Funciones exponenciales y logarítmicas - [Detalles]
Estudio de las funciones exponenciales y logarítmicas, su relación entre ellas. Revisión de resultados importantes como: las leyes de los esponentes, las leyes de los logaritmos y el cambio de base.
Funciones trascendentes - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones trascendentes que modelan fenómenos complejos de nuestro mundo, la circunferencia unitaria simplifica la trigonometría, y las funciones exponenciales y logarítmicas describen crecimientos y decaimientos.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Funciones polinomiales y racionales. Análisis geométrico de funciones. - [Detalles]
Estudio de funciones polinomiales y racionales. Análisis geométrico de funciones mediante traslaciones, homotecias y reflexiones.
Diapositivas sobre composición de funciones y función inversa - [Detalles]
Definimos 3 tipos de funciones que serán de utilidad en nuestro curso que son la función identidad, función restricción y la función inclusión; se muestra la operación que se puede realizar con funciones llamada composición, en esta se manifiesta cuáles son las condiciones necesarias para componer 2 funciones, entre estos temas se muestra la relación que tiene la función inversa con la función idnetidad y la composición, finalmente se demuestran unas propiedades sencillas de la función identidad. Durante toda la explicación se ponene ejemplos para la comprensión del alumno.
13. Funciones multivaluadas - [Detalles]
Ya que comenzamos nuestro estudio de las funciones de variable compleja, debemos introducir unas funciones llamadas "funciones multivaluadas" que no necesariamente cumplen con la definición usual de función, pero son de vital importancia cuando se habla de complejos.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
En esta entrada definiremos lo que significa que dos funciones sean conjugadas y armónicas conjugadas, esto luego nos permitirá caracterizar con aún más precisión a las funciones analíticas por medio de sus partes real e imaginaria.
23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas. - [Detalles]
Ya repasamos las funciones trigonométricas, repasemos un poco cómo se ven sus funciones inversas, ya que estas también son muy importantes.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
Ahora resolvamos unas preguntas acerca de funciones conjugadas y funciones conformes.
Funciones suprayectivas y biyectivas - [Detalles]
En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio, veremos ejemplos y que pasa con la composición de funciones. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar un conjunto a través de otros conjuntos que tengan la misma cantidad de elementos.
Funciones circulares de suma y diferencias - [Detalles]
En este capitulo de Cimientos Matemáticos daremos continuación al tema anterior, mostrando ahora mas propiedades de las funciones circulares, así como realizar el cálculo de la suma y resta de seno, coseno y tangente. Además, abordaremos las funciones circulares del doble de un número y la transformación de productos a sumas y viceversa de estas funciones trigonométricas.
Funciones invertibles - [Detalles]
Introducción Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer […]
Funciones, Funciones en JAVA - [Detalles]
Funciones en JAVA - Definiciones importantes de funciones, parámetros,, características, sintaxis y algunas convenciones universales.
Funciones, sobrecarga de funciones - [Detalles]
Sobrecarga de funciones - Qué es y para qué sirve una sobrecarga de funciones. Sintaxis y ejemplo.
Funciones numéricas - [Detalles]
Damos ejemplos de funciones donde la relación es entre conjuntos de números, lo cual se denomina función numérica. Hablamos sobre como graficarla y cuales no son funciones.
Funciones iguales - [Detalles]
Hablamos sobre la igualdad de funciones, vista como relaciones entre conjuntos, es decir como subconjuntos del producto cartesiano. Usamos como ejemplos algunas funciones numéricas
Funciones - inclusión y restricción - [Detalles]
Vemos la definición de las funciones inclusión y restricción de una función, damos algunos ejemplos con funciones numéricas con sus graficas.
Funciones biyectivas - [Detalles]
Damos un repaso a la definición de funciones biyectivas, dando ejemplos con funciones numéricas más complicadas para hablar sobre la biyectividad
Funciones trigonométricas (Parte 2) - [Detalles]
Estudio de las funciones trigonométricas tangente, secante, cosecante y cotangente. Un vistazo a algunas de las funciones trigonométricas inversas.
Diapositivas sobre funciones - [Detalles]
Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.
Funciones trigonométricas - [Detalles]
Explicamos las funciones trigonométricas: Seno, Coseno y Tangente. Vemos una representación gráfica sobre el circulo unitario de dichas funciones.
Homología singular - funtorialidad - [Detalles]
En este video mostraremos que funciones continuas entre espacios topológicos inducen funciones de complejos de cadenas singulares y, por lo tanto, funciones entre grupos de homología.
13. Funciones multivaluadas - [Detalles]
Ahora queremos estudiar estas funciones llamadas multivaluadas, que no son exactamente como las funciones cotidianas, ver ejemplos y alguna propiedad.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.
23. Funciones inversas de las funciones trigonométricas e hiperbólicas complejas - [Detalles]
Habiendo definido las funciones trigonométricas e hiperbólicas complejas en la entrada anterior, utilizaremos el logaritmo complejo para construir las inversas ahora de las trigonométricas y de las hiperbólicas.
41. Técnicas para construir funciones analíticas - [Detalles]
Para finalizar la unidad, vamos a dar unas técnicas para construir funciones analíticas determinando funciones conjugadas armónicas.
Introducción: ¿Qué son las Ciencias de la Computación?, Algoritmos y funciones - [Detalles]
1.2 Algoritmos y funciones - Continuación de los conceptos clave de la materia, qué son los algoritmos y funciones además de sus diferencias y semejanzas.
Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. En esta entrada abordaremos la definición de función, algunas de sus propiedades y ejemplos.
Funciones algebraicas - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones algebraicas que son fundamentales en matemáticas, abarcando desde las simples funciones lineales, que dibujan rectas, hasta las cuadráticas con sus parábolas características, pasando por las polinomiales, hasta las racionales.
Funciones, Parte 3 - [Detalles]
En este video se formaliza el concepto de composición de funciones y se discute sobre cómo es el dominio de una composición de funciones.
Álgebra de Funciones - [Detalles]
En este video se enlistan las operaciones entre funciones, dando lugar al álgebra de funciones.
Continuidad de funciones de números reales - [Detalles]
En este video examinaremos la definición de continuidad puntual y veremos que muchas funciones que conocemos son continuas en muchos puntos. Daremos también la definición de continuidad en un conjunto y veremos que gracias a los teoremas que conocemos sobre el álgebra de límites, la suma, resta, multiplicación, división y composición de funciones continuas es continua.
Funciones definidas por casos - [Detalles]
En este video comentaremos sobre el modo de definción de funciones por casos, en especial, las funciones que se definen en tramos.
Funciones de orden superior, Definiciones - [Detalles]
Funciones de orden superior - Definiciones y explicación previa a la introducción de este tipo de funciones en JAVA mediante sus interfaces funcionales por sus limitantes
Funciones de orden superior, Regresar una función como resultado - [Detalles]
Regresar una función como resultado - Aplicar métodos para obtener funciones como resultado. Anidar funciones.
Composición de funciones - [Detalles]
Definimos la composición de dos funciones, la cual es una nueva función, vemos un ejemplo con una función numérica
Composición de Funciones Biyectivas es Biyectiva - [Detalles]
Al igual que los casos anteriores demostramos que: Si dos funciones son biyectivas, entonces su composición es biyectiva
Cómo verificar que dos funciones son inversas - [Detalles]
Haciendo uso de un ejemplo, mostramos como verificar cuando dos funciones son inversas una de otra.
Método de la transformada de Laplace. Problemas que involucran funciones continuas por pedazos - [Detalles]
Aplicamos el método de la transformada de Laplace para resolver problemas de condición inicial cuya ecuación diferencial involucra funciones continuas por pedazos, y resolvemos un ejemplo particular.
Suma, producto y composición de funciones - [Detalles]
Estudio de los conceptos de suma, producto, cociente y composición de funciones.
Funciones pares e impares. - [Detalles]
Estudio de los conceptos de función par e impar y de resultados relacionados con las operaciones de este tipo de funciones.
Funciones crecientes y decrecientes. Funciones acotadas. - [Detalles]
Estudio de los conceptos de función creciente, decreciente y acotada, así cómo la revisión de ejemplos.
Funciones trigonométricas (Parte 1) - [Detalles]
Estudio de algunas identidades trigonométricas más utilizadas. Un primer acercamiento a las funciones seno y coseno, así como la definición de función periódica.
Límites de funciones trigonométricas - [Detalles]
Estudio de los límites de las funciones trigonométricas
Teorema de Existencia y Unicidad - Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall - [Detalles]
Se desarrolla una teoría preliminar necesaria para demostrar el teorema de existencia y unicidad, en dicha teoría se presentan las ecuaciones integrales, las funciones lipschitzianas y el lema de Gronwall
Integración de funciones racionales por fracciones parciales - [Detalles]
Enseñanza a las integrales con funciones racionales por el metodo de fracciones parciales.
Series de Fourier de las funciones pares e impares - [Detalles]
Estudio de las series de Fourier de las funciones pares e impares
Funciones hiperbolicas - [Detalles]
Introducción a las definiciones de las funciones hiperbólicas
Introduccion a funciones de varias variables - [Detalles]
Introducción a las funciones de varias variables
Derivada de las funciones exponencial y logarítmica - [Detalles]
Demostración de la derivada de las funciones exponencial y logarímica.
Derivada de las funciones trigonométricas - [Detalles]
Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.
Funciones de Lyapunov - [Detalles]
Definimos las funciones de Lyapunov y estudiamos algunas propiedades útiles respecto a sistemas de ecuaciones y sus puntos de equilibrio.
Funciones de distribución de probabilidad - [Detalles]
Definimos la función de distribución probabilística de una variable aleatoria, también demostramos que la función de distribución probabilística es efectivamente una distribución de probabilidad así como mostramos ejemplos de estas funciones.
Transformaciones de variables aleatorias - [Detalles]
Establecemos las bases para hacer transformaciones de variables aleatorias así como las hipótesis que deben cumplir como una composición de funciones, además demostramos que las funciones continuas son Borel-medibles y la composición de una función Borel-medible con una variable aleatoria es una variable aleatoria.
Diapositivas sobre supreyectividad, inyectividad y biyectividad - [Detalles]
Clasificamos 3 tipos de funciones que son muy importantes para nuestro estudio que son: las inyectivas, suprayectivas y biyectivas; mostramos ejemplos de ellas y también se dan las ideas generales sobre cómo demostrar que una función es de alguna de este tipo como muestra de ello se demuestra que la función identidad cumple con ser inyectiva, suprayectiva y biyectiva al mismo tiempo, asimismo se demuestran teoremas muy importantes para la composición entre 2 funciones inyectivas da una función inyectiva y ese mismo resultado para subreyectivad y biyectividad.
Diapositivas sobre funciones invertibles y biyectivas - [Detalles]
En este tema se demuestra una de las propiedades más importantes de todo el tema de funciones que es que una función es inversa de otra si la composición por ambos lados da la función identidad y segundo que si está función es biyectiva su inversa cumple que la composición resulta la identidad.
Guía de estudio sobre funciones y cardinalidad - [Detalles]
Se deja una lista de ejercicios respecto a los funciones, relaciones, conjuntos infinitos, conjuntos finitos y cardinalidad de conjuntos. El objetivo de esta lista es que el alumno proporcione ejemplo así como hacer demostraciones para su práctica y así refuerzen su estudio, conocimiento y habilidad en estos temas.
Cuestionario sobre funciones - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a funciones. Al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a repasar y seguir estudiando.
Ejemplo de la unión de funciones - [Detalles]
Se demuestra que la función inversa de la unión de dos cinjuntos es la unión de las funciones inversas de cada conjunto.
Ejemplos de funciones invertibles - [Detalles]
Se muestran 2 ejemplos en donde se expresan 2 funciones y buscamos su función inversa en caso de que esta exista.
Ejemplos sobre composición de funciones - [Detalles]
El ejercicio pide exhibir 2 funciones, la primera pide que si una es inyectiva y otra no lo es; la segunda pide que una sea inyectiva y otra sea suprayectiva y la composición de estas no sea ni inyectiva ni suprayectiva.
Cuestionario sobre funciones en el plano polar - [Detalles]
Ponemos en práctica el tema del sistema de coordenadas polares, las funciones que se pueden generar en el plano polar y las diferencias de las perspectiva del plano polar al cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Actividad Geogebra funciones en el plano polar - [Detalles]
En este nuevo interactivo nos muestra como una función en el plano cartesiano (como las conocemos) son deformadas en el plano polar creando que estas funciones se vean diferentes a como estamos acostrumbrados a visualizarlas.
Ejemplo 3 subespacio vectorial - [Detalles]
Vemos un ejemplo donde se demuestra que el subconjunto de funciones constantes, que es subconjunto del conjunto de funciones, es un subespacio vectorial.
Homotopias entre funciones - [Detalles]
En este video definimos homotopía entre funciones y homotopías que preservan el punto base. Luego demostramos que las homotopías que preservan el punto base inducen el mismo homomorfismo en grupos fundamentales.
Álgebra homológica - homotopías - [Detalles]
En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.
Homología singular - invarianza homotópica - [Detalles]
En este video demostraremos una de las propiedades fundamentales de la homología, es decir, que funciones homotópicas inducen funciones iguales en homología. La demostración es un poco larga e involucra cuentas que están relacionadas con la combinatoria del n-simplejo estándar.
Ejemplos de funciones de varias variables - [Detalles]
Se presentan varios ejemplos de funciones de varias variables que cumplen con distintas condiciones sobre ser C_1, tener derivadas parciales, ser continuas, ser derivables, etc.
22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]
Ya definidas la exponencial y el logaritmo complejos, daremos parao a definir las funciones trigonométricas e hiperbólicas complejas.
26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]
Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
28. Sucesiones y series de funciones - [Detalles]
Desde hace varias entradas habíamos definido sucesiones, y en la anterior series, pero ambas para números complejos, ahora subiremos un escalón, definiendo estos conceptos también para funciones complejas.
30. Series de potencias y funciones - [Detalles]
Una vez vistas las series de potencias, metámonos a ver como se relacionan con las funciones complejas y que puede pasar si una función está descrita por una serie de potencias.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
28. Sucesiones y series de funciones - [Detalles]
Ya que vimos sucesiones y series de números complejos, ahora toca ver los mismos conceptos pero para funciones de variable compleja. Veamos un par de preguntas para ver si se entendió bien.
31. Funciones elementales como series de potencias - [Detalles]
Vamos a repasar un par de trucos para los cuales se necesario aplicar las propiedades de series de potencias, de las funciones de las cuales conocemos sus series.
33. Integrales de funciones híbridas - [Detalles]
Comenzaremos practicando un poco de integración sencilla en funciones híbridas $f:[a,b]\longrightarrow \mathbb{C}$.
34. Integrales de contorno I - [Detalles]
Ya definimos que son contornos, e integrales de funciones híbridas, pasemos ahora a las integrales, ahora sí, de funciones complejas de $\mathbb{C} \longrightarrow \mathbb{C}$.
26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]
Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.
Nota 8. Imagen directa e inversa de una función. - [Detalles]
En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.
Nota 9. Composición de funciones. - [Detalles]
En esta nota vemos una operación entre funciones llamada composición, así como la prueba de que es una operación asociativa; también vemos varios ejemplos de composiciones y recursos interactivos que nos ayudan a entender mejor el tema, por ultimo introducimos una función muy importante: la función identidad.
Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas. - [Detalles]
En esta nota probamos varios resultados referentes a la composición de funciones inyectivas, suprayectivas y biyectivas.
41. Técnicas para construir funciones analíticas - [Detalles]
Hagamos más ejercicios utilizando las técnicas de la entrada de blog anterior, para encontrar conjugadas y funciones analíticas.
Funciones inyectivas - [Detalles]
En esta sección abordaremos el concepto de función inyectiva, notaremos que la función inyectiva será aquella que mande elementos distintos a elementos distintos bajo una función. Veremos varios ejemplos así como equivalencias a ser inyectiva, por ultimo veremos que pasa con la composición de funciones y la inyectividad.
Funciones inversas - [Detalles]
En esta sección hablaremos acerca de las funciones inversas, para ello introduciremos conceptos como el de inversa derecha y el de inversa izquierda, veremos como se relacionan con los conceptos anteriores de función inyectiva, sobreyectiva y biyectiva.
Funciones compatibles - [Detalles]
En esta entrada definiremos las funciones compatibles y veremos varios resultados relacionados a ellos. Este concepto será de gran utilidad en la demostración de nuestro siguiente teorema: el teorema de recursión.
Funciones circulares - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos todo lo relacionado con las funciones circulares, como se comportan en cada caso especifico, cuales son los valores que llegan a tomar dependiendo del cuadrando donde se encuentren, para después abordar lo que son las identidades trigonométrica, los diferentes tipos que hay y para podemos utilizarlos.
En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.
Cuestionario de funciones circulares - [Detalles]
Este es un cuestionario para repasar el Módulo 9 del texto "Cimientos Matemáticos" donde se abarcan temas como: identidades trigonométricas, valores de las funciones circulares, etc.
Cuestionario de funciones algebraicas - [Detalles]
Este es un cuestionario para repasar el Módulo 17 del texto "Cimientos Matemáticos" donde se abarcan temas como: función lineal, función cuadrática, sus propiedades, funciones polinomiales, etc.
Introducción a funciones - [Detalles]
En esta entrada revisamos el concepto de función matemática, así como la igualdad entre funciones.
Funciones inyectivas, suprayectivas y biyectivas - [Detalles]
En esta entrada hablamos sobre funciones inyectivas sobreyectivas y biyectivas.
Composición de funciones - [Detalles]
En esta entrada revisamos la composición entre funciones y algunas propiedades.
Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
Funciones de variable real - [Detalles]
En este video se enlistan las funciones de variable real más comunes.
Funciones definidas por casos - [Detalles]
En este video se comenta sobre las funciones de variable real que se definen por casos, en especial, las que se definen por tramos.
Funciones inyectivas, crecientes y decrecientes - [Detalles]
En este video definimos el concepto de inyectividad, que es un criterio por el que una función puede tener una función inversa, y se discute la relación entre inyectividad y crecimiento-decrecimiento de funciones.
Álgebra de límites - [Detalles]
En este video se demuestra que 1. El límite de la suma es la suma de los límites. 2. Si una función tiene límite cuando x tiende a un número a, entonces en alguna vecindad de a, la función está acotada. 3. El límite del producto de funciones es el producto de los límites. 4. El límite de la composición de funciones es el límite de la segunda componente cuando y tiende al límite de la primera componente cuando x tiende a un número a.
Funciones, Funciones en JAVA, Declarar, definir y usar una función - [Detalles]
Declarar, definir y usar una función - Cómo se declara y define una función universalmente- Ejemplo de cómo usar una función así como convenciones y parámetros formales y actuales.
Funciones de orden superior, Ejemplo de aplicación - [Detalles]
Ejemplo de aplicación - Breve ejemplo de implementación de funciones-objeto de orden superior.
Espacios vectoriales - [Detalles]
Definimos qué son los espacios vectoriales. Damos muchos ejemplos, entre ellos, espacios de matrices, espacios de funciones y espacios de polinomios.
Problemas de combinaciones lineales, generadores e independientes - [Detalles]
Resolvemos problemas de vectores generadores y linealmente independientes. Damos ejemplos con espacios de vectores, matrices, polinomios y funciones.
Bases ortonormales y descomposición de Fourier - [Detalles]
Definimos la descomposición de Fourier dada una base ortonormal y vemos su relación con la norma. Aplicamos las ideas a polinomios y funciones periódicas.
Usando los conceptos de función inyectiva y suprayectiva, definimos cuando una función es biyectiva, hablamos de algunos ejemplos para ilustrar funciones biyectivas y demostramos que la función identidad es biyectiva.
Composición de inyectivas es inyectiva - [Detalles]
Usando el concepto de inyectividad, demostramos el teorema: Si dos funciones son inyectivas, entonces su composición es inyectiva.
Composición de suprayectivas es suprayectiva - [Detalles]
Usando el concepto de suprayectividad, demostramos el teorema: Si dos funciones son suprayectivas, entonces su composición es inyectiva.
Equivalencia entre funciones biyectivas e invertibles - [Detalles]
Definimos la inversa de una función, demostramos principalmente que: Una función tiene inversa si y sólo si, es biyectiva. Además de esto demostramos otro par de Teoremas relacionados a la inversa de una función.
Introducción a las bifurcaciones. Determinación de los valores de bifurcación - [Detalles]
Determinamos los valores de bifurcación con ayuda de las gráficas y las primeras derivadas de las funciones que determinan a la familia uniparamétrica de ecuaciones autónomas
Funciones inyectivas, sobreyectivas y biyectivas. Función inversa. - [Detalles]
Estudio de los conceptos de función inyectiva, sobreyectiva, biyectiva y de función inversa así cómo de resultados relacionados.
Sucesiones monótonas - [Detalles]
Definición y propiedades de las funciones monótonas
Propiedades de las sucesiones convergentes - [Detalles]
Estudio de propieades de las funciones convergentes
Sucesiones divergentes y sus propiedades - [Detalles]
Definción, ejemplos y propiedades de las funciones divergentes
Teoremas sobre el límite de funciones - [Detalles]
Revisión de teoremas del límite de una función
Definición de continuidad y sus propiedades - [Detalles]
Definición, ejemplos y propiedades de las funciones continuas
Otros teoremas de funciones continuas - [Detalles]
Estudio de teoremas derivados del teorema del valor intermedio
Continuidad uniforme - [Detalles]
Definición y ejemplos de funciones uniformemente continuas
Integrales trigonométricas basicas - [Detalles]
Enseñanza a la integración de las funciones trigonométricas basicas.
Integrales trigonométricas: Producto de potencias de senos y cosenos - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones senos y cosenos
Integrales trigonométricas: Producto de potencias de tan(x) y sec(x) - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones tan(x) y sec(x).
Área entre curvas - [Detalles]
Enseñanza sobre el cálculo del area delimitada entre dos funciones.
Derivabilidad y continuidad - [Detalles]
Relación entre derivabilidad y continuidad y revisión de las primeras reglas de derivación (derivada de las operaciones con funciones).
Regla de la cadena - [Detalles]
Demostración de la derivada de composición de funciones y la regla de la cadena.
Reglas de derivación - [Detalles]
Resumen de las reglas de derivación y demostración de la derivada de funciones frecuentes.
Localización de máximos y mínimos. Monotonía de funciones. - [Detalles]
Estudio de los conceptos máximo y mínimo de una función, la derivada y la monotonía de una función y el Criterio de la primera derivada.
Medida de probabilidad - [Detalles]
Presentamos el concepto de medida de probabilidad y sus propiedades básicas. Mostramos algunos ejemplos de funciones que son medidas de probabilidad.
Sistemas gradiente - [Detalles]
Estudiamos a los sistemas gradiente y sus principales propiedades. Además encontramos funciones de Lyapunov para puntos de equilibrio que sean mínimos locales estrictos de la función G que define al sistema.
Ejemplo de funciones inyectivas, suprayectivas y biyectivas - [Detalles]
Se deja un ejemplo para demostrar que una función es inyectiva, suprayectiva y biyectiva; y otro en donde no lo es para mayor comprensión del tema para el alumno.
Cuestionario de gráfica de funciones - [Detalles]
Ponemos en práctica el tema de graficar una función sobre el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Diapositivas sobre razones trigonométricas - [Detalles]
Damos la introducción al tema de trigonometría como las razones trigonométricas, la medición en grados o radianes, funciones trigonométricas de ángulos notables, resolución de triángulos basándonos en las razones trigonométricas y leyes de senos cosenos.
Diapositivas sobre coordenadas polares - [Detalles]
Mostramos lo que es el plano polar, para qué sirve este plano, cómo se utiliza, cuáles son las entradas de sus coordenadas, definimos lo que es un radián y cómo se utiliza este para utilizar el plano polar. Dejamos algunos ejemplos de funciones graficadas en este nuevo plano.
Gráfica de una función - [Detalles]
Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
Cambio de coordenadas de polares a cartesianas - [Detalles]
Explicamos como pasar de coordenadas polares a coordenadas cartesianas, de un punto. Usamos las funciones trigonométricas para dar las coordenadas cartesianas a partir de las coordenadas polares (radio, ángulo).
Graficar funciones en coordenadas polares - [Detalles]
Vemos como graficar una función en el plano polar. Para mostrar un ejemplo tomamos una función del ángulo f(theta), y damos su grafica en el plano polar.
Graficar funciones en coordenadas polares: otro método - [Detalles]
Damos un método alternativo para graficar una función en el plano polar. A partir de la gráfica de una función en coordenadas cartesianas, se puede usar como guía para dar la gráfica en coordenadas polares.
Ejemplo 3 espacio vectorial - [Detalles]
Demostramos que el conjunto de funciones numéricas cumple con las diez reglas de los espacios vectoriales, y vemos que es un espacio vectorial.
Un criterio de levantamiento de funciones - [Detalles]
En este video demostramos un criterio que nos dice exactamente cuándo existe un levantamiento de una función con dominio arbitrario.
Unicidad del levantamiento de funciones - [Detalles]
En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).
Álgebra homológica - complejos de cadenas - [Detalles]
En este video comenzamos a estudiar álgebra homológica desde un punto de vista puramente algebraico. Definimos complejos de cadenas, subcomplejos, complejos cociente, homología y funciones inducidas.
Homología - el complejo de cadenas singulares - [Detalles]
En este video definiremos el complejo de cadenas singulares usando funciones del n-simplejo estándar a un espacio topológico X.
Complejos CW - funciones características y subcomplejos - [Detalles]
En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.
Exponencial, logaritmo y trigonometría en los complejos - [Detalles]
Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.
Problemas de exponencial, logaritmo y trigonometría en C - [Detalles]
Resolvemos problemas de las funciones exponencial, logarítmica y trigonométricas en el campo complejo.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
9. Continuidad en un espacio métrico - [Detalles]
Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.
10. Conexidad y compacidad en un espacio métrico - [Detalles]
Introducimos las nociones de conexidad y compacidad, que nos permitirán dar caracterizaciones de subconjuntos de $\mathbb{C}$, además veremos su relación con las funciones continuas y estudiaremos sus propiedades topológicas.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Chequemos un poquito de la definición de función y de sus partes real e imaginaria.
14. Límites en $\mathbb{C}$ - [Detalles]
Analizaremos nuevamente la definición de límite, pero ahora para funciones complejas.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Anteriormente vimos continuidad en espacios métricos en abstracto, ahora nos vamos a bajar al terreno complejo y considerar la definición de continuidad únicamente en funciones complejas.
22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]
Responderemos unas preguntas de senos y cosenos complejos, así como senos y cosenos hiperbólicos.
24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]
Revisemos ahora aspectos geométricos acerca de las funciones, o transformaciones $T:\mathbb{C} \longrightarrow \mathbb{C}$.
14. Límites en $\mathbb{C}$ - [Detalles]
En esta entrada conoceremos el límite de una función de variable compleja, cuya definición no es lejana a la de funciones de variable real, para luego poder abrirnos paso hacia la continuidad.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Abordaremos formalmente el concepto de continuidad en sentido complejo, debemos estar advertidos de que, a pesar de que la definición no diferirá mucho de la de variable real, el comportamiento en los complejos puede cambiar de formas extrañas, analizaremos propiedades y caracterizaciones de funciones complejas continuas.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.
20. Exponencial compleja - [Detalles]
Ahora vamos a definir unas cuantas de las funciones complejas mas importantes, empezando por la exponencial compleja. y que son mas ricas en propiedades y por lo tanto más interesantes para estudiar.
24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]
Ya hablamos bastante acerca de las funciones complejas, su continuidad y derivadas, ahora revisaremos un poco más afondo la geometría, por medio de las transformaciones, veremos varios tipos de estas y como afectan al plano y a subconjuntos de este.
Unidad II: Analicidad y funciones de variable compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la segunda unidad.
Unidad II: Analicidad y funciones de variable compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la segunda unidad.
Unidad III: Series de números complejos - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Examen - [Detalles]
En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad IV: Integración compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.
Unidad IV: Integración compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
33. Integrales de funciones híbridas - [Detalles]
Ahora en esta entrada, ya armados con el concepto de función híbrida, veremos la definición de la integral de una función híbrida, con esto luego podremos pasar a la integral de una función compleja.
39. Teoremas de Weierstrass - [Detalles]
Vamos a ver unos cuantos resultados importantes para ver cómo se relacionan las series de funciones, derivadas e integrales de estas y veremos bajo qué condiciones se puede derivar e integrar término a término.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
30. Series de potencias y funciones - [Detalles]
Repasemos unos cuantos aspectos, un poco más técnicos acerca de las series de potencias, tales como diferenciabilidad.
35. Integrales de contorno II - [Detalles]
Continuaremos con integrales de contorno, y haciendo camino hacia el Teorema Fundamental del Cálculo para funciones complejas.
Nota 7. Relaciones y funciones - [Detalles]
En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.
Nota 11. Funciones inyectivas, suprayectivas y biyectivas. - [Detalles]
En esta nota introducimos los conceptos de funcón inyectiva, función suprayectiva y función biyectiva, así como varios ejemplos de estas. También demostramos que es equivalente que una función sea biyectiva a que sea invertible.
Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]
En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.
Nota 20. Principio del producto, funciones entre conjuntos finitos. - [Detalles]
En esta nota vemos el principio del producto, el cual nos dice que la cardinalidad de el producto cartesiano de dos conjuntos finitos es el producto de sus cardinalidades, también vemos que si tenemos una función entre conjuntos finitos de la misma cardinalidad son equivalentes ser inyectiva, suprayectiva o biyectiva.
Nota 22. Conteo. Ordenaciones. - [Detalles]
En esta nota veremos como cuantificar el número de ordenaciones de n objetos cuando son tomadas de m en m de ellos, para ello obtendremos el cardinal del número de funciones inyectivas del conjunto de los primeros m naturales, en el conjunto de n objetos.
39. Teoremas de Weierstrass - [Detalles]
Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.
43. Clasificación de ceros y singularidades de una función analítica - [Detalles]
Realizaremos unos ejercicios para aterrizar las definiciones de singularidad de una función, si es removible, polo o esencial con funciones muy bien conocidas.
Funciones (parte II) - [Detalles]
En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.
Isomorfismos de orden - [Detalles]
En esta entrada hablaremos acerca de funciones biyectivas entre conjuntos ordenados, algunas con propiedades particulares a las que llamaremos isomorfismos, tabién veremos algunos resultados sobre isomorfismos.
Ejercicio Representación de funciones con función par e impar - [Detalles]
En este video explicamos cómo descomponer cualquier función en dos compañeras esenciales: una función par y una función impar.
Ejercicio Funciones invertibles por un lado - [Detalles]
En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.
Ejercicio Limite superior de una sucesión - [Detalles]
En este video estudiamos los límites limsup y el liminf. Navegaremos entre secuencias y funciones, descubriendo cómo estas dos nociones nos brindan perspectivas únicas sobre el comportamiento asintótico.
Ejercicio Teorema del Sandwich - [Detalles]
¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?
Ejercicio Regla de la Cadena - [Detalles]
En este video, nos sumergimos en ejemplos prácticos y teoría detrás de la técnica esencial de la regla de la Cadena, facilitando la derivación de funciones compuestas.
Cuestionario de funciones circulares de suma y diferencia - [Detalles]
Este es un cuestionario para repasar el Módulo 10 del texto "Cimientos Matemáticos" donde se abarcan temas como: transformación de productos a suma y viceversa, seno, coseno y tangente de sumas y diferencias, etc.
Cuestionario de funciones - [Detalles]
Este es un cuestionario para repasar el Módulo 16 del texto "Cimientos Matemáticos" donde se abarcan temas como: valor de una función, grafica de una función y su relación, tabulación, etc.
Cuestionario de funciones trascendentes - [Detalles]
Este es un cuestionario para repasar el Módulo 18 del texto "Cimientos Matemáticos" donde se abarcan temas como: función seno, coseno y sus respectivas propiedades, función exponencial, función logaritmica, etc.
Principio de recursión en los números naturales - [Detalles]
En esta entrada revisamos las funciones recursivas, su definición y ejemplos.
Funciones, Parte 1 - [Detalles]
En este video se discute el concepto intuitivo de función, junto con otros conceptos asociados como dominio, codominio, regla de correspondencia y composición. Después se introduce la definición formal de función y se compara con la definición intuitiva. Finalmente se discuten algunos ejemplos.
Funciones, Parte 2 - [Detalles]
En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.
Funciones, Parte 4 - [Detalles]
En este video sólo se muestra un ejemplo de problemas típicos de los libros de texto, consistente en "encontrar el dominio de una función".
Limites de funciones - [Detalles]
En este video se expone la definición del límite cuando x tiende a p de f(x).
En este video platicamos sobre algunos tipos de discontinuidades de funciones de números reales.
Continuidad en intervalos cerrados 2 - [Detalles]
En este video demostramos que las funciones continuas en intevalos cerrados son acotadas, y después, demostramos que alcanzan sus valores máximo y mínimo.
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
COMAL: Teoría de los Conjuntos - [Detalles]
En este curso en notas tipo blog, comenzamos con una introducción a los axiomas de ZFC y sus consecuencias. A partir de ahí, definimos relaciones, funciones y órdenes. Definimos a los números naturales desde la perspectiva de conjuntos inductivos. Exploramos la definición de equipotencia y finitud, hablando un poco de aritmética cardinal. Terminamos discutiendo el axioma de elección, sus equivalencias y consecuencias. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Recursividad, recursión en JAVA - [Detalles]
Recursión en JAVA - Cómo funciona y cómo se implementan/declaran las funciones recursivas en JAVA
Funciones de orden superior, Pasar una función como parámetro - [Detalles]
Pasar una función como parámetro - Implementar una interfaz funcional para pasar la función a parámetro. Introducción a las clases anónimas internas y a las LAMBDA
Funciones de orden superior, Aplicación para listar directorios con java nio - [Detalles]
Aplicación para listar directorios con java nio - Cómo usar la API de JAVA-nio para listar directorios
Clases de homotopía de funciones con domino la n-esfera - [Detalles]
Vemos una manera equivalente de definir los grupos de homotopía