Los teoremas de Fermat y de Euler - [Detalles]
Vemos el pequeño teorema de Fermat y el Teorema de Euler. Primero demostramos el teorema de Euler, el cual nos da una relación de la función de Euler con una congruencia modulo "m", y usando este resultado demostramos el pequeño teorema de Fermat.
Homología celular - característica de Euler - [Detalles]
En este video definimos la característica de Euler de un complejo CW finito. Luego, demostramos que la característica de Euler es un invariante homotópico.
Los Elementos de Euclides: Teorema 25 - [Detalles]
En este video cubrimos el Teorema 25 de Los Elementos de Euclides. Aquí se demuestra que si dos triángulos tienen dos lados respectivamente iguales y en el primer triángulo el tercer lado es mayor que el tercer lado del segundo triángulo, entonces el ángulo comprendido por los lados iguales en el primer triángulo es mayor que el ángulo respectivo en el segundo triángulo.
Triángulo medial y recta de Euler - [Detalles]
Estudiamos propiedades del triángulo medial que nos permitirán deducir que el ortocentro, el centroide y el circuncentro son colineales.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Ecuación diferencial de Euler - [Detalles]
Resolvemos de manera general la ecuación diferencial de Euler para cualquier intervalo que no contenga al punto singular t=0
Ecuación diferencial de Euler (Ejemplo) - [Detalles]
Resolvemos una ecuación diferencial de Euler en particular
El número de Euler - [Detalles]
Estudio del número de Euler motivado mediante interés compuesto
Ecuación de Cauchy-Euler - [Detalles]
Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler
Triángulo de Pascal - [Detalles]
Vemos cómo utilizar el triángulo de Pascal y explicamos como deducir sus coeficientes. También comparamos las propiedades del combinatorio con los coeficientes en el triángulo de Pascal. Todo esto nos ayuda para calcular la n-ésima potencia de un binomio.
Algunas propiedades del triángulo - [Detalles]
Demostramos el recíproco del quinto postulado y las expresiones para calcular el área de un triángulo rectángulo y un triángulo cualquiera
Triángulos pedales - [Detalles]
Damos las definiciones de triángulo mediano, triángulo órtico y triángulo pedal y demostramos algunas de sus propiedades
Otros puntos y rectas notables del triángulo - [Detalles]
Demostramos que la suma de los tres ángulos internos de un triángulo suman dos ángulos rectos y que las bisectrices de dos ángulos exteriores de un triángulo y la del ángulo interior no adyacente son concurrentes por tercias
Veremos que los ángulos del triangulo órtico son bisecados por los lados y las alturas de su triángulo de referencia y el problema de Fagnano
Los Elementos de Euclides: Teorema 24 - [Detalles]
En este video cubrimos el Teorema 24 de Los Elementos de Euclides. Este teorema prueba que si dos triángulos tienen dos lados respectivamente iguales pero el ángulo comprendido por estos lados es mayor en el primer triángulo respecto del segundo, entonces el tercer lado del primer triángulo es mayor respecto del tercer lado del segundo triángulo.
Los Elementos de Euclides: Teorema 32 - [Detalles]
En este video cubrimos el Teorema 32 de Los Elementos de Euclides, el cual trata la propiedad que en todo triángulo la suma de los ángulos interiores es igual a 180° (es decir dos rectos); y la propiedad que en todo triángulo la medida de un ángulo exterior del triángulo es igual a la suma de los dos ángulos interiores no adyacentes a él.
Los Elementos de Euclides: Teorema 41 - [Detalles]
En este video cubrimos el Teorema 41 de Los Elementos de Euclides. Aquí se demuestra que si un paralelogramo y un triángulo tienen la misma base y están entre las mismas paralelas, determinadas por la base del triángulo y la paralela que pasa por el vértice opuesto a la base, entonces el área del paralelogramo es el doble que el área del triángulo.
Valor absoluto. Desigualdad del triángulo - [Detalles]
Estudio del concepto valor absoluto y la desigualdad del triángulo con algunas de sus consecuencias.
Desigualdad del triángulo y lugar geométrico - [Detalles]
Mostramos la desigualdad del triángulo y su reciproco y que la bisectriz de un ángulo y la mediatriz de un segmento son lugares geométricos.
Puntos notables del triángulo - [Detalles]
Demostramos que las medianas, las mediatrices, las bisectrices tanto internas como externas y las alturas de un triángulo son concurrentes.
Diapositivas sobre el teorema del binomio - [Detalles]
Enunciamos el teorema del binomio de Newton y el triángulo de Pascal, como estas 2 temas involucran combinatoria, se demuestra el teorema del binomio y se muestran ejemplos con el triángulo de Pascal y su relación con el número combinatorio. Finalmente se dejan una lista de ejercicios para practicar estos temas.
Ejemplo Desigualdad del Triángulo - [Detalles]
En este video, nos sumergimos en el corazón de una demostración que explora la relación entre $\vert xy - x_0y_0\vert$ y un valor $\varepsilon$ determinado, todo ello haciendo uso de la poderosa Desigualdad del Triángulo.
Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]
En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.
Los Elementos de Euclides: Teorema 21 - [Detalles]
En este video cubrimos el Teorema 21 de Los Elementos de Euclides. Aquí demostramos que si desde los extremos de uno de los lados de un triángulo se construyen dos rectas que se encuentren en el interior de él, las rectas construidas serán menores que los lados restantes del triángulo pero el ángulo comprendido por las rectas construidas será mayor.
Recursividad, Recursión doble; Pascal. - [Detalles]
Recursión doble, triángulo de Pascal - Significado y cómo se ve la recursión doble. Ejemplo de código con el triángulo de Pastel.
La recta de Euler - [Detalles]
Demostramos algunas propiedades del circuncentro, centroide, incentro y ortocentro
Ejercicios de segmentos dirigidos - [Detalles]
Generalizamos la fórmula de Chasles para n puntos, demostramos el teorema de Euler y algunos resultados al respecto
Desigualdades geométricas - [Detalles]
Mostraremos algunas desigualdades geométricas, entre ellas la desigualdad de Erdos Mordell y la desiuldad de Euler, también veremos ejemplos.
Circunferencia de los nueve puntos - [Detalles]
Presentamos la circunferencia de los nueve puntos, determinada por los pies de las alturas, los puntos medios y los puntos de Euler.
Exponencial, logaritmo y trigonometría en los complejos - [Detalles]
Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.
Grupos cíclicos - parte 2 - [Detalles]
Se dan más propiedades de los grupos cíclicos y su relación con la función phi de Euler, se da una caracterización de los grupos cíclicos finitos.
Paseos Eulerianos y el origen de la Teoría de Gráficas - [Detalles]
Es este video definimos multigráfica, paseo Euleriano y multigráfica Euleriana. También hablamos de la historia de los siete puentes de Köninsberg, que se reconoce como el origen dela Teoría de Gráficas y probamos un resultado de Euler, de 1736, que nos da un criterio para determinar si una multigráfica es o no es Euleriana.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Damos una demostración alternativa del Teorema del Binomio. También explicamos la relación del binomio con la combinatoria y el triángulo de Pascal.
Medianas, bisectrices, mediatrices y alturas - [Detalles]
Damos las definiciones de varios puntos y rectas notables del triángulo y demostramos algunas de sus propiedades
Concurrencia de medianas - [Detalles]
Demostramos que las medianas de un triángulo son concurrentes .
Estudiaremos propiedades de los paralelogramos, también hablaremos de rectángulos, rombos, cuadrados y el segmento medio del triangulo.
Presentamos la trigonometría elemental a partir de las razones trigonométricas en un triangulo rectángulo y mostramos algunas identidades.
Circunferencias tritangentes - [Detalles]
Estudiaremos algunos resultados referentes a las circunferencias tritangentes, es decir el incírculo y excÍrculos de un triángulo.
Cuadrángulo ortocéntrico - [Detalles]
Estudiamos algunas propiedades del cuadrángulo ortocéntrico, conjunto formado por los vértices de un triángulo y su ortocentro.
Veremos una condición necesaria y suficiente para que el triángulo pedal de un punto degenere en una recta, conocida como recta de Simson.
Vemos algunas caracterizaciones de la simediana, se trata de la reflexión de la mediana de un triángulo respecto de la bisectriz.
Veremos que las simedianas de un triángulo son concurrentes y algunos resultados sobre este punto de concurrencia, el punto simediano.
Puntos de Brocard - [Detalles]
Estudiamos algunas de las propiedades del primer y segundo punto de Brocard que son otro par de puntos conjugados isogonales del triangulo.
Circunferencia de Brocard - [Detalles]
Relacionamos los puntos de Brocard y el primer triángulo de Brocard, mediante la circunferencia de Brocard.
Cuestionario sobre razones trigonométricas - [Detalles]
Ponemos en práctica el tema de razones trigonométricas de un triángulo, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Cuestionario sobre resolución de triángulos rectos - [Detalles]
Ponemos en práctica el tema resolución de un triángulo recto, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. El Teorema de Pitágoras es válido solo para triángulos rectángulos.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. Usamos las fórmulas conocidas de un cuadrado para demostrar dicho teorema.
Razones trigonométricas - [Detalles]
Hablamos sobre las razones trigonométricas: coseno, seno, tangente, secante, cosecante y cotangente, las cuales están relacionadas con un triángulo rectángulo, escritas en termino de sus catetos e hipotenusa.
Resolución de triángulos rectángulo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la medida de dos de sus lados, podemos saber las medidas de todos sus ángulos y su otro lado.
Resolución de triángulos rectángulo, otro ejemplo - [Detalles]
Dado un triángulo rectángulo, damos las medidas de todos sus lados y ángulos usando las razones trigonométricas. Damos un ejemplo y mostramos como a partir de la uno de sus lados y uno de sus ángulos, podemos saber las medidas de todos sus ángulos y lados.
Demostramos la Ley de Senos, la cual da una relación entre los lados y ángulos de triángulos no rectángulos. La ley de senos nos da una relación de la longitud de un lado de un triángulo al seno del ángulo opuesto.
Resolución de triángulos - [Detalles]
Hacemos uso de las Leyes de senos y cosenos para la resolución de triángulos. Es decir, mostramos que, sabiendo algunos datos de un triángulo cualquiera, podemos saber cuándo miden los lados y ángulos restantes por medio de las leyes de senos y cosenos
Damos un repaso a trigonometría, las razones trigonométricas, el teorema de Pitágoras y los elementos más relevantes de un triángulo rectángulo.
La norma en los complejos - [Detalles]
Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.
Elementos de Euclides: Teorema 1 - [Detalles]
En este video cubrimos el Teorema 1 de Los Elementos de Euclides. Aquí se realiza la construcción de un triángulo equilátero.
Los Elementos de Euclides: Teorema 1 - [Detalles]
En este video cubrimos el Teorema 1 de Los Elementos de Euclides. Aquí se realiza la construcción de un triángulo equilátero.
Los Elementos de Euclides: Teorema 5 - [Detalles]
En este video cubrimos el Teorema 5 de Los Elementos de Euclides. Aquí se prueba que en todo triángulo isósceles, los ángulos en la base son iguales entre sí, y además si prolongamos los lados iguales, los ángulos situados bajo la base también son iguales entre sí.
Los Elementos de Euclides: Teorema 6 - [Detalles]
En este video cubrimos el Teorema 6 de Los Elementos de Euclides. Aquí se demuestra que si en un triángulo dos de sus ángulos son iguales, entonces los lados opuestos a dichos ángulos son iguales entre sí.
Los Elementos de Euclides: Teorema 16 - [Detalles]
En este video cubrimos el Teorema 16 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, un ángulo externo es mayor que cada uno de los internos y opuestos a él.
Los Elementos de Euclides: Teorema 17 - [Detalles]
En este video cubrimos el Teorema 17 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo la suma de dos cualesquiera de sus ángulos es menor que dos rectos (es decir, es menor a 180°).
Los Elementos de Euclides: Teorema 18 - [Detalles]
En este video cubrimos el Teorema 18 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, a mayor lado se opone mayor ángulo.
Los Elementos de Euclides: Teorema 20 - [Detalles]
En este video cubrimos el Teorema 20 de Los Elementos de Euclides. Aquí se demuestra que en todo triángulo, la suma de las longitudes de dos cualesquiera de sus lados es mayor que la longitud del tercer lado.
Los Elementos de Euclides: Teorema 22 - [Detalles]
En este video cubrimos el Teorema 22 de Los Elementos de Euclides. Aquí se estudia la construcción de un triángulo a partir de tres segmentos dados que cumplen la condición de que la suma de las longitudes de dos cualesquiera de los segmentos es mayor que la longitud del tercer lado.
3. Algoritmos - Qué es un algoritmo, cómo funciona, su estructura y características así como un ejemplo muy ilustrativo (triángulo de sierpinski)
Los Elementos de Euclides: Teorema 42 - [Detalles]
En este video cubrimos el Teorema 42 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo, en un ángulo dado y con un área igual al área de un triángulo dado.
Los Elementos de Euclides: Teorema 44 - [Detalles]
En este video cubrimos el Teorema 44 de Los Elementos de Euclides. Aquí se realiza la construcción de un paralelogramo sobre una recta dada, con un ángulo igual a un ángulo dado, y cuya área sea igual al área de un triángulo dado.
En este video se mencionan las propiedades de la diferencia en valor absoluto como una función que mide la distancia entre dos números reales, y se demuestra la desigualdad del triángulo en los números reales.