Demostración directa y primeros ejemplos - [Detalles]
Explicamos sobre el método de demostración conocido como "Demostración directa". Demostramos un teorema sobre los números pares e impares.
Como demostrar una implicación. Demostración directa - [Detalles]
Platicamos las características de la demostración directa y damos un ejemplo con una proposición sobre los números enteros múltiplos de 6.
Diapositivas sobre cómo escribir una demostración directa - [Detalles]
Explicamos las características de hacer una demostración directa de p implica q acompañada de una serie de ejemplos báscios respecto a este tipo de demostraciones.
Suma y suma directa de subespacios - [Detalles]
Definimos la operación de suma de subespacios de un espacio vectorial. Hablamos de subespacios en posición de suma directa y de las propiedades de sumarlos.
Nota 8. Imagen directa e inversa de una función. - [Detalles]
En esta nota seguimos hablando sobre funciones, vemos lo que significa que dos funciones sean iguales y definimos la imagen directa e imagen inversa de una función, vemos algunos ejemplos de esto y probamos algunas propiedades.
Teorema del binomio ejemplo 2 - [Detalles]
Usamos el Teorema del Binomio para demostrar, de forma muy sencilla y directa, que cierta serie es siempre cero.
Todo grupo es el grupo fundamental de algún espacio - [Detalles]
En este video demostraremos que todo grupos es el grupo fundamental de algún espacio. Las herramientas principales para demostrar este teorema es la existencia de una presentación y una aplicación muy directa del teorema de van Kampen.
Homología singular - la homología de una cuña - [Detalles]
En este video demostraremos que la homología de una cuña es isomorfa a la suma directa de las homologías de los espacios con los que estamos haciendo cuña.
El criterio de la raíz racional - [Detalles]
Estudiamos el criterio de la raíz racional el cual nos permite determinar las únicas raíces racionales que puede tener un polinomio de coeficiente enteros, asimismo mostramos una aplicación directa, una indirecta y una con un polinomio de coeficientes racionales.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.
Demostraciones directas e indirectas - [Detalles]
Revisamos las estrategias para demostrar directa e indirectamente. Ponemos un ejemplo de las demostraciones por casos.
Reglas para escribir una demostración - [Detalles]
Platicamos en que consiste una demostración, y además damos cuatro reglas a seguir para conseguir una demostración coherente y exitosa. Una demostración es una justificación de la veracidad de un teorema.
Demostración por casos - [Detalles]
Explicamos el método y reglas para realizar una demostración por casos. También se dan recomendaciones para saber cuándo aplicar la demostración por casos.
Teorema de la derivada y la multiplicidad. Demostración - [Detalles]
Damos la demostración del teorema de la derivada y la multiplicidad, el cual vimos en el video anterior. La demostración es relativamente sencilla teniendo en cuenta que sí "a" es de multiplicidad "m" en un polinomio entonces el polinomio es de la forma "(x-a)^m*Q(x)", por lo que podemos obtener su derivada de forma explícita, y demostrar que "a" es raíz de multiplicidad "m-1".
¿Qué es una demostración? - [Detalles]
Platicamos sobre las demostraciones, en qué consisten y que herramientas nos pueden ayudar para hacer una demostración. Las matemáticas universales y para siempre.
Demostración por casos - [Detalles]
Explicamos como realizar una demostración por casos y las reglas que se deben seguir, damos ejemplos con números enteros.
Demostración por contradicción - [Detalles]
Explicamos el método de demostración por contradicción y vemos algunos ejemplos.
Demostración por contrapositiva 2 - [Detalles]
Ejemplos ilustrativos del método de demostración por contrapositiva.
Demostración por contradicción 2 - [Detalles]
Ejemplos ilustrativos del método de demostración por contradicción
Ejemplo Demostración por contradicción - [Detalles]
Damos un ejemplo de cómo aplicar la demostración por contradicción, la proposición a demostrar incluye al cuantificador existe
Teorema de existencia y unicidad. Demostración de la unicidad - [Detalles]
Demostramos la parte de unicidad del Teorema de Existencia y Unicidad de Picard, y previamente probamos dos lemas que nos ayudan a la demostración
Demostración del Teorema de Existencia y Unicidad de Picard-Lindelof - [Detalles]
Presentación de la demostración del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden
Diapositivas sobre demostraciones por contrapositiva - [Detalles]
Mostramos la importancia para hacer demostración por contrapositia, lo que se requiere para hacer válida este tipo de demostración matemática, la explicación va acompañada de un ejemplo.
Diapositivas sobre demostraciones por contradicción - [Detalles]
Mostramos la importancia para hacer demostración por contradicción, lo que se requiere para hacer válida este tipo de demostración matemática, explicando la lógica acompañada. La explicación va acompañada de un par de ejemplos.
Diapositivas sobre demostraciones de conjuntos - [Detalles]
Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.
Demostración del teorema fundamental del álgebra usando el grupo fundamental del círculo - [Detalles]
En este video damos una demostración hermosa del teorema fundamental del álgebra usando e hecho de que el grupo fundamental del círculo es cíclico infinito.
Lema de Burnside: demostración alternativa - [Detalles]
Se enuncia y demuestra el Lema de Burnside (una demostración alternativa de otra que se dio en otro video que no aparece en el sitio).
Demostración del teorema de Cayley-Hamilton - [Detalles]
En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.
Demostración de condicionales y dobles condicionales - [Detalles]
En esta entrada vemos ejemplos de demostraciones con doble implicación, algunas convenciones de su redacción y técnicas de demostración.
Teorema del Eje radical - [Detalles]
El interactivo está relacionado al tema "Potencia de un punto", en este se encuentra la demostración (de la ida y del regreso) del teorema del eje radical que dice "el lugar geométrico de los puntos P que tienen la misma potencia con respecto a dos circunferencias es una perpendicular a la línea de los centros". Se incluyen figuras interactivas que guían la demostración.
Fórmula de Euler (en geometría) - [Detalles]
El interactivo contiene la demostración de la fórmula de Euler en geometría, la cual relaciona la distancia del circuncentro al incentro con sus correspondientes radios. Se incluyen figuras interactivas que guían la demostración.
Teorema de Brianchon - [Detalles]
El interactivo contiene la demostración del teorema de Brianchon el cuál postula que si los seis lados de un hexágono son tangentes a una circunferencia, entonces sus tres diagonales son concurrentes (o posiblemente paralelas). Se incluyen figuras interactivas que guían la demostración.
Teorema de Pitágoras - [Detalles]
Bella demostración del teorema de Pitágoras. Se enuncia y se demuestra el teorema de Pitágoras
Demostración por contrapositiva - [Detalles]
Explicamos el método de demostrar una implicación usando su contrapositiva y vemos algunos ejemplos.
Demostración de un bicondicional - [Detalles]
Explicamos cómo demostrar un bicondicional, es decir, un sí y solo sí. Vemos dos posibles estrategias y algunos ejemplos.
Demostración de un cuantificador - [Detalles]
Explicamos cómo demostrar una proposición o enunciado que involucre cuantificadores. Veremos las estrategias principales y ejemplos que usen los cuantificadores existe, para todo y existe un único.
Como demostrar un bicondicional (si y sólo si) - [Detalles]
Damos reglas generales para demostrar una proposición con bicondicional (si y solo sí). Particularmente utilizamos una demostración de ida y otra de vuelta.
Demostración de que hay infinitos primos - [Detalles]
Explicamos cómo demostrar que hay una cantidad infinita de números primos. Para tal fin suponemos ciertos el teorema fundamentar de la aritmética.
Ejemplo de demostración de relación de equivalencia - [Detalles]
Damos un ejemplo de relación de equivalencia con elementos del plano cartesiano y demostramos que es una relación de equivalencia, es decir, cumple las 3 propiedades
Principio de inducción - [Detalles]
Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.
Inducción matemática (1) - [Detalles]
Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.
Inducción matemática (3) - [Detalles]
En este video demostramos la famosa Suma de Gauss, usamos inducción para demostrarla y damos otra demostración alternativa.
Damos una demostración alternativa del Teorema del Binomio. También explicamos la relación del binomio con la combinatoria y el triángulo de Pascal.
Principio de inducción - [Detalles]
Introducimos el principio de inducción matemática, el cual es un método de demostración para alguna propiedad o proposición P(n), es decir que la propiedad o proposición está relacionada a un número natural. Damos un ejemplo de cómo demostrar usando el principio de inducción, demostrando el caso base y luego el paso inductivo.
Inducción matemática (1) - [Detalles]
Definimos los conjuntos inductivos, y la relación que guarda con el Principio de Inducción Matemática (PIM). También hablamos de cómo usarlo para hacer una demostración por inducción.
El algoritmo de Euclides: enunciado y demostración. - [Detalles]
Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor.
El mínimo común múltiplo - [Detalles]
Definimos el mínimo común múltiplo de "n" enteros. Primero damos la definición de común múltiplo y el más pequeño es aquel que tomamos como mínimo común múltiplo. Definimos la notación para expresar el mínimo común múltiplo y demostración un teorema sobre el mismo.
Hay una cantidad infinita de números primos - [Detalles]
Para terminar esta sección demostramos un teorema de bastante relevancia, el cual nos dice que existe una cantidad infinita de numero primos. La demostración es sencilla y hacemos uso del teorema fundamental de la aritmética.
Teorema de existencia y unicidad. Ecuación integral asociada - [Detalles]
Damos los primeros detalles para la demostración del Teorema de existencia y unicidad de Picard. Encontramos una manera equivalente de resolver un problema de condición inicial, que es resolviendo una ecuación integral asociada.
Teorema de existencia y unicidad. Demostración de la existencia - [Detalles]
Demostramos la parte de existencia del Teorema de Existencia y Unicidad de Picard, en un intervalo que construimos previamente mediante un lema
Teorema del valor intermedio - [Detalles]
Demostración del teorema del valor intermedio
Teorema del máximo-mínimo - [Detalles]
Demostración del teorema del máximo-mínimo
Introducción al teorema de existencia y unicidad para sistemas de ecuaciones de primer orden - [Detalles]
Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden y damos los primeros detalles para la demostración de dicho teorema.
Regla de la cadena - [Detalles]
Demostración de la derivada de composición de funciones y la regla de la cadena.
Reglas de derivación - [Detalles]
Resumen de las reglas de derivación y demostración de la derivada de funciones frecuentes.
Derivada de las funciones exponencial y logarítmica - [Detalles]
Demostración de la derivada de las funciones exponencial y logarímica.
Derivada de la función inversa - [Detalles]
Demostración y ejemplos de la derivada de la inversa de una función.
Derivada de las funciones trigonométricas - [Detalles]
Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.
Teorema de Rolle y teorema del valor medio - [Detalles]
Demostración del teorema de Rolle y del teorema del Valor Medio.
Secciones locales y caja de flujos - [Detalles]
Continuamos presentando las herramientas necesarias para la demostración del teorema de Poincaré - Bendixson en el plano. En esta ocasión definimos una sección local en un punto del plano y su caja de flujos.
Diapositivas sobre reglas para escribir demostraciones - [Detalles]
Mostramos la importancia de escribir demostraciones y entablamos las cuatro reglas usuales para escribir una demostración coherente y lógica.
Diapositivas sobre cómo escribir una demostración por casos - [Detalles]
Mostramos la importancia y los motivos para poder ocupar este tipo de demostraciones por casos.
Diapositivas sobre imagen y preimagen de una función - [Detalles]
Damos la definición de 2 elementos de una función: la imagen y la preimagen; mostramos ejemplos de estos 2 conjuntos y el como identificarlos así como diferenciarlos, de igual modo enseñamos que al encontrar estos conjuntos es necesario realizar la demostración de la igualdad del conjunto con el propuesto como su preimagen o imagen.
Diapositivas sobre el principio de inducción - [Detalles]
Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.
Leyes de cósenos. Demostración - [Detalles]
Demostramos la ley de Cosenos, la cual es una generalización del teorema de Pitágoras en los triángulos rectángulos en trigonometría.
El enunciado del teorema de van Kampen - [Detalles]
En este video damos una breve motivación para el enunciado del teorema de van Kampen. El video lo terminamos con el enunciado formal de dicho teorema. En un video posterior daremos la demostración. Espero que lo disfruten.
La demostración del teorema de van Kampen - [Detalles]
En este video damos la demostación del teorema de van Kampen. Este teorema es la herramienta computacional más poderosa para calcular grupos fundamentales.
Álgebra homológica - el lema de la serpiente - [Detalles]
En este video enunciamos y demostramos el "lema de la serpiente". Este lema será usado en la demostración del teorema fundamental del álgebra homológica.
Homología singular - invarianza homotópica - [Detalles]
En este video demostraremos una de las propiedades fundamentales de la homología, es decir, que funciones homotópicas inducen funciones iguales en homología. La demostración es un poco larga e involucra cuentas que están relacionadas con la combinatoria del n-simplejo estándar.
Homología singular - escisión - [Detalles]
En este video enunciaremos en teorema de escisión sin demostración. Este teorema es una de las propiedades fundamentales de la homología y nos dice que siempre que tomemos homología relativa, podemos ignorar lo que pasa adentro del subespacio con el que estamos relativizando.
Homología singular - la homología de un cociente - [Detalles]
En este video demostraremos que la homología de la (buena) pareja (X,A) es isomorfa a la homología reducida del cociente X/A. La demostración hace uso del teorema de escisión.
Homología singular - invarianza de la dimensión - [Detalles]
En este video demostraremos que si dos abiertos de ciertos espacios euclideanos son homeomorfos, entonces los espacios tienen la misma dimensión. Este teorema es muy bonito porque es intuitivo el enunciado, la demostración no es nada trivial, pero con toda la herramienta que hemos desarrollado es posible demostrarlo en términos simples.
El algoritmo de Euclides - [Detalles]
Explicamos el algoritmo de Euclides con ejemplos. Damos su demostración. Vemos cómo ayuda a poner MCD como combinación lineal entera.
Algortimo de la división, teorema del factor y del residuo - [Detalles]
Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.
Factorización en ciclos disjuntos - [Detalles]
Demostramos que toda permutación de un conjunto finito es una composición de ciclos disjuntos. Además damos un ejemplo para ilustrar la demostración.
¿Qué son las demostraciones en matemáticas? - [Detalles]
En este video explicamos con una analogia que es una demostración en matemáticas
Ejemplo Desigualdad del Triángulo - [Detalles]
En este video, nos sumergimos en el corazón de una demostración que explora la relación entre $\vert xy - x_0y_0\vert$ y un valor $\varepsilon$ determinado, todo ello haciendo uso de la poderosa Desigualdad del Triángulo.
Los Elementos de Euclides: Teorema 4 - [Detalles]
En este video cubrimos el Teorema 4 de Los Elementos de Euclides. Aquí se realiza la demostración del criterio de congruencia de triángulos LADO - ÁNGULO - LADO.
Los Elementos de Euclides: Teorema 19 - [Detalles]
En este video cubrimos el Teorema 19 de Los Elementos de Euclides. Aquí se realiza la demostración de la propiedad de los triángulos que afirma que a mayor ángulo se opone mayor lado.
Los Elementos de Euclides: Teorema 47. Teorema de Pitágoras - [Detalles]
En este video cubrimos el Teorema 47 de Los Elementos de Euclides. Aquí se realiza la demostración del teorema de Pitágoras
Los Elementos de Euclides: Teorema 48. Recíproco del Teorema de Pitágoras. - [Detalles]
En este video cubrimos el Teorema 48 de Los Elementos de Euclides. Aquí encontrarás la demostración del recíproco del teorema de Pitágoras.
Álgebra de conjuntos - [Detalles]
En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.
Diferencia simétrica - [Detalles]
En esta sección hablaremos de una nueva operación entre conjuntos: la diferencia simétrica. Abordaremos este tema demostrando algunos resultados con ayuda del álgebra de conjuntos, algunos otros los probaremos con el método de demostración habitual.
Principio de inducción - [Detalles]
En esta entrada hablaremos acerca del principio de inducción, este principio nos permitirá demostrar propiedades que cumple los números naturales. Será de gran importancia pues emplearemos este teorema como método de demostración en el conjunto de los naturales.
Funciones compatibles - [Detalles]
En esta entrada definiremos las funciones compatibles y veremos varios resultados relacionados a ellos. Este concepto será de gran utilidad en la demostración de nuestro siguiente teorema: el teorema de recursión.
Ejercicio Funciones invertibles por un lado - [Detalles]
En este video, abordaremos un enigma matemático fundamental: Si \(f(g(x))\) es igual a la función identidad y \(g\) es inyectiva, ¿qué podemos deducir sobre \(f\)? A través de una demostración detallada y sistemática, revelaremos que \(f\) debe ser suprayectiva.
Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]
¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.
Ejercicio Teorema del Sandwich - [Detalles]
¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?
En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices. Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.
Existencia de la forma canónica de Jordan - [Detalles]
Lo que haremos ahora es mostrar una versión análoga de la forma canónica de Jordan para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración.
Introducción al teorema de la función inversa - [Detalles]
Enunciamos el teorema de la función inversa y lo explicamos. Probamos resultados auxiliares para su demostración.
Demostración del teorema de la función inversa - [Detalles]
Demostramos el teorema de la función inversa para varias variables (campos vectoriales). Damos un ejemplo de su aplicación.
Teorema de la función implícita y demostración - [Detalles]
Damos el teorema de la función implícita para campos vectoriales (varias variables). Lo demostramos con el teorema de la función inversa.
Demostraciones matemáticas (El mundo de los Blorg) - [Detalles]
En esta entrada introducimos la idea de una demostración matemática, su significado y una de las primeras estrategias para empezar a demostrar.
Demostraciones por reducción al absurdo - [Detalles]
Revisaremos la estrategia de reducción al absurdo o demostración por contradicción. Revisamos algunos ejemplos y su significado.
Demostración de proposiciones con conectores - [Detalles]
En esta entrada revisamos algunos ejemplos de las demostraciones matemáticas con conectores como la conjución y disyunción.
Demostración de proposiciones con cuantificadores - [Detalles]
En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".
Producto de matrices con matrices - [Detalles]
Definimos el producto de matrices y vemos casos con pocas entradas. Enunciamos algunas propiedades con demostración y vemos ejemplos.
Introduciremos las nociones de cotas superiores e inferiores, y presentaremos el axioma del supremo, finalizando con la demostración de un par de consecuencias de éste.
Ejemplos demostración de limites - [Detalles]
En este video se ejemplifica cómo demostrar (épsilon-delta) que el límite cuando x tiende a 2 de f(x)=x^4 es 16, y que el límite cuando x tiende a un número positivo a, de f(x)=1/x es 1/a.
Límites Trigonométricos Especiales - Demostración - Ejercicio 1. - [Detalles]
Suscribirse en: https://www.youtube.com/user/willingtonprofe Twitter: https://twitter.com/WillingtonProfe
Teorema de la Función Inversa - [Detalles]
En este video se hace una demostración del Teorema de la Función Inversa.
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Correctez en programas recursivos, Técnica del invariante de ciclo - [Detalles]
Técnica del invariante de ciclo - Diseño y demostración de un algoritmo iterativo mediante la técnica del invariante de ciclo.
Correctez en programas recursivos, Correctez de un algoritmo iterativo - [Detalles]
Correctez de un algoritmo iterativo - Seguimiento de la técnica del invariante del ciclo y demostración de correctez en un algoritmo iterativo.
En este interactivo se demuestra que el ortocentro, el centroide y el circuncentro son colineales, la recta que los une es la denominada "Recta de Euler". Contiene figuras interactivas que guían la demostración.
En este interactivo se demuestra el teorema de Ceva (la ida), para revisar el recíproco (regreso) ir al interactivo "Recíproco del Teorema de Ceva". Contiene figuras interactivas que guían la demostración.
Recíproco del teorema de Ceva - [Detalles]
En este interactivo se demuestra el recíproco del teorema de Ceva (el regreso), para revisar la ida, ir al interactivo "Teorema de Ceva". Contiene figuras interactivas que guían la demostración.
Teorema de Menelao - [Detalles]
En este interactivo se demuestra el teorema de Menelao(la ida), para revisar el recíproco (regreso) ir al interactivo "Recíproco del Teorema de Menelao". Contiene figuras interactivas que guían la demostración.
Recíproco del Teorema de Menelao - [Detalles]
En este interactivo se demuestra el recíproco (regreso) del teorema de Menelao, para revisar la ida, ir al interactivo "Teorema de Menelao". Contiene figuras interactivas que guían la demostración.
Teorema de Pappus - [Detalles]
En este interactivo se demuestra el teorema de Pappus. Contiene figuras interactivas que guían la demostración.
Teorema de Desargues - [Detalles]
En este interactivo se demuestra el teorema de Desargues(la ida), para revisar el recíproco (regreso) ir al interactivo "Recíproco del Teorema de Desargues". Contiene figuras interactivas que guían la demostración.
Recíproco del Teorema de Desargues - [Detalles]
En este interactivo se demuestra el recíproco (regreso) del teorema de Desargues, para revisar la ida, ir al interactivo "Teorema de Desargues". Contiene figuras interactivas que guían la demostración.
Circunferencia de los nueve puntos - [Detalles]
En este interactivo se demuestra que hay una circunferencia que pasa por nueve puntos: los tres pies de altura de un triángulo ABC, los tres puntos medios de sus lados y los tres puntos medios de los segmentos que van de sus vértices a su ortocentro, a esta circunferencia se le denomina "la circunferencia de los nueve puntos". Incluye figuras que guían la demostración.
Teorema de Ptolomeo - [Detalles]
En este interactivo se demuestra el teorema de Ptolomeo (la ida), para revisar el recíproco (regreso) ir al interactivo "Recíproco del Teorema de Ptolomeo". Contiene figuras interactivas que guían la demostración.
Recíproco del Teorema de Ptolomeo - [Detalles]
En este interactivo se demuestra el recíproco (regreso) del teorema de Ptolomeo, para revisar la ida, ir al interactivo "Teorema de Ptolomeo". Contiene figuras interactivas que guían la demostración.
Teorema de la línea de Simson - [Detalles]
En este interactivo se demuestra el teorema de la línea de Simson (la ida), para revisar el recíproco (regreso) ir al interactivo "Recíproco del Teorema de la línea de Simson". Contiene figuras interactivas que guían la demostración.
Recíproco del Teorema de la línea de Simson - [Detalles]
En este interactivo se demuestra el recíproco del teorema de la línea de Simson (el regreso), para revisar la ida ir al interactivo "Teorema de la línea de Simson". Contiene figuras interactivas que guían la demostración.
Teorema de Pascal - [Detalles]
El interactivo contiene la demostración del teorema de Pascal el cual dice que si los vértices de un hexágono están sobre una circunferencia y los tres pares de lados opuestos se intersectan, entonces los tres puntos de intersección están alineados, la línea que une a estos puntos se llama "línea de Pascal". Para demostrarlo se ayuda del teorema de Menelao y de figuras interactivas.
Teorema de Stewart - [Detalles]
El interactivo contiene la demostración del teorema de Stewart. Se apoya del teorema de los cosenos y de figuras interactivas para demostrarlo.
Enunciado del teorema de Stone-Weierstrass y primera parte de la demostración - [Detalles]
None
Segunda parte de la demostración del teorema de Stone-Weierstrass - [Detalles]
None
Última parte de la demostración del teorema de Stone-Weierstrass - [Detalles]
None
Demostración del teorema de Fubini - [Detalles]
None
Proposición 1 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 1 del libro I de los elementos de Euclides que explica cómo construir un triángulo equilátero dada una recta definida. Incluye figuras interactivas.
Proposición 2 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 2 del libro I de los elementos de Euclides que explica cómo construir una recta en un punto dado que sea igual (en magnitud) a otra recta dado. Incluye figuras interactivas.
Proposición 3 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 3 del libro I de los elementos de Euclides que explica cómo construir una recta de igual longitud a una recta dada, sobre una recta diferente. Incluye figuras interactivas.
Proposición 4 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 4 del libro I de los elementos de Euclides que explica el primer criterio de congruencia de triángulos: lado-ángulo-lado (LAL). Incluye figuras interactivas.
Proposición 5 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 5 del libro I de los elementos de Euclides, la cuál explica la igualdad entre algunos ángulos de un triángulo isósceles. Incluye figuras interactivas.
Proposición 6 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 6 del libro I de los elementos de Euclides, la cuál muestra la igualdad entre los dos lados que subtienden a dos ángulos iguales de un triángulo. Incluye figuras interactivas.
Proposición 7 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 7 del libro I de los elementos de Euclides, la cuál muestra la imposibilidad de construir dos segmentos a partir de los extremos de la base de un triángulo, tal que sean de la misma magnitud que los otros dos lados pero que se crucen en un punto distinto al vértice. Incluye figuras interactivas.
Proposición 8 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 8 del libro I de los elementos de Euclides, que es el criterio de congruencia de triángulos: lado-lado-lado (LLL). Incluye figuras interactivas.
Proposición 9 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 9 del libro I de los elementos de Euclides, la cuál muestra cómo dividir en dos ángulos iguales a un ángulo rectilíneo (bisecar). Incluye figuras interactivas.
Proposición 10 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 10 del libro I de los elementos de Euclides, la cuál muestra cómo dividir en dos partes iguales a un segmento rectilíneo dado (bisecar). Incluye figuras interactivas.
Proposición 11 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 11 del libro I de los elementos de Euclides, la cuál muestra que es posible y cómo trazar un segmento que forme ángulos rectos sobre un punto de una recta dada. Incluye figuras interactivas.
Proposición 12 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 12 del libro I de los elementos de Euclides, la cuál muestra cómo trazar un segmento que forme ángulos rectos sobre una recta dada y un punto fuera de esta. Incluye figuras interactivas.
Proposición 13 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 13 del libro I de los elementos de Euclides, la cuál muestra que si una recta es levantada sobre otra, entonces forma dos ángulos rectos o dos ángulos cuya suma es igual a la suma de dos ángulos rectos (180°). Incluye figuras interactivas.
Proposición 14 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 14 del libro I de los elementos de Euclides, la cuál muestra que si a partir de un punto en una recta dada se construyen otras dos rectas de tal manera que la suma de los ángulos adyacentes que forman es de 180° (suma de dos ángulos rectos), entonces las rectas están alineadas. Incluye figuras interactivas.
Proposición 15 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 15 del libro I de los elementos de Euclides, la cuál muestra que si dos rectas se cortan entre sí, entonces se forman ángulos opuestos por el vértice iguales entre sí. Incluye figuras interactivas.
Proposición 16 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 16 del libro I de los elementos de Euclides, la cuál muestra que si el lado de cualquier triángulo es prolongado, entonces el ángulo exterior formado será mayor a cualquiera de los ángulos interiores del triángulo. Incluye figuras interactivas.
Proposición 17 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 17 del libro I de los elementos de Euclides, la cuál muestra que la suma de cualesquiera dos ángulos internos de un triángulo es menor a 180°. Incluye figuras interactivas.
Proposición 18 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 18 del libro I de los elementos de Euclides, la cuál muestra que en todo triángulo, el lado mayor subtiende el ángulo mayor. Incluye figuras interactivas.
Proposición 19 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 19 del libro I de los elementos de Euclides, la cuál muestra que en todo triángulo el ángulo mayor es subtendido por el lado mayor. Incluye figuras interactivas.
Proposición 20 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 20 del libro I de los elementos de Euclides, la cuál muestra que la suma de cualesquiera dos lados de un triángulo, es mayor a la magnitud del lado restante. Incluye figuras interactivas.
Proposición 21 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 21 del libro I de los elementos de Euclides, la cuál muestra que si en un triángulo se construyen dos rectas desde los extremos de uno se sus lados de tal forma que se intersecan en un punto dentro de este, entonces los lados serán menores a los otros lados restantes y el ángulo formado será un ángulo mayor al correspondiente del triángulo inicial. Incluye figuras interactivas.
Proposición 22 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 22 del libro I de los elementos de Euclides, la cuál muestra cómo construir un triángulo a partir de tres segmentos dados. Incluye figuras interactivas.
Proposición 23 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 23 del libro I de los elementos de Euclides, la cuál muestra cómo construir un triángulo sobre una recta dada, a partir de un ángulo rectilíneo. Incluye figuras interactivas.
Proposición 24 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 24 del libro I de los elementos de Euclides. En esta proposición se muestra que si dos triángulos tienen dos de sus lados iguales (triángulos isósceles) y esos lados son iguales entre los triángulos, pero de los ángulos que forman uno es mayor que otro, entonces la base de uno es mayor al otro. Incluye figuras interactivas.
Proposición 25 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 25 del libro I de los elementos de Euclides. En esta proposición se muestra que si dos lados de un triángulo son iguales respectivamente a los dos lados de otro triángulo y además la base de uno es mayor a la del otro, entonces el ángulo formado por los lados iguales en uno es mayor al otro. Incluye figuras interactivas.
Proposición 26 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 26 del libro I de los elementos de Euclides, que es el criterio de congruencia de triángulos: ángulo-lado-ángulo (ALA). Incluye figuras interactivas.
Proposición 27 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 27 del libro I de los elementos de Euclides. En esta proposición se muestra que si una recta cruza otras dos rectas formando ángulos alternos internos iguales, entonces esas rectas son paralelas entre sí. Incluye figuras interactivas.
Proposición 28 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 28 del libro I de los elementos de Euclides. En esta proposición se muestra que si una recta cruza otras dos rectas formando un ángulo externo igual al ángulo interno del mismo lado no adyacente, o si la suma de los ángulos internos del mismo lado es igual a 180°, entonces las dos rectas son paralelas entre sí. Incluye figuras interactivas.
Proposición 29 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 29 del libro I de los elementos de Euclides, la cual muestra que una recta transversal a dos rectas paralelas forma ángulos alternos internos iguales, el ángulo externo igual al ángulo interno del mismo lado no adyacente y los ángulos internos del mismo lado suman 180°. Incluye figuras interactivas.
Proposición 30 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 30 del libro I de los elementos de Euclides, donde se muestra que si dos rectas son paralelas cada una a una tercer recta, entonces las dos rectas son paralelas entre sí. Incluye figuras interactivas.
Proposición 31 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 31 del libro I de los elementos de Euclides, donde se muestra cómo construir una recta paralela a otra recta dada, que pase por un punto dado. Incluye figuras interactivas.
Proposición 32 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 32 del libro I de los elementos de Euclides, donde se muestra que si se prolonga un lado de un triángulo, el ángulo externo es igual a la suma de los dos ángulos internos opuestos y la suma de los ángulos internos es igual a 180°. Incluye figuras interactivas.
Proposición 33 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 33 del libro I de los elementos de Euclides, donde se muestra que los segmentos que unen a dos segmentos iguales y paralelos son también iguales y paralelos. Incluye figuras interactivas.
Proposición 34 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 34 del libro I de los elementos de Euclides, donde se muestra que en áreas paralelográmicas los lados y los ángulos opuestos son iguales entre sí, y el diámetro biseca las áreas. Incluye figuras interactivas.
Proposición 35 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 35 del libro I de los elementos de Euclides, donde se muestra que los paralelogramos que tienen la misma base y están contenidos en las mismas paralelas, tienen áreas iguales. Incluye figuras interactivas.
Proposición 36 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 36 del libro I de los elementos de Euclides, donde se muestra que los paralelogramos que tienen bases iguales y están contenidos en las mismas paralelas, tienen áreas iguales. Incluye figuras interactivas.
Proposición 37 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 37 del libro I de los elementos de Euclides, donde se muestra que los triángulos que tienen la misma base y están contenidos en las mismas paralelas, tienen áreas iguales. Incluye figuras interactivas.
Proposición 38 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 38 del libro I de los elementos de Euclides, donde se muestra que los triángulos que tienen bases iguales y están contenidos en las mismas paralelas, tienen áreas iguales. Incluye figuras interactivas.
Proposición 39 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 39 del libro I de los elementos de Euclides, donde se muestra que triángulos con áreas iguales y que tienen la misma base y están del mismo lado, están contenidos en las mismas paralelas. Incluye figuras interactivas.
Proposición 48 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 48 del libro I de los elementos de Euclides, que corresponde al recíproco del teorema de Pitágoras, la ida está en la proposición 47. Incluye figuras interactivas.
Proposición 41 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 41 del libro I de los elementos de Euclides, donde se muestra que si un paralelogramo y un triángulo tienen la misma base y están contenidos en las mismas paralelas, entonces el área del paralelogramo es el doble del área del triángulo. Incluye figuras interactivas.
Proposición 42 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 42 del libro I de los elementos de Euclides, donde se muestra cómo construir un paralelogramo de igual área a la de un triángulo dado en un ángulo dado. Incluye figuras interactivas.
Proposición 43 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 43 del libro I de los elementos de Euclides, donde se muestra que en cualquier paralelogramo los complementos de los paralelogramos alrededor de la diagonal tienen áreas iguales. Incluye figuras interactivas.
Proposición 44 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 43 del libro I de los elementos de Euclides, donde se muestra cómo construir sobre un segmento dado en un ángulo dado un paralelogramo de igual área a la de un triángulo dado. Incluye figuras interactivas.
Proposición 45 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 45 del libro I de los elementos de Euclides, donde se muestra cómo construir en un ángulo dado un paralelogramo de igual área a la de una figura rectilínea dada. Incluye figuras interactivas.
Proposición 46 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 46 del libro I de los elementos de Euclides, donde se muestra cómo construir un cuadrado sobre una recta dada. Incluye figuras interactivas.
Proposición 47 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 47 del libro I de los elementos de Euclides, que corresponde al teorema de Pitágoras, el recíproco está en la proposición 48. Incluye figuras interactivas.
Proposición 40 - Libro I de los Elementos de Euclides - [Detalles]
Aquí se encuentra la demostración de la proposición 40 del libro I de los elementos de Euclides, donde se muestra que triángulos con áreas iguales y que tienen bases iguales y están del mismo lado, están contenidos en las mismas paralelas. Incluye figuras interactivas.
Mini-cuestionario: Demostración de proposiciones con conectores - [Detalles]
Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las demostraciones de proposiciones con conectores.
Mini-cuestionario: Demostración de proposiciones con cuantificadores - [Detalles]
Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las demostraciones con cuantificadores.