Semejanza de triángulos - [Detalles]
Interactivo relacionado al tema "Semejanza de Triángulos". Aquí el estudiante podrá navegar por apartados donde se enuncian y demuestran los teoremas de semejanza de triángulos: ángulo-ángulo-ángulo, lado-ángulo-lado y lado-lado-lado que se denotan como AAA, LAL y LLL respectivamente. Todo acompañado de figuras interactivas que guían las demostraciones.
Razón, semejanza y triángulos semejantes - [Detalles]
Demostramos el primer y segundo teorema de Thales y sus recíprocos, el teorema de Pitágoras y los criterios de semejanza de triángulos
Semejanza de triángulos - [Detalles]
Demostramos los criterios de semejanza para triángulos con la ayuda del teorema de Thales y resolvemos algunos ejercicios.
Primer criterio de semejanza (AAA) - [Detalles]
Demostramos el criterio de semejanza AAA
Segundo criterio de semejanza - [Detalles]
Demostramos el criterio de semejanza LAL
Semejanza de triángulos y teorema de Thales - [Detalles]
Demostramos el primer teorema de Thales y enunciamos el segundo teorema de Thales
Cuestionario de nociones de trigonometría - [Detalles]
Este es un cuestionario para repasar el Módulo 8 del texto "Cimientos Matemáticos" donde se abarcan temas como: convertir ángulos a radianes y viceversa, semejanza de triángulos, distancia entre dos puntos, etc.
Congruencia de triángulos - [Detalles]
Damos algunas propiedades de los triángulos y los criterios para saber cuándo dos triángulos son congruentes
Congruencia de triángulos - [Detalles]
Interactivo relacionado al tema "Congruencia de triángulos". Aquí el estudiante podrá navegar por apartados donde se postulan los tres criterios de congruencia y a partir de estos se demuestran 4 proposiciones, una de ellas sobre congruencia de triángulos y las restantes sobre la igualdad de lados o ángulos. Todo acompañado de figuras interactivas que guían las demostraciones.
Proposiciones 1 a 26 del libro I de los Elementos de Euclides (propiedades de los triángulos) - [Detalles]
Aquí el alumno podrá navegar por apartados donde se encuentran las proposiciones 1 a 26 del libro I de los Elementos de Euclides. Estas proposiciones en general son sobre las propiedades de los triángulos y en particular las proposiciones 4,8 y 26 son los criterios de congruencia de los triángulos. Todas demostradas con ayuda de figuras interactivas.
Proposición 24 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 24 del libro I de los elementos de Euclides. En esta proposición se muestra que si dos triángulos tienen dos de sus lados iguales (triángulos isósceles) y esos lados son iguales entre los triángulos, pero de los ángulos que forman uno es mayor que otro, entonces la base de uno es mayor al otro. Incluye figuras interactivas.
Triángulos en perspectiva - [Detalles]
Estudiamos algunos teoremas relacionados con triángulos en perspectiva, el principal de ellos, el teorema de Desargues.
Teoremas de Euler, de Fermat y de Wilson - [Detalles]
En este apartado se demuestran tres teoremas importantes relacionados con los números primos: el teorema de Euler, el teorema de Fermat y el teorema de Wilson, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python donde se implementa el teorema de Euler y el teorema de Wilson, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Criterios de congruencia de triángulos - [Detalles]
Damos los criterios de congruencia de triángulos
Homotecia entre triángulos - [Detalles]
Decimos cuándo dos triángulos son homotéticos
Congruencia de triángulos - [Detalles]
Demostraremos los criterios de congruencia para triángulos usando transformaciones rígidas y veremos algunos ejemplos.
Puntos de Fermat y triángulos de Napoleón - [Detalles]
Demostramos el teorema de Napoleón y mostramos la relación que hay entre los triángulos de Napoleón y los puntos de Fermat.
Cuestionario sobre ley de senos, ley de cosenos y resolución de triángulos - [Detalles]
Ponemos en práctica el tema de las leyes de los senos y cosenos pra ser aplicadas en la resolución de triángulos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Resolución de triángulos - [Detalles]
Hacemos uso de las Leyes de senos y cosenos para la resolución de triángulos. Es decir, mostramos que, sabiendo algunos datos de un triángulo cualquiera, podemos saber cuándo miden los lados y ángulos restantes por medio de las leyes de senos y cosenos
Geometría elemental - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.
Teoremas sobre el límite de funciones - [Detalles]
Revisión de teoremas del límite de una función
Otros teoremas de funciones continuas - [Detalles]
Estudio de teoremas derivados del teorema del valor intermedio
Teoremas de Fermat y de Wilson - [Detalles]
Motivamos, enunciamos y demostramos los teoremas de Fermat y de Wilson con problemas del tipo saber si una potencia de un número es congruente con otro o encontrar el residuo de una congruencia,
Algunos teoremas de representaciones - [Detalles]
Se motiva la necesidad de representar a un grupo como subgrupo de otro más conocido y se muestran algunos teoremas de representación incluido el teorema de Cayley.
Los teoremas de Sylow - [Detalles]
Se enuncian y demuestran los teoremas de Sylow.
Consecuencias de los teoremas de Sylow - [Detalles]
Se presentan algunas aplicaciones y consecuencias de los teoremas de Sylow que involucran a los p-subgrupos de Sylow.
Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]
Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.
Criterio de congruencia LAL (Proposición I.4) - [Detalles]
Demostramos el criterio de congruencia de triángulos lado-ángulo-lado
Aplicaciones de criterios de congruencia - [Detalles]
Damos algunas aplicaciones de los criterios de congruencia de triángulos
Triángulos pedales - [Detalles]
Damos las definiciones de triángulo mediano, triángulo órtico y triángulo pedal y demostramos algunas de sus propiedades
Homotecia entre triángulos - [Detalles]
Definimos el concepto de homotecia y demostramos algunos resultados
Teorema de Desargues - [Detalles]
Demostramos cuándo dos triángulos están en perspectiva
Rectas isogonales - [Detalles]
Estudiamos algunos resultados sobre rectas isogonales, puntos conjugados isogonales y triángulos pedales.
Diapositivas sobre razones trigonométricas - [Detalles]
Damos la introducción al tema de trigonometría como las razones trigonométricas, la medición en grados o radianes, funciones trigonométricas de ángulos notables, resolución de triángulos basándonos en las razones trigonométricas y leyes de senos cosenos.
Cuestionario sobre resolución de triángulos rectos - [Detalles]
Ponemos en práctica el tema resolución de un triángulo recto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. El Teorema de Pitágoras es válido solo para triángulos rectángulos.
Resolución de triángulos rectángulo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la medida de dos de sus lados, podemos saber las medidas de todos sus ángulos y su otro lado.
Resolución de triángulos rectángulo, otro ejemplo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la uno de sus lados y uno de sus ángulos, podemos saber las medidas de todos sus ángulos y lados.
Ángulos notables: ¿cuáles son? y ¿por qué son chidos? - [Detalles]
En este video hablamos sobre algunos ángulos que son bastante relevantes, explicamos como están relacionados ciertos triángulos, y por qué esto los hace importantes.
Demostramos la Ley de Senos, la cual da una relación entre los lados y ángulos de triángulos no rectángulos. La ley de senos nos da una relación de la longitud de un lado de un triángulo al seno del ángulo opuesto.
Leyes de cósenos. Demostración - [Detalles]
Demostramos la ley de Cosenos, la cual es una generalización del teorema de Pitágoras en los triángulos rectángulos en trigonometría.
Los Elementos de Euclides: Teorema 4 - [Detalles]
En este video cubrimos el Teorema 4 de Los Elementos de Euclides. Aquí se realiza la demostración del criterio de congruencia de triángulos LADO - ÁNGULO - LADO.
Los Elementos de Euclides: Teorema 8 - [Detalles]
En este video cubrimos el Teorema 8 de Los Elementos de Euclides. Aquí se demuestra el criterio de congruencia de triángulos LADO - LADO - LADO.
Los Elementos de Euclides: Teorema 19 - [Detalles]
En este video cubrimos el Teorema 19 de Los Elementos de Euclides. Aquí se realiza la demostración de la propiedad de los triángulos que afirma que a mayor ángulo se opone mayor lado.
Los Elementos de Euclides: Teorema 24 - [Detalles]
En este video cubrimos el Teorema 24 de Los Elementos de Euclides. Este teorema prueba que si dos triángulos tienen dos lados respectivamente iguales pero el ángulo comprendido por estos lados es mayor en el primer triángulo respecto del segundo, entonces el tercer lado del primer triángulo es mayor respecto del tercer lado del segundo triángulo.
Los Elementos de Euclides: Teorema 25 - [Detalles]
En este video cubrimos el Teorema 25 de Los Elementos de Euclides. Aquí se demuestra que si dos triángulos tienen dos lados respectivamente iguales y en el primer triángulo el tercer lado es mayor que el tercer lado del segundo triángulo, entonces el ángulo comprendido por los lados iguales en el primer triángulo es mayor que el ángulo respectivo en el segundo triángulo.
Los Elementos de Euclides: Teorema 26 - [Detalles]
En este video cubrimos el Teorema 26 de Los Elementos de Euclides. En este teorema se demuestra el criterio de congruencia de triángulos ÁNGULO - LADO - ÁNGULO.
Los Elementos de Euclides: Teorema 34 - [Detalles]
En este video cubrimos el Teorema 34 de Los Elementos de Euclides. Aquí se demuestra que en todo paralelogramo, los lados opuestos son iguales, los ángulos opuestos son iguales; y además que cualquier diagonal divide al paralelogramo en dos triángulos iguales.
Los Elementos de Euclides: Teorema 37 - [Detalles]
En este video cubrimos el Teorema 37 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que están sobre la misma base y entre las mismas paralelas tienen también áreas iguales.
Los Elementos de Euclides: Teorema 38 - [Detalles]
En este video cubrimos el Teorema 38 de Los Elementos de Euclides. Aquí se demuestra que los triángulos que tienen bases iguales y que están entre las mismas paralelas tienen áreas iguales.
Los Elementos de Euclides: Teorema 39 - [Detalles]
En este video cubrimos el Teorema 39 de Los Elementos de Euclides. Aquí se demuestra que si triángulos iguales están sobre la misma base y en el mismo lado, entonces también están entre las mismas paralelas.
Los Elementos de Euclides: Teorema 40 - [Detalles]
En este video cubrimos el Teorema 40 de Los Elementos de Euclides. Aquí se demuestra que triángulos iguales, que están sobre bases iguales y en el mismo lado, también están entre las mismas paralelas.
Nociones de trigonometría - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.
Introducción a la Geometría Moderna - [Detalles]
Interactivo introductorio al curso "Geometría Moderna I". Aquí el alumno podrá navegar a distintos apartados donde se encuentran definiciones con figuras interactivas, las cuales se consideran necesarias para iniciar con el curso, tales como: recta, segmento, rayo, ángulo, bisectriz,..., triángulos, circunferencia.
Área de un triángulo - [Detalles]
Interactivo relacionado al tema "Área de un triángulo". Aquí el estudiante podrá navegar por apartados donde se define la altura y pie de altura de un triángulo y se demuestra la fórmula para calcular el área de un triángulo rectángulo y posteriormente de cualquier triángulo. Además, se demuestran dos proposiciones relacionadas a la razón del área entre dos triángulos. Todo acompañado de figuras interactivas que guían las demostraciones.
Proposiciones 33 a 48 del libro I de los Elementos de Euclides (paralelogramos y relaciones de área) - [Detalles]
Aquí el alumno podrá navegar por apartados donde se encuentran las proposiciones 33 a 48 del libro I de los Elementos de Euclides. Estas proposiciones en general son sobre las propiedades de los paralelogramos, triángulos y cuadrados, haciendo referencia especial a las relaciones de área. En particular las proposiciones 47 y 48 son el teorema de Pitágoras y su recíproco. Todas demostradas con ayuda de figuras interactivas.
Medidas indirectas: ¿cómo medir la altura de un árbol sin treparlo? - GeoGebra - [Detalles]
Interactivo en GeoGebra relacionado al tema "Resolución de triángulos rectángulo". Se presenta el planteamiento y resolución de un problema de medir un árbol cotando solo con ciertos datos, el problema se reduce al uso de identidades trigonométricas.
Proposición 4 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 4 del libro I de los elementos de Euclides que explica el primer criterio de congruencia de triángulos: lado-ángulo-lado (LAL). Incluye figuras interactivas.
Proposición 8 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 8 del libro I de los elementos de Euclides, que es el criterio de congruencia de triángulos: lado-lado-lado (LLL). Incluye figuras interactivas.
Proposición 26 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 26 del libro I de los elementos de Euclides, que es el criterio de congruencia de triángulos: ángulo-lado-ángulo (ALA). Incluye figuras interactivas.
Proposición 37 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 37 del libro I de los elementos de Euclides, donde se muestra que los triángulos que tienen la misma base y están contenidos en las mismas paralelas, tienen áreas iguales. Incluye figuras interactivas.
Proposición 38 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 38 del libro I de los elementos de Euclides, donde se muestra que los triángulos que tienen bases iguales y están contenidos en las mismas paralelas, tienen áreas iguales. Incluye figuras interactivas.
Proposición 39 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 39 del libro I de los elementos de Euclides, donde se muestra que triángulos con áreas iguales y que tienen la misma base y están del mismo lado, están contenidos en las mismas paralelas. Incluye figuras interactivas.
Proposición 40 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 40 del libro I de los elementos de Euclides, donde se muestra que triángulos con áreas iguales y que tienen bases iguales y están del mismo lado, están contenidos en las mismas paralelas. Incluye figuras interactivas.
Propiedades del polinomio característico - [Detalles]
Retomamos la definición de polinomio característico y vemos sus propiedades principales. Enunciamos dos teoremas fundamentales de matrices que lo usan.
Tipos de enunciados - [Detalles]
Definición de enunciados como axiomas, teoremas y sus clasificaciones. También se definen formas proposicionales como la tautología y la contradicción.
Conjunto potencia - [Detalles]
Definimos el conjunto potencia de un conjunto, hablamos de ejemplos de los conjuntos potencia de conjuntos sencillos, y damos propiedades y teoremas relacionados al conjunto potencia
Equivalencia entre funciones biyectivas e invertibles - [Detalles]
Definimos la inversa de una función, demostramos principalmente que: Una función tiene inversa si y sólo si, es biyectiva. Además de esto demostramos otro par de Teoremas relacionados a la inversa de una función.
Cardinalidad - conjuntos finitos - [Detalles]
Usando lo visto anteriormente, usando la cardinalidad, damos la definición de un conjunto finito o infinito. Hablamos de varios teoremas relacionados a los conjuntos finitos.
Los teoremas de Fermat y de Euler - [Detalles]
Vemos el pequeño teorema de Fermat y el Teorema de Euler. Primero demostramos el teorema de Euler, el cual nos da una relación de la función de Euler con una congruencia modulo "m", y usando este resultado demostramos el pequeño teorema de Fermat.
Teorema sobre polinomios y números complejos - [Detalles]
Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio.
Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]
None
Criterios de convergencia para las integrales impropias - [Detalles]
Enseñanza a los teoremas para el criterio de convergencia de integrales impropias.
Criterio de la divergencia y de acotación - [Detalles]
Enseñanza a los teoremas de la divergencia y de acotación como criterios de convergencia para las series.
Segmento dirigido y teorema de Stewart - [Detalles]
El concepto de segmento dirigido nos ayudara a desarrollar temas como los teoremas de Stewart, de Ceva y de Menelao y división armónica.
Teoremas de Varignon y Van Aubel - [Detalles]
Demostramos el teorema de Varignon y el teorema de Van Aubel, vemos algunas rectas y puntos importantes del cuadrilátero.
Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]
Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.
Homología singular - la homología de una esfera - [Detalles]
En este video calcularemos la homología de una esfera. Este cálculo hará uso de la sucesión exacta del cociente, la cual, a su vez es consecuencia de muchos de los teoremas que ya hemos visto.
Principios de inducción y teoremas de recursión - [Detalles]
Demostramos el princicipio de inducción y el teorema de recursión débil, por otro lado enunciamos el teorema de recursión fuerte y el principio de buen orden.
Problemas que usan teoremas de Fermat y Wilson - [Detalles]
Resolvemos un ejercicio de congruencias, un ejercicio ocupando el teorema de Wilson y otro para aplicar el teorama de Fermat.
Grupos - "Construyendo subgrupos" - [Detalles]
Se construyen algunos subgrupos usando resultados y teoremas vistos en videos anteriores.
35. Integrales de contorno II - [Detalles]
En esta entrada veremos teoremas de integrales complejas muy importantes, tales como el Teorema Fundamental del Cálculo para integrales de contorno y el lema de Goursat.
39. Teoremas de Weierstrass - [Detalles]
Vamos a ver unos cuantos resultados importantes para ver cómo se relacionan las series de funciones, derivadas e integrales de estas y veremos bajo qué condiciones se puede derivar e integrar término a término.
Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas. - [Detalles]
En esta nota probamos varios resultados referentes a la composición de funciones inyectivas, suprayectivas y biyectivas.
Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]
El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.
36. Teorema Integral de Cauchy - [Detalles]
Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.
37. Consecuencias del Teorema Integral de Cauchy - [Detalles]
Veamos unos ejercicios sencillos para asentar bases de los teoremas importantes que se siguen del Teorema Integral de Cauchy
39. Teoremas de Weierstrass - [Detalles]
Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.
Álgebra Moderna I: Teorema de Lagrange - [Detalles]
A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H
Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]
El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.
Introducción al teorema de Cayley-Hamilton - [Detalles]
En esta entrada introducimos el teorema de Cayley-Hamilton, otro de los teoremas importantes del curso. Intuitivamente este teorema nos dice que «el polinomio característico anula al operador lineal». Es decir, si $P(\lambda)$ es el polinomio característico de una transformación lineal $T$, entonces $P(T) = 0$ .
Introducción a forma canónica de Jordan - [Detalles]
En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.
Continuidad de funciones de números reales - [Detalles]
En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.
Continuidad en intervalos cerrados - [Detalles]
En este video se explica el concepto de continuidad en intervalos cerrados y se demuestran los teoremas de Bolzano y del Valor Intermedio.
Principio de inducción matemática - [Detalles]
En este apartado se abordan los temas de inducción matemática, inducción fuerte y recursividad, con demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Teorema fundamental de la aritmética - [Detalles]
En este apartado se demuestra el teorema fundamental de la aritmética y con esto se definen al mínimo común múltiplo (MCM) y a la descomposición canónica, esto acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de otras definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Números perfectos, primos de Mersenne y primos de Fermat - [Detalles]
En este apartado se presentan tres clases de números enteros: los números perfectos, los números primos de Mersenne y los números primos de Fermat, esto acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un número pertenece a alguna de las tres clases de números previamente mencionadas, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Función phi de Euler - [Detalles]
En este apartado se aborda la función phi (o "d") de Euler, la cual calcula el número de primos relativos menores a un número entero n, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función phi de euler, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Función mu y fórmula de inversión de Möbius - [Detalles]
En este apartado se aborda la función mu (o "W") de Möbius, y la fórmula de inversión de Möbius, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función mu de Möbius y para hacer la inversión de Möbius, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Recordatorio de clases de equivalencia - [Detalles]
En este apartado se presenta un repaso del tema "clases de equivalencia", que abarca los conceptos de relaciones de equivalencia, particiones y particiones inducidas. Contiene demostraciones de teoremas y proposiciones, definiciones y problemas resueltos. Este es un tema extra correspondiente a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Sistemas completos de residuos - [Detalles]
En este apartado se abordan los temas de sistemas representantes y sistemas completos de residuos, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un conjunto es un sistema completo de residuos con respecto a n, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Congruencias y propiedades básicas - [Detalles]
En este apartado se aborda el tema de relación de congruencia con sus propiedades y operaciones, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Resolución de congruencias lineales - [Detalles]
En este apartado se aborda el tema de congruencias lineales y su relación con las ecuaciones diofantinas lineales, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver congruencias lineales y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Teorema chino del residuo - [Detalles]
En este apartado se demuestra el teorema chino del residuo, el cual sirve para resolver sistemas de congruencias lineales, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python implementando el teorema para resolver sistemas de congruencias lineales e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Sistemas de congruencias lineales (parte 1) - [Detalles]
En este apartado se aborda el tema de sistemas de congruencias lineales de una variable (en la parte 2 la generalización) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de una variable y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Sistemas de congruencias lineales (parte 2) - [Detalles]
En este apartado se aborda el tema de sistemas de congruencias lineales de 2 o más variables (de una variable en la parte 1) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de n variables y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Introducción a congruencias cuadráticas - [Detalles]
En este apartado se introduce el tema de congruencias cuadráticas cuando el módulo es un número primo o un número compuesto, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver una congruencia cuadrática en módulos primos y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Geometría del triángulo - [Detalles]
En este interactivo el estudiante podrá navegar por apartados donde se definen el triángulo medial y órtico y se demuestran los siguientes teoremas importantes relacionados a la geometría del triángulo: la recta de Euler, la circunferencia de los nueve puntos, el teorema de Ceva y su recíproco, el teorema de Menelao y su recíproco, el teorema de la bisectriz, el teorema de Pappus, el teorema de Desargues y su recíproco, un teorema sobre el circunradio del triángulo medial y un teorema sobre la concurrencia de las bisectrices internas y externas. Todo acompañado de figuras interactivas que guían las demostraciones.
Cuadriláteros cíclicos y ángulos en la circunferencia - [Detalles]
Interactivo relacionado al tema: "Circunferencia y Cuadriláteros cíclicos". Aquí el estudiante podrá navegar por apartados donde se encuentran las definiciones de un cuadrilátero cíclico y de los tipos de ángulos en una circunferencia: central, inscrito, semi-inscrito y ex-inscrito. También contiene demostraciones de teoremas y proposiciones relacionadas al tema como lo son el teorema de Ptolomeo y el teorema de la línea de Simson con sus correspondientes recíprocos. Todas las demostraciones y definiciones son apoyadas de figuras interactivas.
Teoremas selectos de geometría moderna - [Detalles]
En este interactivo el alumno podrá navegar a través de apartados que contienen las demostraciones de las leyes de senos y cosenos, la del teorema de Stewart y la de un corolario. Además, para iniciar se definen los conceptos: líneas y puntos conjugados isogonales, simedianas y punto simediano. Incluye figuras interactivas que guían las demostraciones.
En este espacio, el alumno podrá explorar la vida del filósofo y matemático Tales de Mileto, también descubrirá sus valiosas contribuciones al desarrollo de la geometría moderna y a las matemáticas en general. Además incluye enlaces que redirigen a los teoremas más relevantes de su autoría.
Menelao de Alejandría - [Detalles]
En este espacio, el alumno podrá explorar la vida del astrónomo Menelao de Alejandría (no de Esparta) y descubrir sus valiosas contribuciones al desarrollo de la geometría en general y en especial de la geometría moderna. Además, encontrará enlaces que lo redirigirán a los teoremas más relevantes de su autoría.
En este espacio, el alumno podrá explorar la vida del astrónomo y geógrafo Claudio Ptolomeo. Descubrirá sus valiosas contribuciones al desarrollo tanto de la astronomía como de la geometría moderna. Además, encontrará enlaces que lo redirigirán a los teoremas más relevantes de su autoría.
Pappus de Alejandría - [Detalles]
En este espacio, el alumno podrá explorar la vida del geómetra Pappus de Alejandría y descubrir sus valiosas contribuciones al desarrollo de la geometría moderna. Además, encontrará enlaces que lo redirigirán a los teoremas más relevantes de su autoría.
En este espacio, el alumno podrá explorar la vida del matemático Girard Desargues y descubrir sus valiosas contribuciones al desarrollo de la geometría proyectiva y moderna. Además contiene enlaces que redirigen a los teoremas más relevantes de su autoría.
En este espacio, el alumno podrá explorar la vida del matemático y filósofo Blaise Pascal. Descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
En este espacio, el alumno podrá explorar la vida del geómetra Giovanni Ceva. Descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
En este espacio, el alumno podrá explorar la vida del matemático Leonhard Euler. Descubrirá sus valiosas contribuciones al desarrollo de diversas ramas de las matemáticas. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
En este espacio, el alumno podrá explorar la vida del matemático y filósofo William Wallace y descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
Charles Julien Brianchon - [Detalles]
En este espacio, el alumno podrá explorar la vida del matemático Blaise Pascal y descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
Teoremas de Sylow - [Detalles]
None