Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
36. Teorema integral de Cauchy - [Detalles]
El Teorema Integral de Cauchy es un teorema importantísimo en el estudio de la variable compleja, veremos sus diferentes versiones y demostraciones.
37. Consecuencias del teorema integral de Cauchy - [Detalles]
En esta entrada veremos unas cuantas consecuencias del Teorema Integral de Cauchy, tales como el Teorema de Liouville, el Teorema Fundamental del Álgebra, el Teorema de Morera y más.
38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]
Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.
37. Consecuencias del Teorema Integral de Cauchy - [Detalles]
Veamos unos ejercicios sencillos para asentar bases de los teoremas importantes que se siguen del Teorema Integral de Cauchy
Unidad IV: Integración compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.
Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]
¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.
38. Teorema Integral de Cauchy, versión homotópica. - [Detalles]
Repasaremos los conceptos de homología y homotopía y la reformulación del Teorema de Cauchy para estos aspectos.
Teorema del valor medio para la integral - [Detalles]
Teorema valor medio, valor medio generalizado, valor medio integral, valor medio generalizado integral
Distancia entre dos planos en el espacio - [Detalles]
Similar al caso de la distancia entre dos rectas, deducimos la fórmula para calcular la distancia mínima entre dos planos (siempre que no se crucen). Vemos que los planos deben ser paralelos, ya que en caso contrario se cruzan y su distancia es cero. Para la formula hacemos uso de la fórmula para la distancia de un punto a un plano.
Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]
Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz
Sucesiones de Cauchy - [Detalles]
Definición y ejemplo de sucesiones de Cauchy y su relación con las sucesiones convergentes
Ecuación de Cauchy-Euler - [Detalles]
Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler
Mini-cuestionario: Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]
Mini-cuestionario para verificar el entendimiento de las nociones básicas de producto interior y de la desigualdad de Cauchy-Schwarz
Teorema de Cauchy - [Detalles]
Se define la noción de p-grupo y se demuestra el Teorema de Cauchy.
Consecuencias del teorema de Cauchy - [Detalles]
Se muestran algunas aplicaciones y consecuencias del teorema de Cauchy: ser p-grupo es equivalente a tener orden una potencia de p, todo p-grupo no trivial tiene centro no trivial, todo grupo de orden el cuadrado de un primo es abeliano, los subgrupos maximales de un p-grupo son normales y de índice p.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.
36. Teorema Integral de Cauchy - [Detalles]
Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.
39. Teoremas de Weierstrass - [Detalles]
Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.
Teorema de existencia y unicidad. Ecuación integral asociada - [Detalles]
Damos los primeros detalles para la demostración del Teorema de existencia y unicidad de Picard. Encontramos una manera equivalente de resolver un problema de condición inicial, que es resolviendo una ecuación integral asociada.
Motivación de integral y sumas superiores e inferiores - [Detalles]
Motivación de la integral y sumas
Propiedades básicas de la integral definida - [Detalles]
Propiedades básicas de la integral definida, aditividad, suma, producto por una constante
Criterio de la integral - [Detalles]
Estudio al criterio de la integral para las series como criterio de convergencia.
33. Integrales de funciones híbridas - [Detalles]
Ahora en esta entrada, ya armados con el concepto de función híbrida, veremos la definición de la integral de una función híbrida, con esto luego podremos pasar a la integral de una función compleja.
34. Integrales de contorno I - [Detalles]
En esta entrada veremos, ahora sí, la definición de integral compleja, con todas las de la ley, solo que descubriremos que hay varios tipos de integral dependiendo de lo que queramos hacer.
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Cómo calcular las raíces enésimas de un número - [Detalles]
Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo.
Diapositivas de distancia entre 2 puntos - [Detalles]
Motivamos el estudio para calcular la distancia que hay entre dos puntos dentro del plano y espacio cartesiano, para motivar a esta fórmula se ocupa una aplicación al teorema de Pitágoras, y para extender esta fórmula a más dimensiones se puede como consecuencia del teorema de Pitágoras, dando así la distancia entre 2 puntos en el plano y espacio cartesiano.
Distancia entre dos puntos del plano cartesiano - [Detalles]
Usamos el Teorema de Pitágoras para deducir la fórmula de la distancia entre dos puntos en el plano cartesiano. Con esta fórmula podemos conocer la distancia entre dos puntos cualesquiera en el plano,
Distancia entre dos puntos en el espacio cartesiano - [Detalles]
Retomando la fórmula para la distancia entre dos puntos en el plano, y el teorema de Pitágoras, damos una deducción para la fórmula de la distancia entre dos puntos en el espacio cartesiano, es decir, la distancia para dos puntos en un espacio tridimensional.
Distancia entre dos rectas en el espacio - [Detalles]
Deducimos la fórmula para calcular la distancia entre dos rectas en el espacio tridimensional. Al igual que el caso de un punto y una recta, buscamos la distancia mínima, y hacemos uso del producto triple y producto cruz para deducir esta fórmula.
Homología celular - una fórmula para el homomorfismo frontera - [Detalles]
En este video damos una fórmula explícita para el homomorfismo frontera en el complejo de cadenas celular. Esto termina de establecer cómo se comporta el complejo de cadenas celular de un complejo CW.
Multiplicación en forma polar y fórmula de De Moivre - [Detalles]
Mostramos la interpretación geométrica de lo que reprenta la multiplicación de dos números complejos en su forma polar; también enunciamos la fórmula de De Moivre para ayudarnos a dar solución a problemas en los que se requiere calcular potencias de números complejos.
Problemas de desigualdades vectoriales - [Detalles]
Resolvemos problemas de desigualdades usando desigualdades vectoriales. Vemos aplicaciones de las desigualdades de Cauchy-Schwarz y de Minkowski.
Polinomios de Taylor (Parte 2) - [Detalles]
Estudio del residuo de los polinomios de Taylor, la forma de Lagrange y de Cauchy.
Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores.
Esbozo de construcción de racionales y reales - [Detalles]
Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
Veamos una primera entrada de las ecuaciones C-R.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Ahora chequemos más propiedades de las ecuaciones C-R.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
Repasaremos un par de propiedades que se derivan de las ecuaciones de C-R.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Teorema de Existencia y Unicidad - Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall - [Detalles]
Se desarrolla una teoría preliminar necesaria para demostrar el teorema de existencia y unicidad, en dicha teoría se presentan las ecuaciones integrales, las funciones lipschitzianas y el lema de Gronwall
Definición de la integral definida - [Detalles]
Continuación de sumas de Riemann, condición de Riemann
Cálculo de momento y centro de masa - [Detalles]
Estudio de calculo de momentos y centro de masa con el concepto de la integral.
Aplicación de la integración al concepto de trabajo - [Detalles]
Aplicación en el área de la fisica la integral en el concepto de trabajo.
Fuerza y presión hidrostatica - [Detalles]
Aplicación de la integral en el concepto de fuerza y presión en la hidrostatica.
Aplicación en el área de la probabilidad la integral definida.
Área bajo la curva - [Detalles]
Se aborda el tema del concepto de la integral con las sumas de Riemann y se dan tres ejemplos de su aplicación.
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
Bienvenida Calculo I - [Detalles]
Bienvenida al curso Cálculo Diferencial e Integral I. Semestre 2022-1 Iniciamos el 20 de septiembre de 2022. Contacto: David Meza Alcántara dmeza@ciencias.unam.mx Jorge Arturo Quiroz Cabrera arthmithrandir@ciencias.unam.mx Luis David Reyes Sáenz luisdavidr@ciencias.unam.mx Classroom: https://classroom.google.com/c/Mzc1MTYwNjAxOTc4?cjc=lj6bwu7
COMAL: Cálculo Diferencial e Integal II - [Detalles]
Curso de Cálculo Diferencial e Integral II en notas tipo blog. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
COMAL: Cálculo Diferencial e Integal III - [Detalles]
Curso de Cálculo Diferencial e Integral III en notas tipo blog. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Problemas de dualidad y base dual - [Detalles]
Resolvemos problemas de dualidad relacionados con encontrar bases primales y duales. Probamos la fórmula de interpolación de Lagrange.
Factorial y combinatorio - [Detalles]
Comenzamos dando la definición de la factorial de un número natural, así como la notación que se emplea para expresarlo. Damos la notación necesaria para entender la combinatoria, y también la fórmula del combinatorio n en k.
Combinatoria, que fórmula usar - [Detalles]
Definimos fórmulas de conteo, para saber cuántas combinaciones de k elementos de n elementos disponibles, podemos tener. Estas fórmulas de conteo dependen de si importa el orden o no, o si importa que haya repetidos o no.
Definimos que es una permutación, y hablamos de sus usos y características. También damos una fórmula de conteo para saber cuántas permutaciones tenemos en un conjunto de n elementos, ya sea permutaciones con o sin repeticiones.
Ejemplo combinatoria - [Detalles]
Usamos combinatoria para responder: ¿De cuantas maneras se pueden repartir 3 medallas en una carrera de 12 caballos? Damos la fórmula de conteo según importe el orden o no, o si se admiten repeticiones.
Propiedades del combinatorio - [Detalles]
Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.
Teorema del binomio - [Detalles]
Explicamos y demostramos el Teorema del Binomio. La cual es una fórmula que proporciona el desarrollo de la n-ésima potencia de un binomio, hacemos el ejemplo para n=2.
División de números complejos - [Detalles]
Vemos la forma de dividir número complejos, usando la multiplicación anteriormente vista podemos llegar a una fórmula para la división. Hacemos algunos ejemplos para mostrar la división de números complejos en acción.
Soluciones de una ecuación cuadrática - [Detalles]
Hablamos sobre las posibles soluciones de una ecuación cuadrática (damos un breve recordatorio sobre la formula general o más popularmente conocida como "chicharronera"). Vemos gráficamente cuando una ecuación cuadrática tiene dos, una o ninguna solución real. Definimos el discriminante y haciendo uso de el vemos cuando la ecuación cuadrática tiene una o dos soluciones reales, o cuando su solución es compleja.
Segmentos dirigidos y potencia de un punto - [Detalles]
Definimos el concepto de segmento dirigido y de potencia de un punto , demostramos la fórmula de Chasles y algunos resultados de la potencia de un punto
Ejercicios de segmentos dirigidos - [Detalles]
Generalizamos la fórmula de Chasles para n puntos, demostramos el teorema de Euler y algunos resultados al respecto
Cuadrilátero cíclico - [Detalles]
Tras haber visto el teorema de Ptolomeo ampliamos nuestro estudio del cuadrilátero cíclico con la formula de Brahmagupta y el teorema Japonés
Superficie de un sólido de revolución - [Detalles]
Se aborda la deducción geométrica para la obtención de la fórmula para calcular la superficie de un sólido de revolución y se dan tres ejemplos.
Diapositivas sobre determinantes - [Detalles]
Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.
Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]
Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.
Explicamos la distancia entre dos puntos como la longitud de un segmento de recta que los une, usamos estación para dar una formula formal para la distancia entre dos puntos que estén sobre una recta.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. El Teorema de Pitágoras es válido solo para triángulos rectángulos.
Teorema de Pitágoras - [Detalles]
Enunciamos y demostramos el Teorema de Pitágoras, el cual relaciona la hipotenusa de un triángulo rectángulo con sus catetos mediante una formula. Usamos las fórmulas conocidas de un cuadrado para demostrar dicho teorema.
Distancia punto recta - [Detalles]
Deducimos la fórmula para calcular la distancia de un punto a una recta en el espacio tridimensional. Buscamos la distancia mínima del punto a la recta Durante la deducción hacemos uso del producto cruz ya que buscamos una distancia dada por una dirección perpendicular a la recta.
Ejemplo distancia entre dos rectas - [Detalles]
Dadas dos rectas descritas por sus respectivas ecuaciones de la resta, calculamos como ejemplo la distancia entre estas dos rectas. Usamos la formula anteriormente deducida.
Distancia entre un plano y un punto - [Detalles]
Similar al caso de una recta y un punto, deducimos la fórmula para calcular la distancia mínima de un punto a un plano. Para la distancia hacemos uso del producto punto y sus propiedades.
Multiplicación de números complejos - [Detalles]
Vemos la forma de multiplicar números complejos, usando las reglas anteriormente vistas (las cuales guardan similitudes a la multiplicación de polinomios), podemos llegar a una fórmula para la multiplicación. Hacemos algunos ejemplos para mostrar la multiplicación de números complejos en acción.
Multiplicación de números complejos en su forma polar - [Detalles]
Usando la forma polar de los números complejos, damos una formula muy sencilla para multiplicar complejos (en su forma polar). Vemos que tiene una representación geométrica muy parecida a una rotación, o una suma de vectores en el plano complejo.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Problemas de fórmula de De Moivre y raíces n-ésimas - [Detalles]
Resolvemos problemas que ocupan el teorema de De Moivre para potencias de un número complejo y el cálculo de la raíz de un número complejo.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presenta cómo calcular raíces n-esimas de números complejos partiendo de la fórmula de De Moivre.
Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]
En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.
Grupos de homotopía de un producto - [Detalles]
Vemos una fórmula para pi_n(X x Y)