Números complejos - [Detalles]
Definimos los números complejos: "a+b*i" ("a", "b" son números reales e "i" es el numero imaginario). Damos la notación que vamos a utilizar para los numero complejo (parte real y parte imaginaria) y definimos el conjunto de los números complejos.
La conjugación de números complejos - [Detalles]
Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
Ahora queremos repasar lo que significa que $\mathbb{C}$ sea un campo y que implica, así como reforzar unas cuantas fórmulas para expresar partes real e imaginaria de un número complejo.
12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]
Chequemos un poquito de la definición de función y de sus partes real e imaginaria.
40. Funciones conjugadas armónicas y funciones conformes - [Detalles]
En esta entrada definiremos lo que significa que dos funciones sean conjugadas y armónicas conjugadas, esto luego nos permitirá caracterizar con aún más precisión a las funciones analíticas por medio de sus partes real e imaginaria.
Raíces de números complejos y raíces de la unidad - [Detalles]
Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.
Unidad I: Introducción y preliminares - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
Unidad I: Introducción y preliminares - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la primera unidad.
Unidad I: Introducción y preliminares - Examen - [Detalles]
En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
Unidad I: Introducción y preliminares - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la primera unidad.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la segunda unidad.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la segunda unidad.
Unidad III: Series de números complejos - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Examen - [Detalles]
En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la tercera unidad.
Unidad III: Series de números complejos - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la tercera unidad.
Unidad IV: Integración compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.
Unidad IV: Integración compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la cuarta unidad.
Unidad IV: Integración compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad IV: Integración compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la cuarta unidad.
Unidad V: Aplicaciones - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.
Unidad V: Aplicaciones - Examen - [Detalles]
En este examen se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.
Unidad V: Aplicaciones - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la quinta unidad.
Unidad V: Aplicaciones - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la quinta unidad.
Neutro multiplicativo y unidades de un anillo - [Detalles]
Retomamos la definición de anillo. Damos la definición formal de neutro multiplicativo y de unidad. Tomando los ejemplos de anillos anteriormente vistos mostramos cuál es su neutro multiplicativo y sus unidades.
COMAL Álgebra Lineal 1 – Tarea 1 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 1 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Tarea 2 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 2 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Tarea 3 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 3 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Tarea 4 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 4 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 1 - [Detalles]
Examen de práctica de la Unidad 1 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 2 - [Detalles]
Examen de práctica de la Unidad 2 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 3 - [Detalles]
Examen de práctica de la Unidad 3 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 4 - [Detalles]
Examen de práctica de la Unidad 4 del COMAL de Álgebra Lineal 1
Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]
Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.
Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]
Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales
Cuestionario Unidad 1 Álgebra Superior - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a lógica proposicional, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre el plano y espacio cartesiano - [Detalles]
Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.
Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Lista de ejercicios sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
COMAL: Geometría Analítica I - [Detalles]
Cubrimos el temario oficial de la materia Geometría Analítica I. Tenemos notas, videos y cuestionarios para cada tema. Además, en cada unidad hay guías de estudio y actividades de autoevaluación. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]
Finalizando la unidad, vamos a estudiar el concepto del $\infty$, la manera será construyendo lo que llamaremos el "Plano Complejo Extendido" y analizando sus propiedades.
26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]
Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.
27. Preliminares de series de números complejos - [Detalles]
Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
41. Técnicas para construir funciones analíticas - [Detalles]
Para finalizar la unidad, vamos a dar unas técnicas para construir funciones analíticas determinando funciones conjugadas armónicas.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]
Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.
Nota 15. Relaciones de equivalencia y particiones. - [Detalles]
En esta nota veremos cómo las relaciones de equivalencia generan particiones, y concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia. Con esta nota concluimos la primera unidad del curso.
Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]
En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.
Nota 25. Espacios vectoriales - [Detalles]
Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.
Álgebra Moderna I: Teorema de Cayley - [Detalles]
A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley
En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.
Adjunta de una transformación lineal - [Detalles]
En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales.
Introducción a forma canónica de Jordan - [Detalles]
En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.