Resultados de búsqueda: tamaño de un conjunto

125 resultados encontrados

  • Blog

    Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]

    En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.

  • Diapositivas

    Diapositivas sobre conjuntos potencia - [Detalles]

    Damos la definición de lo que es el conjunto potencia, lo que representa este tipo de conjunto y además se aclara la idea respecto a la diferencia entre los elementos del conjunto y los elementos del conjunto potencia. Se demuestran 2 propiedades importantes del conjunto potencia, como lo es su "cardinalidad" (número de elementos de un conjunto) y la contención del conjunto potenci involucra la contención de los conjuntos y visceversa.

  • Blog

    Bases y dimensión de espacios vectoriales - [Detalles]

    Definimos espacios vectoriales de dimensión finita. Vemos que es correcto definir dim V como el tamaño de un conjunto generador linealmente independiente.

  • Blog

    El tamaño de $N$ y de cada natural - [Detalles]

    Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.

  • Blog

    Nota 23. Combinaciones. - [Detalles]

    En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.

  • Video

    La matriz de coeficientes de un sistema de ecuaciones - [Detalles]

    Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.

  • Video

    Introducción: ¿Qué son las Ciencias de la Computación?, Complejidad - [Detalles]

    1.3 Complejidad - Continuación de los conceptos clave de la materia, significado de la complejidad y sus características (tiempo, espacio, tamaño y dificultad) para su ejecución.

  • Cuestionario

    Teoría de Gráficas - Cuestionario 1 - [Detalles]

    Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.

  • Video

    Conjunto potencia - [Detalles]

    Definimos el conjunto potencia de un conjunto, hablamos de ejemplos de los conjuntos potencia de conjuntos sencillos, y damos propiedades y teoremas relacionados al conjunto potencia

  • Blog

    Nota 3. El complemento de un conjunto. - [Detalles]

    En esta nota se presentan las ideas de conjunto universo y conjunto complemento, así como varias propiedades y ejemplos referentes a estos conceptos. También hay un recurso interactivo de Geogebra que ilustra el concepto de complemento de un conjunto.

  • Video

    Complemento de un conjunto - [Detalles]

    Damos la definición del conjunto complemento de un conjunto, y algunos ejemplos

  • Video

    Cardinalidad - conjuntos infinitos - los naturales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los números naturales, y mostramos que el conjunto es infinito. Haciendo uso de esto, definimos cuando un conjunto es "Numerable" y damos algunos ejemplos.

  • Blog

    Cota superior e inferior de un conjunto - [Detalles]

    Estudio de los conceptos máximo, mínimo, cota superior e inferior de un conjunto. Definción de conjunto acotado.

  • Blog

    Nota 1. Noción de Conjunto - [Detalles]

    En esta nota se da una noción intuitiva de lo que es un conjunto y un elemento de un conjunto, se muestra como construir conjuntos a partir de propiedades y se listan un par de axiomas de la teoría de conjuntos.

  • Blog

    Nota 6. Conjunto potencia y el producto cartesiano - [Detalles]

    En esta nota introducimos un nuevo conjunto: el conjunto potencía, así como varías propiedades sobre él. También vemos otra operación entre conjuntos, el producto cartesiano, llamado así en honor de Rene Descartes; hay un recurso en geogebra que nos ayuda a ilustrar mejor este concepto.

  • Blog

    Conjunto cociente - [Detalles]

    En esta entrada definiremos al conjunto cociente, dicho conjunto tendrá como elementos a las clases de equivalencia de una relación. Además probaremos que toda relación de equivalencia induce una partición y viceversa.

  • Video

    Qué es un conjunto y otras cuestiones - [Detalles]

    Damos la definición de conjunto, y algunos ejemplos de conjuntos importantes. También explicamos la notación que se utiliza para conjuntos.

  • Video

    Subconjuntos (ejemplo y 3 propiedades básicas) - [Detalles]

    Continuamos con un ejemplo, que los enteros son subconjunto de los racionales. También vemos propiedades Importantes: todo conjunto contiene al vacío, todo conjunto se contiene a sí mismo y transitividad.

  • Video

    Cardinalidad - los racionales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los racionales, y demostramos que este conjunto tiene la misma cardinalidad que los naturales.

  • Video

    Cardinalidad - los números reales - [Detalles]

    Hablamos sobre la cardinalidad del conjunto de los reales, y demostramos que este conjunto NO tiene la misma cardinalidad que los naturales.

  • Video

    Los enteros módulo $m$ - [Detalles]

    Definimos los enteros modulo "m". Este conjunto consiste de las clases de equivalencia de la congruencia modulo "m". Definimos la operación suma y multiplicación en el conjunto de los enteros modulo "m" (recordemos que sus elementos son clases de equivalencia). Mostramos que las operaciones cumplen las propiedades necesarias para que los enteros modulo "m" sean un anillo. 

  • Video

    El grado de un polinomio - [Detalles]

    Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo. 

  • Video

    Ecuaciones lineales homogéneas de segundo orden. Conjunto fundamental de soluciones y el Wronskiano - [Detalles]

    Definimos al conjunto fundamental de soluciones de una ecuación, y al Wronskiano de dos soluciones. Vemos la relación que guardan estos dos conceptos, y demostramos algunas propiedades que cumplen estos.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 1) - [Detalles]

    Probamos el principio de superposición de soluciones a un sistema lineal homogéneo. Además, demostramos que el conjunto de soluciones a un sistema lineal homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices.

  • Blog

    Conjuntos infinitos - [Detalles]

    Revisión del concepto de cardinalidad de un conjunto, conjunto infinito y numerable.

  • Diapositivas

    Diapositivas sobre conjuntos infinitos - [Detalles]

    Ahora estudiamos otro tipo de conjuntos infinitos o infinitos numerables, estos son los que cumplen una biyección entre el conjunto y el conjunto de los números naturales, se muestran unas propiedades sencillas de demostrar. Hacemos una división entre los conjuntos contables y no contables.

  • Diapositivas

    Diapositivas sobre soluciones a sistemas de ecuaciones - [Detalles]

    En estas diapositivas mostramos más ejemplos sobre cómo proceder para encontrar el conjunto de solución, desde pasar a una matriz a su forma escalonada reducida, si este conjunto es vacío o no.

  • Diapositivas

    Diapositivas sobre dependencia e independencia lineal - [Detalles]

    Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.

  • Blog

    La construcción de las naturales - [Detalles]

    Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.

  • Blog

    Conjuntos transitivos - [Detalles]

    Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.

  • Blog

    El principio del buen orden - [Detalles]

    Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.

  • Video

    Conjunto de permutaciones de n elementos - [Detalles]

    Se estudia el conjunto de permutaciones de n elementos.

  • Blog

    Nota 22. Conteo. Ordenaciones. - [Detalles]

    En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Blog

    El complemento de un conjunto - [Detalles]

    En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

  • Blog

    Clases de equivalencia y particiones - [Detalles]

    Esta entrada estará dedicada a dos conjuntos nuevos a los que llamaremos clases de equivalencia y particiones. Dichos conjuntos nos permitirán por un lado agrupar a los elementos de un conjunto conforme estén relacionados con otros y así estudiar a un conjunto no solo como un total si no por partes.

  • Blog

    Buenos órdenes - [Detalles]

    En esta entrada veremos el concepto de conjunto bien ordenado, en dicho conjunto toma mucha importancia el concepto de minimo. También veremos como se relaciona este nuevo concepto con los conceptos de orden que se han visto anteriormente

  • Blog

    Buen orden en los naturales - [Detalles]

    En esta entrada demostraremos que el conjunto de los números naturales es un conjunto bien ordenado.

  • Blog

    Conjuntos finitos (parte II) - [Detalles]

    En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia dada un conjunto finito.

  • Capítulo del libro

    Conjuntos y Lógica - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos que los conjuntos son agrupaciones de elementos únicos, además de nociones esenciales como el conjunto sin elementos, la cantidad de miembros en un conjunto, y la idea de conjuntos dentro de conjuntos. En cuanto a lógica, las nociones de consecuencia lógica y contradicción juegan roles primordiales en determinar la verdad de las afirmaciones.

  • Blog

    Conjuntos generadores e independencia lineal - [Detalles]

    Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.

  • Blog

    Problemas de bases y dimensión de espacios vectoriales - [Detalles]

    Problemas resueltos de dimensión de espacios vectoriales. Recordamos y aplicamos repetidamente un truco para mostrar que un conjunto de vectores es base.

  • Blog

    Proceso de Gram-Schmidt - [Detalles]

    Mostramos el teorema de Gram-Schmidt, que cambia un conjunto de vectores linealmente independientes a uno ortonormal. Vemos ejemplos de su aplicación.

  • Video

    Suprayectividad - [Detalles]

    Usamos el conjunto Imagen, de una función, para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de suprayectividad.

  • Video

    Cardinalidad - definición y ejemplos - [Detalles]

    Damos la definición de la cardinalidad de un conjunto, usando ejemplos mostramos cuando dos conjuntos tienen la misma cardinalidad.

  • Video

    Cardinalidad - conjuntos finitos - [Detalles]

    Usando lo visto anteriormente, usando la cardinalidad, damos la definición de un conjunto finito o infinito. Hablamos de varios teoremas relacionados a los conjuntos finitos.

  • Video

    Permutaciones - [Detalles]

    Definimos que es una permutación, y hablamos de sus usos y características. También damos una fórmula de conteo para saber cuántas permutaciones tenemos en un conjunto de n elementos, ya sea permutaciones con o sin repeticiones.

  • Video

    Introducción a los sistemas de ecuaciones lineales - [Detalles]

    Damos la definición de una ecuación lineal y damos ejemplos de cuales no son ecuaciones lineales. Definimos un sistema de ecuaciones lineales como un conjunto de ecuaciones lineales. Finalmente se da la definición y un ejemplo de solución al sistema de ecuaciones lineales.

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo.

  • Video

    Subespacio vectorial (ejemplo 1) - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial.

  • Video

    El anillo de los números enteros - [Detalles]

    Hablamos sobre los números enteros y las propiedades que la suma y el producto poseen en los números enteros. El conjunto de los números enteros junto con estas propiedades formal lo que se conoce como un anillo, lo cual se definirá de forma abstracta en un video posterior. 

  • Video

    Definición de anillo - [Detalles]

    Definimos un anillo, el cual consiste en una tupla (A,+,*), es decir, un conjunto, una suma y un producto. Tal que se cumplan ciertas propiedades (Análogo a los números enteros). Vemos algunos ejemplos y vemos que los números naturales no son un anillo. También damos la definición de dominio entero. 

  • Video

    Divisibilidad: el máximo común divisor - [Detalles]

    Definimos el máximo común divisor (MCD). Primero hacemos la observación de que cada entero tiene un numero finito de divisores, definimos el común divisor, y vemos que el conjunto de divisores de uno o más enteros siempre es finito y podemos obtener un máximo en común (que sea común divisor). Vemos algunos ejemplos y la notación que usaremos para el MCD 

  • Video

    Sistemas de residuos módulo $m$ - [Detalles]

    Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler. 

  • Video

    Números complejos - [Detalles]

    Definimos los números complejos: "a+b*i" ("a", "b" son números reales e "i" es el numero imaginario). Damos la notación que vamos a utilizar para los numero complejo (parte real y parte imaginaria) y definimos el conjunto de los números complejos.  

  • Video

    Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]

    Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.

  • Video

    Propiedades del conjunto de soluciones a un sistema de ecuaciones de primer orden lineales (Parte 2) - [Detalles]

    Definimos el Wronskiano de un subconjunto de soluciones a un sistema lineal homogéneo. Además definimos cuándo este subconjunto de soluciones es linealmente dependiente o independiente. Finalmente demostramos un teorema que relaciona estos dos conceptos.

  • Blog

    Supremo e ínfimo - [Detalles]

    Estudio de las definiciones para ínfimo y supremo de un conjunto, resultados relacionados y ejemplos.

  • Blog

    Cuadrángulo ortocéntrico - [Detalles]

    Estudiamos algunas propiedades del cuadrángulo ortocéntrico, conjunto formado por los vértices de un triángulo y su ortocentro.

  • Blog

    Principios de conteo 2 - Permutaciones - [Detalles]

    Desarrollamos el concepto de permutación, y utilizamos los principios de conteo de la entrada anterior para encontrar el número de permutaciones de un conjunto de objetos.

  • Blog

    Axioma de conjunto potencia - [Detalles]

    None

  • Diapositivas

    Diapositivas de cuantificadores - [Detalles]

    Mostramos los símbolos más recurrentes en matemáticas para denotar la existencia, unicidad la totalidad y pertenencia de elementos en un conjunto asi mismo es acompañado por una lista de ejemplos.

  • Diapositivas

    Diapositivas sobre relaciones de conjuntos - [Detalles]

    Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,

  • Diapositivas

    Diapositivas sobre imagen y preimagen de una función - [Detalles]

    Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.

  • Ilustración

    Ejemplo de la unión de funciones - [Detalles]

    Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.

  • Diapositivas

    Diapositivas sobre el principio de inducción - [Detalles]

    Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Diapositivas

    Diapositivas sobre ejemplos bases de espacios vectoriales - [Detalles]

    En estas diapositivas damos herramientas extras (lemas) sobre como identificar si un conjunto es base de un espacio vectorial o no.

  • Cuestionario

    Cuestionario sobre ejemplos bases de espacios vectoriales - [Detalles]

    Ponemos en práctica los conocimientos adquiridos respecto a bases y lo que en ello respecta, se pone a prueba la comprensión de la teoría y otro poco la intuición sobre como demostrar que un conjunto cumple con ser base, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Video

    Lugar geométrico en el plano cartesiano - [Detalles]

    Definimos un lugar geométrico, el cual es un conjunto de puntos que cumplen una condición dada. Explicamos algunos ejemplos usando condiciones para las coordenadas cartesianas. 

  • Video

    Espacios vectoriales definición y un ejemplo - [Detalles]

    Definimos que es un espacio vectorial y describimos los ingredientes que lo componen: Un conjunto, un campo y las operaciones. Damos las reglas que se deben cumplir para las operaciones del espacio vectorial, las cuales son 10 reglas, y las explicamos mediante un ejemplo. 

  • Video

    Ejemplo 3 espacio vectorial - [Detalles]

    Demostramos que el conjunto de funciones numéricas cumple con las diez reglas de los espacios vectoriales, y vemos que es un espacio vectorial. 

  • Video

    Ejemplo 1 subespacio Vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta vertical), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial. 

  • Video

    Ejemplo 2 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que un subconjunto de un espacio vectorial (una recta), es un subespacio vectorial. Conforme a lo visto anteriormente, verificamos solamente las reglas 1, 3, 4 y 6 para mostrar que dicho conjunto es un subespacio vectorial. 

  • Video

    Ejemplo 3 subespacio vectorial - [Detalles]

    Vemos un ejemplo donde se demuestra que el subconjunto de funciones constantes, que es subconjunto del conjunto de funciones, es un subespacio vectorial.  

  • Video

    Dependencia e independencia lineal - [Detalles]

    Damos las definiciones formales de combinación lineal, dependencia lineal e independencia lineal. También usamos ejemplos para explicar cuando un conjunto de vectores cumple con alguna de estas definiciones 

  • Video

    Ejercicio 1 dependencia o independencia lineal - [Detalles]

    Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente. 

  • Video

    Ejercicio 3 bases de espacios vectoriales - [Detalles]

    Usando la definición de una base para un espacio vectorial cualquiera, demostramos una condición equivalente para saber cuándo un conjunto es base de un espacio vectorial. 

  • Video

    Lugar Geométrico De Las Cónicas - [Detalles]

    Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.  

  • Video

    Definición del grupo fundamental - [Detalles]

    En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.

  • Video

    El teorema de clasificación de cubrientes - parte 3 - [Detalles]

    En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.

  • Blog

    Introducción al curso y números naturales - [Detalles]

    Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.

  • Blog

    Definición de la suma y sus propiedades básicas - [Detalles]

    Definimos la suma en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Blog

    Definición del producto y sus propiedades básicas - [Detalles]

    Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.

  • Blog

    Compatibilidad del orden con las operaciones de los naturales - [Detalles]

    Proporcionamos una definición de orden equivalente relacionada a la operación suma en el conjunto de los números naturales.

  • Blog

    Construcción de los enteros y su suma - [Detalles]

    Construimos el conjunto de los números enteros a partir de los números naturales, definimos a un número entero como una clase de equivalencia, definimos su operación suma y su inverso; también demostramos algunas propiedades básicas de la operación suma en los enteros.

  • Blog

    Teorema fundamental de la aritmética e infinidad de números primos - [Detalles]

    Enunciamos y demostramos el teorema fundamental de la aritmética. Luego, lo usamos para ver que el conjunto de primos es infinito.

  • Video

    Factorización en ciclos disjuntos - [Detalles]

    Demostramos que toda permutación de un conjunto finito es una composición de ciclos disjuntos. Además damos un ejemplo para ilustrar la demostración.

  • Video

    Subgrupo generado por un subconjunto - parte 2 - [Detalles]

    Se da una caracterización del subgrupo generado por un conjunto en términos de palabras.

  • Cuestionario

    10. Conexidad y compacidad en un espacio métrico - [Detalles]

    Volvamos a checar un poco las definiciones de un conjunto conexo y compacto mediante algunos ejemplos.

  • Video

    Axiomas de Campo en los números reales - [Detalles]

    La lista de axiomas de campo son las reglas que rigen a los números con una estructura adecuada. En particular el conjunto de números reales satisface esta lista y en este video discutimos cada uno.

  • Blog

    Nota 5. Leyes de De Morgan y la diferencia simétrica. - [Detalles]

    En esta nota vemos las Leyes de De Morgan las cuales nos hablan de como se comporta el complemento de un conjunto con las operaciones de unión e intersección. También vemos dos nuevas operaciones: la diferencía de conjuntos y la diferencía simétrica de conjuntos.

  • Blog

    Nota 14. Familia de Conjuntos y particiones. - [Detalles]

    En esta nota vemos lo que es una familia de conjuntos, una familia indexada de conjuntos y usaremos esos conceptos para establecer lo que es una partición de un conjunto dado. También estableceremos la relación que hay entre las particiones y las relaciones de equivalencia.

  • Blog

    Nota 16. Los números naturales. - [Detalles]

    En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.

  • Blog

    Nota 17. El orden en los números naturales. - [Detalles]

    En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.

  • Blog

    Nota 21. Conteo, ordenaciones con repetición. - [Detalles]

    En esta nota comenzaremos a ver las técnicas de conteo, las cuales son una aplicación de los números naturales; analizaremos la situación conocida como ordenaciones con repetición, que nos dan todas las posibilidades de formar una secuencia ordenada de m posiciones, llenadas con los n objetos de un determinado conjunto.

  • Blog

    Nota 28. Combinaciones lineales - [Detalles]

    En esta nota definimos lo que es una cambinación lineal de elementos de $\mathbb{R}^n$, veremos que si tomamos un subconjunto no vacio de $\mathbb{R}^n$ y consideramos el conjunto de todas las combinaciones lineales de ese suconjunto entonces obtendremos un subespacio vectorial.

  • Blog

    Nota 29. Subespacio generado - [Detalles]

    En esta nota continuaremos con los subespacios vectoriales, definiremos lo que es el subespacio generado por un conjunto y veremos varías propiedades de este así como diversos ejemplos.

  • Blog

    Nota 30. Dependencia e independencia lineal - [Detalles]

    En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.

  • Blog

    Álgebra Moderna I: Orden de un grupo - [Detalles]

    Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.

  • Blog

    Álgebra Moderna I: Permutaciones y Grupo Simétrico - [Detalles]

    En primera instancia tenemos que definir lo que es una permutación de un conjunto X. Posteriormente podremos construir el concepto de Grupo Simétrico y la definición de un r-ciclo.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Blog

    Relaciones - [Detalles]

    En esta entrada vamos a ver el concepto de relación, definiremos nuevos conjuntos a partir de este concepto, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.

  • Blog

    Funciones (parte II) - [Detalles]

    En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

  • Blog

    Funciones suprayectivas y biyectivas - [Detalles]

    En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.

  • Blog

    Mínimos, máximos, minimales y maximales - [Detalles]

    En esta sección hablaremos de los elementos de un conjunto ordenado que tienen caracteristicas especiales, según sean éstas los llamaremos mínimos, máximos, minimales o maximales.

  • Blog

    Cotas superiores y supremos - [Detalles]

    En esta entrada hablaremos acerca de cotas superiores y supremos. Estos nuevos conceptos también nos permitirán acotar conjuntos ordenados. También veremos como se relaciona este concepto con el máximo de un conjunto.

  • Blog

    Construcción de los números naturales - [Detalles]

    En esta sección comenzaremos con la construcción rigurosa de los números naturales, es decir, desde la teoría de conjuntos, sin dejar de lado la noción intuitiva que ya tenemos, para ello veremos el concepto de conjunto transitivo.

  • Blog

    Conjuntos inductivos y axioma del infinito - [Detalles]

    En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

  • Blog

    Principio de inducción - [Detalles]

    En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.

  • Blog

    Teorema de recursión - [Detalles]

    En esta entrada veremos el concepto de calculo de longitud, así como la motivación y prueba del teorema de recursión, el cual nos ayudara a definir la suma en el conjunto de los numeros naturales.

  • Blog

    Producto en los naturales - [Detalles]

    Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues este se refiere a sumar cierta cantidad de veces un número. De modo que el producto se definirá con ayuda de la suma. También demostraremos varias propiedades del producto.

  • Blog

    Equipotencia - [Detalles]

    En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.

  • Blog

    Conjuntos infinitos - [Detalles]

    En esta sección comenzaremos definiendo que es un conjunto infinito para posteriormente probar resultados acerca de la cantidad de elementos que estos poseen, es decir, la cardinalidad de dichos conjuntos.

  • Blog

    Buenos órdenes para cualquier conjunto - [Detalles]

    En esta entrada veremos mas equivalencias del axioma de elección, en particular veremos el teorema del buen orden.

  • Video

    Ejercicio Polinomios de grado par - [Detalles]

    En este video, abordaremos paso a paso el razonamiento detrás de por qué todo polinomio de grado par alcanza su máximo en el conjunto de los números reales.

  • Capítulo del libro

    Funciones - [Detalles]

    En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.

  • Video

    La distancia entre dos vértices - [Detalles]

    Definimos la distancia entre dos vértices de una gráfica observando que genera un espacio métrico, en el conjunto de vértices. Definimos también la exentricidad de un vértice, el radio y el diámetro, así como el centro y la periferia de una gráfica. Como siempre, vimos ejemplos concretos de todo lo anterior.

  • Blog

    Ortogonalidad en espacios euclideanos - [Detalles]

    En esta entrada profundizaremos en el concepto de ortogonalidad de parejas de vectores con respecto a un producto interior y veremos como se relaciona con la noción de que una forma lineal y un vector sean ortogonales. Veremos conceptos como el de conjunto ortogonal y proyección ortogonal.

  • Blog

    Cardinalidad de conjuntos finitos - [Detalles]

    Introducción ¿Qué es lo que entiendes cuando alguien te dice: «En esta canasta hay cinco manzanas»? Probablemente te llegue a la mente una imagen similar a la siguiente: Y es que para nosotros es muy natural el decir «cuántas» cosas hay dentro de un conjunto. De hecho los primeros usos que dieron lugar al nacimiento […]

  • Video

    Axiomas de Orden - [Detalles]

    En este video se enuncia los axiomas de orden para el conjunto de números positivos. Se demuestra algunas consecuencias de los axiomas, se define el orden, se muestra que el orden es congruente con las operaciones y se definen los intervalos.

  • Video

    Continuidad de funciones de números reales - [Detalles]

    En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.

  • Video

    Introducción a las sucesiones de números reales. - [Detalles]

    En este video se introduce la noción de sucesión de números reales como función real cuyo dominio es el conjunto de números naturales. Se explica la notación y se dan pocos ejemplos. Al final se comenta sobre las sucesiones crecientes y acotadas, y cómo se comportan cerca del supremo de su imagen.

  • Video

    Espacios H apartir de su conjunto de homotopía - [Detalles]