Resolución de triángulos rectángulo, otro ejemplo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la uno de sus lados y uno de sus ángulos, podemos saber las medidas de todos sus ángulos y lados.
Los Elementos de Euclides: Teorema 13 - [Detalles]
En este video cubrimos el Teorema 13 de Los Elementos de Euclides. Aquí se demuestra que al levantarse una recta sobre otra se forman ángulos tales que cada uno de ellos es de 90° (es decir, cada uno de ellos es recto) o bien son suplementarios (es decir, suman 180°, suman dos rectos)
Más ejemplos de reducción gaussiana - [Detalles]
Resolvemos más problemas que usan el algoritmo de reducción gaussiana. Vemos ejemplos concretos y uno cuyas dimensiones dependen de una variable entera.
Proceso de Gram-Schmidt - [Detalles]
Mostramos el teorema de Gram-Schmidt, que cambia un conjunto de vectores linealmente independientes a uno ortonormal. Vemos ejemplos de su aplicación.
Divisibilidad: el máximo común divisor - [Detalles]
Definimos el máximo común divisor (MCD). Primero hacemos la observación de que cada entero tiene un numero finito de divisores, definimos el común divisor, y vemos que el conjunto de divisores de uno o más enteros siempre es finito y podemos obtener un máximo en común (que sea común divisor). Vemos algunos ejemplos y la notación que usaremos para el MCD
Factorización en números primos - [Detalles]
Vemos la factorización en números primos. Demostramos un teorema que nos dice que todo número entero mayor que uno se puede expresar como un producto de números primos. Mostramos un ejemplo y después veremos que este teorema está relacionado con el teorema fundamental de la aritmética.
i, el número imaginario - [Detalles]
Presentamos el numero imaginario "i", el cual nos permite definir la raíz cuadrada de un numero negativo. Hablamos brevemente de sus propiedades, y lo más importante, que se cumple que el cuadrado del número imaginario es menos uno: "i^2=-1".
Teorema sobre polinomios y números complejos - [Detalles]
Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio.
Ecuación de Bessel (Parte 2) - [Detalles]
Encontramos una solución a la ecuación de Bessel de orden uno.
La probabilidad clásica - [Detalles]
Presentamos el enfoque clásico de la probabilidad, que fue uno de los primeros en desarrollarse históricamente.
Diapositivas sobre demostraciones de bicondicionales - [Detalles]
Mostramos las opciones por las cuales podemos demostrar una proposición bicondicional y la explicación lógica del por qué es posible hacerlo, la explicación se acompaña de 2 ejemplos cada uno respecto a las maneras de demostrar una proposición bicondicional.
Diapositivas sobre cardinalidad y los racionales - [Detalles]
En estas diapositivas se prueba uno de los resultados más sorprendentes durante el primer semestre que es que la cardinalidad entre los naturales es igual que los racionales. También se prueba que la unión disjunta de dos conjuntos infinito-numerable es infinito-numerable.
Cuestionario de simetrías - [Detalles]
Ponemos en práctica el tema de simetrías de figuras ya sea respecto a un punto, axial por uno de los ejes o por la recta identidad, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de autoevaluación sobre el plano y el espacio cartesiano - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Cuestionario sobre coordenadas en el espacio - [Detalles]
Ponemos en práctica el tema de diferentes tipos de espacios; rectangulares, cilíndrico y esférico y como pasar de uno a otro, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Guía de autoevaluación sobre trigonometría y más sistemas de coordenadas - [Detalles]
Mostramos las respuestas correctas, sus criterios de evaluación, los objetivos que se esperaban que el alumno cumpliera con cada uno de los ejercicios de la guía.
Cuestionario sobre ecuaciones de rectas en el espacio - [Detalles]
Ponemos en práctica las relaciones que hay entre dos rectas (paralelas, intersección en uno o más puntos) y además el cálculo de las distancia de un punto a una recta, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre ecuaciones de planos en el espacio - [Detalles]
Anlizamos los planos que se pueden generar en R^3 (espacio euclídeo) y cómo se pueden identificar mediante asignándoles su ecuación a cada uno, hacer una ecuación en plano comparte características con las ecuaciones de la recta sólo que con una dimensión más, es decir, ambos tienen ecuación general y ecuación paramétrica, para los planos va a ser encesario conocer 3 puntos para poder dar su ecuación (mientras que en la recta sólo requeriamos 2).
Diapositivas sobre simetría de las cónicas - [Detalles]
Definimos lo que es una simetría y los tipos que hay de éstas, mostramos que las simetrías están presentes en las figuras que estamos estudiando, teniendo ya sea solo uno o ambas simetrías (axial y central).
Producto cruz ( producto vectorial) - [Detalles]
Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores.
9. Continuidad en un espacio métrico - [Detalles]
Le echaremos un vistazo a modo de repaso a un par de nociones acerca de la continuidad en espacios métricos abstractos y uno que otro ejemplo.
Axiomas de Campo en los números reales - [Detalles]
La lista de axiomas de campo son las reglas que rigen a los números con una estructura adecuada. En particular el conjunto de números reales satisface esta lista y en este video discutimos cada uno.
Nota 7. Relaciones y funciones - [Detalles]
En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.
Álgebra Moderna I: Factorización Completa - [Detalles]
Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.
Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]
En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.
36. Teorema Integral de Cauchy - [Detalles]
Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.
Álgebra Moderna I: Teorema de Lagrange - [Detalles]
A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H
Los Elementos de Euclides: Teorema 16 - [Detalles]
En este video cubrimos el Teorema 16 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, un ángulo externo es mayor que cada uno de los internos y opuestos a él.
Los Elementos de Euclides: Teorema 21 - [Detalles]
En este video cubrimos el Teorema 21 de Los Elementos de Euclides. Aquí demostramos que si desde los extremos de uno de los lados de un triángulo se construyen dos rectas que se encuentren en el interior de él, las rectas construidas serán menores que los lados restantes del triángulo pero el ángulo comprendido por las rectas construidas será mayor.
Álgebra Moderna I: Teorema de Cayley - [Detalles]
A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley
Polinomio mínimo de transformaciones lineales y matrices - [Detalles]
En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar
Introducción a forma canónica de Jordan - [Detalles]
En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.