales - [Detalles]

    En esta sección hablaremos de los elementos de un conjunto ordenado que tienen caracteristicas especiales, según sean éstas los llamaremos mínimos, máximos, minimales o maximales.

  • Blog

    Cotas superiores y supremos - [Detalles]

    En esta entrada hablaremos acerca de cotas superiores y supremos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relaciona este concepto con el máximo de un conjunto.

  • Blog

    Equipotencia - [Detalles]

    En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.

  • Blog

    Conjuntos infinitos - [Detalles]

    En esta sección comenzaremos definiendo que es un conjunto infinito para posteriormente probar resultados acerca de la cantidad de elementos que estos poseen, es decir, la cardinalidad de dichos conjuntos.

  • Blog

    Buenos órdenes para cualquier conjunto - [Detalles]

    En esta entrada veremos mas equivalencias del axioma de elección, en particular veremos el teorema del buen orden.

  • Capítulo del libro

    Funciones - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.

  • Video

    La distancia entre dos vértices - [Detalles]

    Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.

  • Blog

    Ortogonalidad en espacios euclideanos - [Detalles]

    En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.

  • Blog

    Cardinalidad de conjuntos finitos - [Detalles]

    Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]

  • Video

    Espacios H apartir de su conjunto de homotopía - [Detalles]

  • Video

    Demostración directa y primeros ejemplos - [Detalles]

    Explicamos sobre el método de demostración conocido como "Demostración directa". Demostramos un teorema sobre los números pares e impares.

  • Video

    Como demostrar una implicación. Demostración directa - [Detalles]

    Platicamos las características de la demostración directa y damos un ejemplo con una proposición sobre los números enteros múltiplos de 6.

  • Video

    Demostrar que una proposición es falsa - [Detalles]

    Explicamos como demostrar que una proposición o enunciado es falso, damos un ejemplo usando los números enteros.

  • Video

    Demostración por casos - [Detalles]

    Explicamos como realizar una demostración por casos y las reglas que se deben seguir, damos ejemplos con números enteros.

  • Video

    Demostración de que hay infinitos primos - [Detalles]

    Explicamos cómo demostrar que hay una cantidad infinita de números primos. Para tal fin suponemos ciertos el teorema fundamentar de la aritmética.

  • Video

    Funciones numéricas - [Detalles]

    Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.

  • Video

    La matriz de coeficientes de un sistema de ecuaciones - [Detalles]

    Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.

  • Video

    El algoritmo de Euclides: enunciado y demostración. - [Detalles]

    Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor. 

  • Video

    Hay una cantidad infinita de números primos - [Detalles]

    Para terminar esta sección demostramos un teorema de bastante relevancia, el cual nos dice que existe una cantidad infinita de numero primos. La demostración es sencilla y hacemos uso del teorema fundamental de la aritmética.  

  • Video

    Propiedades básicas de congruencias - [Detalles]

    Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".  

  • Video

    Operaciones con el número $i$ - [Detalles]

    Definimos la suma de los términos que tienen al número i. Igualmente vemos cómo multiplicar números reales por términos que tengan el número i y por último vemos las potencias del número i. 

  • Video

    Teorema sobre polinomios y números complejos - [Detalles]

    Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio. 

  • Blog

    Propiedades algebraicas de los números reales (Parte 2) - [Detalles]

    Estudio de algunas propiedades relacionadas a la multiplicación, productos notables y a los inveros multiplicativos.

  • Blog

    Propiedades de orden y sus consecuencias - [Detalles]

    Estudio del orden en los números reales y algunos resultados relacionados.

  • Blog

    Valor absoluto y desigualdades - [Detalles]

    Revisión de ejercicios de desigualdades con valor absoluto en los números reales.

  • Blog

    Axioma del supremo y sus aplicaciones - [Detalles]

    Estudio del concepto de completitud en los números reales, el axioma del supremo y sus consecuencias.

  • Diapositivas

    Diapositivas sobre ejemplos de combinatoria y propiedades del cálculo combinatorio - [Detalles]

    Hacemos un ejercicio básico sobre el cálculo combinatorio que son ejercicios sobre un mazo de póker y realizamos unas cálculos con etse material, asimismo demostramos 2 propiedades sobre números combinatorios y se dejan 2 ejercicios para el lector.

  • Blog

    El orden de los enteros - [Detalles]

    Definimos el orden en los números enteros y se demuestra primero que es parcial y después que éste es total.

  • Blog

    Números primos y sus propiedades - [Detalles]

    Damos la definición de que un entero sea primo. Vemos dos equivalencias y propiedades para preparar el teorema fundamental de la aritmética.

  • Blog

    Problemas de números primos - [Detalles]

    Descripción pendiente

  • Blog

    Racionales y sus expansiones decimales - [Detalles]

    Damos una serie de ejemplos que nos muestran la relación entre los números racionales y sus expresiones decimales.

  • Blog

    Inmersión de los reales en los complejos - [Detalles]

    Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.

  • Blog

    La conjugación de números complejos - [Detalles]

    Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.

  • Blog

    La norma en los complejos - [Detalles]

    Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.

  • Blog

    Sistemas de ecuaciones lineales complejos - [Detalles]

    Motivamos el estudio de la solución de sistemas de ecuaciones lineales pero ahora con números complejos, nuestra inspiración fueron algunos métodos que ya conocemos por el estudio en los reales tales como el determinante, substitución o igualando coeficientes.

  • Blog

    Cambio de coordenadas y forma polar de un complejo - [Detalles]

    Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.

  • Blog

    Problemas de sistemas de ecuaciones complejos y forma polar - [Detalles]

    Resolvemos una serie de problemas de sistemas de ecuaciones lineales con números complejos, asi también enunciamos la relga de Kramer para la resolución de estos problemas.

  • Blog

    Raíces de números complejos y raíces de la unidad - [Detalles]

    Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.

  • Blog

    Exponencial, logaritmo y trigonometría en los complejos - [Detalles]

    Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.

  • Cuestionario

    2. El campo de los números complejos $\mathbb{C}$ - [Detalles]

    Ahora queremos repasar lo que significa que $\mathbb{C}$ sea un campo y que implica, así como reforzar unas cuantas fórmulas para expresar partes real e imaginaria de un número complejo.

  • Cuestionario

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    Revisitaremos un poco de la parte histórica y notaremos un poco de la importancia de la simbiótica relación entre los números complejos y el plano cartesiano.

  • Blog

    8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]

    Estudiaremos las sucesiones de números complejos, el cual resulta un objeto fundamental para el estudio del concepto de las aproximaciones, utilizando los conceptos de distancia que definimos en la entrada anterior e introducimos el "límite de una sucesión" y cuando puede o no existir.

  • Blog

    3. El plano complejo $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.

  • Blog

    4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.

  • Blog

    5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]

    En esta entrada de blog se presenta cómo calcular raíces n-esimas de números complejos partiendo de la fórmula de De Moivre.

  • Evaluación

    Unidad I: Introducción y preliminares - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Evaluación

    Unidad I: Introducción y preliminares - Examen - [Detalles]

    En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Evaluación

    Unidad III: Series de números complejos - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.

  • Evaluación

    Unidad III: Series de números complejos - Examen - [Detalles]

    En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.

  • Guía de estudio

    Unidad III: Series de números complejos - Tarea - Soluciones - [Detalles]

    Se presentan las soluciones detalladas a la tarea en equipo de la tercera unidad.

  • Guía de estudio

    Unidad III: Series de números complejos - Examen - Soluciones - [Detalles]

    Se presentan las soluciones detalladas al examen de la tercera unidad.

  • Blog

    28. Sucesiones y series de funciones - [Detalles]

    Desde hace varias entradas habíamos definido sucesiones, y en la anterior series, pero ambas para números complejos, ahora subiremos un escalón, definiendo estos conceptos también para funciones complejas.

  • Cuestionario

    28. Sucesiones y series de funciones - [Detalles]

    Ya que vimos sucesiones y series de números complejos, ahora toca ver los mismos conceptos pero para funciones de variable compleja. Veamos un par de preguntas para ver si se entendió bien.

  • Video

    Ejercicio Inducción (Gauss) - [Detalles]

    En este video, no sólo descubriremos la belleza detrás de esta ecuación que suma números consecutivos, sino que también nos embarcaremos en un viaje didáctico para demostrar su validez utilizando el principio de inducción matemática.

  • Blog

    Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]

    En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.

  • Blog

    Aritmética cardinal - [Detalles]

    En esta sección definiremos operaciones aritméticas entre números cardinales y analizaremos algunas de sus propiedades.

  • Video

    Gráficas regulares y secuencias de grado q - [Detalles]

    Aquí damos respuesta a las siguientes preguntas ¿Para qué valores de n y r existe una gráfica r-regular de orden n? ¿Qué secuencias de n números enteros no negativos son la secuencia de grados de una gráfica?

  • Capítulo del libro

    Expresiones algebraicas - [Detalles]

    En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.

  • Cuestionario

    Cuestionario de los números reales - [Detalles]

    Este es un cuestionario para repasar el Módulo 15 del texto "Cimientos Matemáticos" donde se abarcan temas como: postulados de campo, postulados de orden, valor absoluto, etc.

  • Video

    Breviario de Lógica y Conjuntos - [Detalles]

    En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.

  • Video

    Axiomas de Campo - [Detalles]

    En este video, se explica un poco sobre el origen y finalidad de los axiomas de los números reales, se presentan los axiomas de campo y se deducen algunas consecuencias de estos.

  • Video

    Principio Arquimediano - Análisis Matemático I - [Detalles]

    El Principio Arquimediano. En este video se eununcia y demuestra el Principio Arquimediano, como consecuencia del Axioma del Supremo. Se define la parte entera de un real y se demuestra que los números racionales son densos en los reales.

  • Video

    Funciones, Parte 2 - [Detalles]

    En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.

  • Video

    Discontinuidades - [Detalles]

    En este video platicamos sobre algunos tipos de discontinuidades de funciones de números reales.

  • Video

    Ejemplos: determinar el dominio de una función - [Detalles]

    En este video hacemos un par de ejemplos en los que se determina el dominio de una función, es decir, el dominio máximo de números reales, que es posible para una regla de correspondencia dada.

  • Video

    Limites de sucesiones - [Detalles]

    En este video se motiva la definición de límite de una sucesión de números reales, y se ejemplifica con la sucesión 1/n.

  • Sitio web

    COMAL: Cálculo Diferencial e Integral I - [Detalles]

    Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.

  • Video

    Implementación con bits, Enteros con signo - [Detalles]

    Enteros con signo – Representación de datos numéricos; los números negativos en la computadora.