Raíces de números complejos y raíces de la unidad - [Detalles]
Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.
Ejemplo calcular raíces de un número complejo - [Detalles]
Continuamos analizando las raíces de un numero complejo, hacemos varios ejemplos para calcular y dar la representación geométrica de las raíces quinta de "4-4*i".
Raíces de polinomios de grados 3 y 4 - [Detalles]
Mostramos formas para encontrar las raíces de los polinomios de grado tres, cuatro y hablaremos sobre polinomios con grados más altos; para encontrar las raíces de estos polinomios de grado tres ocupamos el método Cardano y para polinomios de grado cuatro el método de Ferrari.
Cómo calcular las raíces enésimas de un número - [Detalles]
Usando el teorema de Moivre deducimos una fórmula para calcular la raíz n-esíma de un numero complejo (la fórmula es muy similar a la de Moivre). Vemos que las raíces de un numero complejo tienen una representación geométrica muy peculiar en el plano complejo.
Teorema para buscar las Raíces enteras y racionales de un polinomio - [Detalles]
Demostramos un teorema que nos ayuda a encontrar las raíces racionales o enteras de un polinomio cuyos coeficientes son enteros. El teorema nos indica que basta con buscar en los divisores del término independiente ("a_0") y del coeficiente líder del polinomio ("a_n").
Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]
Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces reales distintas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son reales y distintas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces repetidas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son repetidas.
Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces complejas - [Detalles]
Resolvemos el caso general de una ecuación lineal homogénea de segundo orden con coeficientes constantes, cuando las raíces a la ecuación a(r^2)+br+c=0 son complejas.
Problemas de norma de complejos y ecuaciones de segundo grado - [Detalles]
Resolvemos ejercicios de la norma en el campo de los complejos también resolvemos problemas de raíces cuadráticas complejas y raíces complejas.
El teorema de derivadas y multiplicidad - [Detalles]
Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
Repasemos un poco acerca de cómo se comportan potencias y raíces en los complejos.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presenta cómo calcular raíces n-esimas de números complejos partiendo de la fórmula de De Moivre.
Eigenvectores y eigenvalores de transformaciones y matrices - [Detalles]
Definimos eigenvectores y eigenvalores de matrices. Vemos que los últimos son raíces de cierto polinomio. Probamos propiedades básicas y vemos ejemplos.
Raíces de polinomios - [Detalles]
Explicamos en que consiste la división sintética, la cual nos ayuda a dividir polinomios entre polinomios de la forma "x-a". Damos el procedimiento de la división sintética y hacemos dos ejemplos.
Teorema del Residuo - [Detalles]
Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios.
Soluciones por series cerca de un punto singular regular (Parte 1) - [Detalles]
Damos las consideraciones generales que utilizaremos a lo largo del tema, definimos la ecuación indicial de la ecuación diferencial de segundo orden con coeficientes variables, y desarrollamos el método de Frobenius para el caso cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero
Soluciones por series cerca de un punto singular regular (Parte 2) - [Detalles]
Continuamos desarrollando el método de Frobenius. En esta ocasión revisamos el caso cuando la ecuación indicial tiene raíces repetidas
Soluciones por series cerca de un punto singular regular (Parte 3) - [Detalles]
Finalizamos el estudio al método de Frobenius revisando el caso cuando la ecuación indicial tiene dos raíces que difieren por un entero
Método de valores y vectores propios para diagonalizar una matriz con valores propios distintos - [Detalles]
Desarrollamos el método de valores y vectores propios considerando una matriz A diagonalizable, cuyo polinomio característico asociado tiene n raíces distintas.
Construcción de números complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Inmersión de los reales en los complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Problemas de fórmula de De Moivre y raíces n-ésimas - [Detalles]
Resolvemos problemas que ocupan el teorema de De Moivre para potencias de un número complejo y el cálculo de la raíz de un número complejo.
Irreducibilidad en R[x] - [Detalles]
Enunciamos el teorema fundamental del álgebra y el teorema de la factorización única de polinomios sobre los complejos asimismo vemos las raíces complejas de un polinomio y su la irreducibilidad de un polinomio real.
Problemas de continuidad y derivadas de polinomios - [Detalles]
Resolvemos ejercicios de continuidad y de derivada en los polinomios así como de raíces reales.
El criterio de la raíz racional - [Detalles]
Estudiamos el criterio de la raíz racional el cual nos permite determinar las únicas raíces racionales que puede tener un polinomio de coeficiente enteros, asimismo mostramos una aplicación directa, una indirecta y una con un polinomio de coeficientes racionales.
Ejemplos de solución de ecuaciones de grados 3, 4 y más - [Detalles]
Resolvemos ejercicios en los cuales se pide que encontremos las raíces de un polinomio de grado 3 con el método de Cradano, de grado 4 con el método de Ferrari y de grados mayores.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
Recordaremos nociones de la representación en forma polar y repasaremos las nociones y propiedades de las potencias y raíces complejas.
Ejercicio Sucesión monótona acotada - [Detalles]
En este video exploramos el misterioso comportamiento de la sucesión infinita de raíces: $\sqrt{2\sqrt{2\sqrt{2\cdots}}}$ ¿Cómo es posible que esta enigmática estructura nos conduzca al sencillo número 2?
Unidad I: Introducción y preliminares - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
Unidad I: Introducción y preliminares - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la primera unidad.
Unidad I: Introducción y preliminares - Examen - [Detalles]
En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
Unidad I: Introducción y preliminares - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la primera unidad.
Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la segunda unidad.
Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.
Unidad II: Analicidad y funciones de variable compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la segunda unidad.
Unidad III: Series de números complejos - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Examen - [Detalles]
En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la tercera unidad.
Unidad III: Series de números complejos - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la tercera unidad.
Unidad IV: Integración compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.
Unidad IV: Integración compleja - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la cuarta unidad.
Unidad IV: Integración compleja - Examen - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad IV: Integración compleja - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la cuarta unidad.
Unidad V: Aplicaciones - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.
Unidad V: Aplicaciones - Examen - [Detalles]
En este examen se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.
Unidad V: Aplicaciones - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la quinta unidad.
Unidad V: Aplicaciones - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la quinta unidad.
Neutro multiplicativo y unidades de un anillo - [Detalles]
Retomamos la definición de anillo. Damos la definición formal de neutro multiplicativo y de unidad. Tomando los ejemplos de anillos anteriormente vistos mostramos cuál es su neutro multiplicativo y sus unidades.
COMAL Álgebra Lineal 1 – Tarea 1 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 1 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Tarea 2 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 2 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Tarea 3 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 3 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Tarea 4 - [Detalles]
Tarea en equipo para repasar temas de la Unidad 4 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 1 - [Detalles]
Examen de práctica de la Unidad 1 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 2 - [Detalles]
Examen de práctica de la Unidad 2 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 3 - [Detalles]
Examen de práctica de la Unidad 3 del COMAL de Álgebra Lineal 1
COMAL Álgebra Lineal 1 – Examen 4 - [Detalles]
Examen de práctica de la Unidad 4 del COMAL de Álgebra Lineal 1
Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]
Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.
Introducción a la teoría cualitativa de las ecuaciones diferenciales - [Detalles]
Para comenzar con la unidad se presenta un ejemplo ilustrativo que permite ganar intuición sobre el desarrollo geométrico y cualitativo de los sistemas de ecuaciones diferenciales
Cuestionario Unidad 1 Álgebra Superior - [Detalles]
Se deja un cuestionario electrónico para que el alumno refuerce sus conocimientos en cuanto a lógica proposicional, al realizarlo arroja una calificación evaluando su desempeño, así mostrando en que áreas necesitaría volver a revisar.
Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.
Cuestionario sobre el plano y espacio cartesiano - [Detalles]
Ponemos en práctica todos los conocimientos adquiridos en esta primera unidad de lugares geométricas, espacio y plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que tema no ha sido aún comprendido para que el alumno pueda repasarlo.
Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
Lista de ejercicios sobre trigonometría y más sistemas de coordenadas - [Detalles]
Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.
COMAL: Geometría Analítica I - [Detalles]
Cubrimos el temario oficial de la materia Geometría Analítica I. Tenemos notas, videos y cuestionarios para cada tema. Además, en cada unidad hay guías de estudio y actividades de autoevaluación. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
11. El plano complejo extendido $\mathbb{C}_{\infty}$ - [Detalles]
Finalizando la unidad, vamos a estudiar el concepto del $\infty$, la manera será construyendo lo que llamaremos el "Plano Complejo Extendido" y analizando sus propiedades.
26. Funciones complejas como transformaciones. Técnicas de graficación. - [Detalles]
Como sabemos, es un poco difícil visualizar la gráfica de una función que va de $\mathbb{R}^2$ en $\mathbb{R}^2$, este es más o menos el caso en funciones de $\mathbb{C}$ en $\mathbb{C}$, por lo que para cerrar la unidad, estudiaremos algunos métodos que se pueden emplear para visualizar de cierta forma estas gráficas.
27. Preliminares de series de números complejos - [Detalles]
Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
41. Técnicas para construir funciones analíticas - [Detalles]
Para finalizar la unidad, vamos a dar unas técnicas para construir funciones analíticas determinando funciones conjugadas armónicas.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]
Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.
Nota 15. Relaciones de equivalencia y particiones. - [Detalles]
En esta nota veremos cómo las relaciones de equivalencia generan particiones, y concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia. Con esta nota concluimos la primera unidad del curso.
Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]
En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.
Nota 25. Espacios vectoriales - [Detalles]
Con esta nota comenzamos la unidad tres del curso, introducimos el concepto de espacio vectorial, el cual es un tipo particular de estructura algebraica, tanto el plano cartesiano como el espacio pertenecen a esta estructura. Definimos lo que es un campo, la suma vectorial y la multiplicación escalar y probamos que para todo número natural n, $\mathbb{R}^n$ es un espacio vectorial.
Álgebra Moderna I: Teorema de Cayley - [Detalles]
A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley
En esta nueva unidad comenzaremos a hablar acerca de conjuntos infinitos, para ello necesitamos hablar acerca de la cantidad de elementos que poseen estos conjuntos. En esta sección comenzaremos a entablar una relación entre los elementos de un conjunto y otro, veremos que si podemos establecer una función biyectiva entre dos conjuntos diremos que tales conjuntos son equipotentes. También veremos que pasa si en lugar de una función biyectiva solo tenemos una función inyectiva.
Adjunta de una transformación lineal - [Detalles]
En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales.
Introducción a forma canónica de Jordan - [Detalles]
En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar.
Principio de inducción matemática - [Detalles]
En este apartado se abordan los temas de inducción matemática, inducción fuerte y recursividad, con demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Algoritmo de la división - [Detalles]
En este apartado se aborda el concepto de divisibilidad y el teorema del algoritmo de la división, con demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Números primos y compuestos - [Detalles]
En este apartado se abordan los conceptos de número primo y número compuesto, con demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para identificar si un número es primo o compuesto y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
El algoritmo de Euclides y el máximo común divisor - [Detalles]
En este apartado se aborda el concepto de máximo común divisor (MCD) y se explora el algoritmo de Euclides, el cual sirve para calcular el mcd, incluyendo la versión extendida del algoritmo y el lema de Bézout. Todo acompañado de demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Ecuaciones diofantinas lineales - [Detalles]
En este apartado se aborda el tema de ecuaciones diofantinas lineales y se emplea el algoritmo de Euclides para resolverlas, acompañado de demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver dos casos particulares de ecuaciones diofantinas lineales y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Teorema fundamental de la aritmética - [Detalles]
En este apartado se demuestra el teorema fundamental de la aritmética y con esto se definen al mínimo común múltiplo (MCM) y a la descomposición canónica, esto acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de otras definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Número y suma de divisores - [Detalles]
En este apartado se abordan las funciones sigma y tau, las cuales están relacionadas con los divisores de un número entero, esto acompañado de demostraciones de proposiciones y corolarios, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la suma y el número de divisores de un entero, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Números perfectos, primos de Mersenne y primos de Fermat - [Detalles]
En este apartado se presentan tres clases de números enteros: los números perfectos, los números primos de Mersenne y los números primos de Fermat, esto acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un número pertenece a alguna de las tres clases de números previamente mencionadas, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Función phi de Euler - [Detalles]
En este apartado se aborda la función phi (o "d") de Euler, la cual calcula el número de primos relativos menores a un número entero n, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función phi de euler, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Función mu y fórmula de inversión de Möbius - [Detalles]
En este apartado se aborda la función mu (o "W") de Möbius, y la fórmula de inversión de Möbius, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función mu de Möbius y para hacer la inversión de Möbius, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Recordatorio de clases de equivalencia - [Detalles]
En este apartado se presenta un repaso del tema "clases de equivalencia", que abarca los conceptos de relaciones de equivalencia, particiones y particiones inducidas. Contiene demostraciones de teoremas y proposiciones, definiciones y problemas resueltos. Este es un tema extra correspondiente a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Sistemas completos de residuos - [Detalles]
En este apartado se abordan los temas de sistemas representantes y sistemas completos de residuos, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un conjunto es un sistema completo de residuos con respecto a n, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Congruencias y propiedades básicas - [Detalles]
En este apartado se aborda el tema de relación de congruencia con sus propiedades y operaciones, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Teoremas de Euler, de Fermat y de Wilson - [Detalles]
En este apartado se demuestran tres teoremas importantes relacionados con los números primos: el teorema de Euler, el teorema de Fermat y el teorema de Wilson, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python donde se implementa el teorema de Euler y el teorema de Wilson, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Resolución de congruencias lineales - [Detalles]
En este apartado se aborda el tema de congruencias lineales y su relación con las ecuaciones diofantinas lineales, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver congruencias lineales y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Teorema chino del residuo - [Detalles]
En este apartado se demuestra el teorema chino del residuo, el cual sirve para resolver sistemas de congruencias lineales, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python implementando el teorema para resolver sistemas de congruencias lineales e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Sistemas de congruencias lineales (parte 1) - [Detalles]
En este apartado se aborda el tema de sistemas de congruencias lineales de una variable (en la parte 2 la generalización) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de una variable y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Sistemas de congruencias lineales (parte 2) - [Detalles]
En este apartado se aborda el tema de sistemas de congruencias lineales de 2 o más variables (de una variable en la parte 1) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de n variables y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Introducción a congruencias cuadráticas - [Detalles]
En este apartado se introduce el tema de congruencias cuadráticas cuando el módulo es un número primo o un número compuesto, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver una congruencia cuadrática en módulos primos y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
En este apartado se presenta el algoritmo RSA de cifrado asimétrico, contiene problemas resueltos en los que se cifra y descifra un mensaje, así como las implementaciones del código para hacerlo en Python. Este tema corresponde a la Unidad 3 "Aplicaciones de la teoría de congruencias", del curso de Teoría de los Números I. Incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
En este apartado se introduce a la criptografía con el cifrado Cesar, contiene problemas resueltos en los que se cifra y descifra un mensaje, así como las implementaciones del código para hacerlo en Python. Este tema corresponde a la Unidad 3 "Aplicaciones de la teoría de congruencias", del curso de Teoría de los Números I. Incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Vectores y Matrices (Primera Parte) - Python - [Detalles]
Práctica en Python relacionada a la Unidad 3 "Espacios vectoriales". Se proporcionan las definiciones y el código de las operaciones básicas de un vector, además de operaciones como el producto punto, producto cruz, la norma, y el triple producto punto.
Vectores y Matrices (Segunda Parte) - Python - [Detalles]
Práctica en Python relacionada a la Unidad 3 "Espacios Vectoriales". Se incluyen las definiciones y el código para realizar operaciones básicas con matrices, así como el cálculo de su inversa, determinante y su aplicación en la resolución de sistemas de ecuaciones.
Mini-cuestionario: Conjuntos y elementos - [Detalles]
Correspondiente a la Unidad I "Conjuntos" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique demostraciones sobre conjuntos y elementos.
Mini-cuestionario: Contención, subconjuntos y conjunto potencia - [Detalles]
Correspondiente a la Unidad I "Conjuntos" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos: subconjuntos, contención y conjunto potencia.
Mini-cuestionario: Intersecciones, complementos y uniones de conjuntos - [Detalles]
Correspondiente a la Unidad I "Conjuntos" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos: intersecciones, complementos y uniones de conjuntos.
Mini-cuestionario: Leyes de Morgan y diferencia simétrica de conjuntos - [Detalles]
Correspondiente a la Unidad I "Conjuntos" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las Leyes de Morgan y repase el concepto de diferencia simétrica de conjuntos.
Mini-cuestionario: Producto cartesiano de conjuntos - [Detalles]
Correspondiente a la Unidad I "Conjuntos" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique el producto cartesiano de conjuntos.
Mini-cuestionario: Propiedades del producto cartesiano - [Detalles]
Correspondiente a la Unidad I "Conjuntos" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase las propiedades del producto cartesiano.
Mini-cuestionario: Relaciones en conjuntos: dominio, codominio y composición - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos de dominio, codominio y composición.
Mini-cuestionario: Tipos de relaciones en conjuntos - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los tipos de relaciones en conjuntos.
Mini-cuestionario: Ordenes parciales - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase el concepto de orden parcial y los tipos de relaciones.
Mini-cuestionario: Relaciones de equivalencia y clases de equivalencia - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos: relación de equivalencia y clases de equivalencia.
Mini-cuestionario: Funciones - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno identifique qué relaciones son funciones.
Mini-cuestionario: Composición de funciones - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique la composición de funciones.
Mini-cuestionario: Funciones inyectivas y suprayectivas - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos de inyectividad y suprayectividad en funciones.
Mini-cuestionario: Funciones biyectivas e invertibles - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos de biyectividad e invertibilidad en funciones.
Mini-cuestionario: Cardinalidad de conjuntos finitos e infinitos - [Detalles]
Correspondiente a la Unidad II "Relaciones y funciones" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno entienda las diferencias de la cardinalidad numerable y no numerable en conjuntos.
Mini-cuestionario: Preliminares inducción - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario es una introducción a la inducción matemática.
Mini-cuestionario: Principio de inducción - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase el principio de inducción.
Mini-cuestionario: Preliminares de recursión - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario es una introducción al principio de recursión.
Mini-cuestionario: Suma de naturales - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase la definición recursiva de la suma de naturales.
Mini-cuestionario: Producto de naturales - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase la definición recursiva de producto en los números naturales.
Mini-cuestionario: Conteo 1 - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique el cálculo combinatorio.
Mini-cuestionario: Conteo 2 - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique el cálculo combinatorio.
Mini-cuestionario: Fórmulas recursivas - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno calcule y use fórmulas recursivas, como el binomio de Newton.
Mini-cuestionario: suma y producto escalar de vectores - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las operaciones básicas de vectores.
Mini-cuestionario: suma y producto escalar de matrices - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las operaciones básicas de matrices.
Mini-cuestionario: Multiplicación de matrices - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique la multiplicación de matrices.
Mini-cuestionario: Determinantes de matrices - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique la obtención del determinante de una matriz.
Mini-cuestionario: Reducción Gaussiana - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno emplee la reducción gaussiana a distintas matrices y recuerde las condiciones para aplicarlo.
Mini-cuestionario: Regla de Cramer para ecuaciones lineales - [Detalles]
Correspondiente a la Unidad VI "Sistemas de ecuaciones lineales" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno utilice la regla de Cramer y resuelva sistemas de ecuaciones lineales.
Mini-cuestionario: Reducción Gaussiana para ecuaciones lineales - [Detalles]
Correspondiente a la Unidad VI "Sistemas de ecuaciones lineales" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno resuelva sistemas de ecuaciones lineales utilizando la reducción Gaussiana.
Mini-cuestionario: Vectores linealmente independientes, generadores y bases - [Detalles]
Correspondiente a la Unidad IV "Espacios vectoriales" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno determine si un conjunto de vectores es linealmente independiente, generador y/o base.
Mini-cuestionario: Matrices Invertibles - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase las propiedades de la matriz inversa y calcule matrices inversas.
Mini-cuestionario: Transposición de matrices, matrices simétricas y antisimétricas - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los temas de matrices simétricas, antisimétricas y calcule la matriz transpuesta.
Mini-cuestionario: Sistemas de ecuaciones lineales - [Detalles]
Correspondiente a la Unidad VI "Sistemas de ecuaciones lineales" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase los conceptos básicos sobre los sistemas de ecuaciones lineales.
Mini-cuestionario: Traza de matrices y propiedades - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase las propiedades de la traza de una matriz.
Mini-cuestionario: Determinante de matrices y propiedades - [Detalles]
Correspondiente a la Unidad V "Matrices y determinantes" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno calcule el determinantes de matrices nxn y repase sus propiedades.