JAVA, Clases de uso - [Detalles]
• Clases de uso – Organización por convención. ¿Qué son las clases en JAVA? El método main. Java, poo, programación orientada a objetos, clases de uso, clases, método main, main
Diseño y programación orientada a objetos; Modelo - [Detalles]
1.2 Modelo orientado a objetos - ¿Qué es el modelo orientado a objetos? Presentación de las características de este modelo y su composición además de la definición de objeto que usaremos, cómo funciona, su rutina y mensaje además los tipos que existen. De igual forma se nos explica la definición de estado de objeto. y los tipos de métodos. También se nos habla de la programación orientada a objetos con clases, su definición y composición. Por último se presenta la definición de interfaz.
Programación orientada a objetos con Java, Clases y atributos - [Detalles]
Clases y atributos - Cómo se define todo en JAVA; clases, atributos y métodos. Conceptos generales y sintaxis.
Ingeniería de software, Paradigmas procedimental y orientado a objetos - [Detalles]
Paradigmas procedimental y orientado a objetos – Qué es la programación procedimental y orientada a objetos; y qué lenguajes la usan así como cualidades de estas y los pioneros.
Diseño y programación orientada a objetos; Diseño - [Detalles]
1.3 Diseño: tarjetas de responsabilidad y UML - Diseño de una solución orientada a objetos. Cómo se hace una tarjeta de responsabilidad. ¿Qué es la notación UML? y cómo hacer un diagrama de clases. Se da el primer acercamiento al concepto de herencia o generalización, implementación o realización y contención (agregación y composición). Por último se habla de dependencia y asociación.
Cuando dos clases laterales son iguales - [Detalles]
Se presenta un criterio para determinar cuándo dos clases laterales son iguales, también se demuestra que clases laterales son iguales o disjuntas.
Álgebra Moderna I: Grupo Cociente - [Detalles]
La definición de subgrupos normales surgió de la necesidad de extender las propiedades de los enteros a grupos más generales. En los enteros, definimos una relación de equivalencia (módulo n) que nos permite obtener clases de equivalencia. Estas clases no solo generan una partición, sino que también constituyen un subgrupo de Z. La idea central es generalizar este concepto: buscamos definir una operación en ciertas clases de equivalencia para que también formen un grupo.
JAVA, Poniendo las clases en paquetes - [Detalles]
• Poniendo las clases en paquetes – Ejemplo de cómo crear clases y paquetes.
Nota 22. Conteo. Ordenaciones. - [Detalles]
En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.
Lenguajes de programación; Paradigma Declarativo vs Imperativo y orientación a objetos - [Detalles]
2.2 Declarativo, imperativo y orientación a objetos - Presentación y explicación de los principales paradigmas de la programación.
Diseño y programación orientada a objetos; Introducción - [Detalles]
1.1 Diseño y programación orientada a objetos introducción - Presentación del paradigma así como de las ventajas y características de la POO.
Implementación con orientación a objetos, Agregar al final - [Detalles]
Agregar al final - Cómo usar la clase listasimple para agregar objetos al final de las listas.
COMAL: Introducción a Ciencias de la Computación - [Detalles]
Comenzamos con aspectos históricos y la arquitectura básica de una computadora. Luego, nos centramos en aprender a programar con el paradigma orientado a objetos, usando Java como lenguaje ilustrativo. Explicamos el funcionamiento de compiladores e intérpretes. Hablamos del diseño y programación de algoritmos en un lenguaje imperativo, para lo que se estudian variables, estructuras de control, clases y otros temas avanzados. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE102723.
Programación orientada a objetos con Java, Métodos - [Detalles]
Métodos - Cómo se define todo en JAVA; clases, atributos y métodos. Conceptos generales y sintaxis.
Programación orientada a objetos con Java, Tipos de métodos - [Detalles]
Tipos de métodos - Cómo se define todo en JAVA; clases, atributos y métodos, tipos de métodos. Conceptos generales y sintaxis.
Ejemplo de partición, clases y relación de equivalencia - [Detalles]
Continuamos con la discusión sobre las relaciones de equivalencia, damos un ejemplo y demostramos que es una relación de equivalencia, usamos el ejemplo para ilustrar sus clases de equivalencia y la partición.
Los enteros módulo $m$ - [Detalles]
Definimos los enteros modulo "m". Este conjunto consiste de las clases de equivalencia de la congruencia modulo "m". Definimos la operación suma y multiplicación en el conjunto de los enteros modulo "m" (recordemos que sus elementos son clases de equivalencia). Mostramos que las operaciones cumplen las propiedades necesarias para que los enteros modulo "m" sean un anillo.
Hay tantas clases laterales izquierdas como derechas - [Detalles]
Se demuestra que hay el mismo número de clases laterales derechas que izquierdas.
Centralizadores y clases de conjugación - [Detalles]
Se definen los centralizadores y se exploran propiedades de las clases de conjugación.
Distintas clases de números - [Detalles]
En este video platicamos acerca de distintas clases de números y motivamos de donde surgen.
Clases de equivalencia y particiones - [Detalles]
Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.
Relaciones de equivalencia y clases de equivalencia - [Detalles]
En esta entrada revisamos las relaciones de equivalencia, clases de equivalencia y particiones de conjuntos.
Entrada y Salida estructurada, Jerarquía de clases para entrada, salida - [Detalles]
Jerarquía de clases para entrada, salida - Tipos de flujo en Java
Tipos genéricos, Introducción, uso y declaración de clases genéricas - [Detalles]
Introducción, uso y declaración de clases genéricas - Qué son, cómo se pueden utilizar y para qué nos pueden servir. Cómo se declaran. Incluye ejemplo de uso y declaración así como las convenciones generales.
Estudiamos algunas propiedades del punto de Nagel y las de otros objetos relacionados con este punto, como la circunferencia de Spieker.
Principios de conteo 2 - Permutaciones - [Detalles]
Desarrollamos el concepto de permutación, y utilizamos los principios de conteo de la entrada anterior para encontrar el número de permutaciones de un conjunto de objetos.
Principios de conteo 3 - Combinaciones - [Detalles]
Desarrollamos el concepto de combinaciones. En este caso, al contar las combinaciones, todos aquellos arreglos con los mismos objetos (pero en orden distinto) se consideran indistinguibles. Utilizamos las herramientas de la entrada anterior para encontrar el número de combinaciones.
Homología singular - definición de homología singular - [Detalles]
En este video por fin definiremos la homología singular de un grupo X. Estos objetos (grupos abelianos o R-módulos) serán nuestro principal objeto de estudio en lo que resta de esta lista de reproducción.
Coordenadas polares - [Detalles]
Se introducen las coordenadas polares y disintos tipos de objetos matemáticos que pueden ser descritos a través de ellas.
¿Qué es una gráfica? - [Detalles]
En este video se presenta la definición formal de gráfica. Se explica cómo las representaciones visuales (o dibujos) nos sirven para entender la combinatoria de estos objetos. Se reconoce la necesidad de identificar gráficas que, aunque no son iguales formalmente, son esencialmente la misma (gráficas isomorfas), y se define isomorfismo entre gráficas.
Nota 21. Conteo, ordenaciones con repetición. - [Detalles]
En esta nota comenzaremos a ver las técnicas de conteo, las cuales son una aplicación de los números naturales; analizaremos la situación conocida como ordenaciones con repetición, que nos dan todas las posibilidades de formar una secuencia ordenada de m posiciones, llenadas con los n objetos de un determinado conjunto.
Polinomio mínimo de transformaciones lineales y matrices - [Detalles]
En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar
Eigenvectores y eigenvalores - [Detalles]
En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.
JAVA, Tipos de datos - [Detalles]
• Tipos de datos – Se muestran los diferentes tipos de datos y estructuras de datos. Java, poo, programación orientada a objetos, tipos de datos, datos, tipo abstracto de datos, abstracto, abstractos, precondiciones, postcondiciones, estructuras de datos, estructuras
Valores, referencias y ocultamento, Valores y referencias - [Detalles]
Valores y referencias – A qué hacen referencia los métodos en JAVA, qué tipo de valores se utilizan dependiendo el contexto ¿qué se manda a llamar? Y cómo se accede a los objetos.
Arreglos, Arreglos 1D en JAVA - [Detalles]
Arreglos 1D en JAVA - Arreglos primitivos y arreglos de objetos así como un ejemplo de implementación.
Implementación con orientación a objetos, TDA lista - [Detalles]
TDA lista - Cómo aplicar el concepto de Tipo de datos abstracto al concepto de lista y qué operaciones se pueden realizar con las listas.
Implementación con orientación a objetos, Interfaz ILista (agregar I a Lista) - [Detalles]
Interfaz ILista (agregar I a Lista) - Principio del encapsulamiento al aplicar la interfaz ILista. Implementar la clase Nodos. Programar listas simplemente ligadas.
Implementación con orientación a objetos, Insertar en cualquier posición - [Detalles]
Insertar en cualquier posición - Qué clase usar para insertar en cualquier posición dependiendo del caso.
Implementación con orientación a objetos, Borrar e Equals == - [Detalles]
Borrar e Equals == - Cómo programar un 'borrar' para hacerlo con el nodo adecuado.
Implementación con orientación a objetos, Lista versión iterativa - [Detalles]
Lista versión iterativa - Cómo implementar una versión iterativa de lista y nodos para para ahorrar tiempo y espacio (eficiencia).
Interfaz gráfica de usuario (IGU), Diseño de la lógica de una calculadora simple - - [Detalles]
Diseño de la lógica de una calculadora simple - Parte 1/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Interfaz gráfica de usuario (IGU), Creación de una GUI con Netbeans - [Detalles]
Creación de una GUI con Netbeans - Parte 2/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Interfaz gráfica de usuario (IGU), Implementación de las transiciones en el código - [Detalles]
Implementación de las transiciones en el código - Parte 3/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Particiones, relaciones y clases de equivalencia - [Detalles]
Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia
Ejemplo de clase de equivalencia y partición - [Detalles]
Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.
Congruencias como relación de equivalencia - [Detalles]
En este video vemos que la relación de congruencia es, justo como podríamos sospechar, una relación de equivalencia en los enteros. Mostramos que la congruencia cumple las tres propiedades para ser una relación de equivalencia: Reflexividad, Simetría, Transitividad. Hablamos sobre la partición que genera en los enteros y cuáles son las clases de equivalencia para cada entero.
El número de hojas de un cubriente y su grupo fundamental - [Detalles]
En este video demostramos que el número de hojas de un cubriente (con espacio base y espacio cubriente arco-conexos) está en correspondencia con el número de clases laterales de la imagen del grupo fundamental del espacio cubriente, en el grupo fundamental del espacio base.
El cubriente universal - parte 2 - [Detalles]
En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.
El teorema de clasificación de cubrientes - parte 3 - [Detalles]
En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.
Clases laterales - definición y ejemplos - [Detalles]
Se da la definición de clase lateral y se presentan ejemplos.
Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]
En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.
Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]
En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.
Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]
Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.
Álgebra Moderna I: Acciones - [Detalles]
Para esta sección, necesitamos tomar el concepto de acción. Hemos estado usando el verbo actuar para referirnos a esta transformación que sucede al operar un a en G y otro elemento, sea del mismo G o de las clases laterales. La realidad es que ya usar actuar da una idea de lo que estamos queriendo decir. Estamos usando un elemento de un grupo para transformar un elemento de otro.
Conjunto cociente - [Detalles]
En esta entrada definiremos al conjunto cociente, dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.
Matrices y transformaciones nilpotentes - [Detalles]
Hemos estudiado varias clases importantes de matrices y transformaciones lineales: diagonales, triangulares superiores, simétricas, ortogonales, normales, etc. Es momento de aprender sobre otro tipo fundamental de matrices y transformaciones lineales: las transformaciones nilpotentes.
Funciones de orden superior, Pasar una función como parámetro - [Detalles]
Pasar una función como parámetro - Implementar una interfaz funcional para pasar la función a parámetro. Introducción a las clases anónimas internas y a las LAMBDA
Hilos. Implementación, Crear hilos en JAVA - [Detalles]
Crear hilos en JAVA - Clases de hilos y cómo crearlos
Clases de homotopía de funciones con domino la n-esfera - [Detalles]
Vemos una manera equivalente de definir los grupos de homotopía