Circunferencia de Apolonio - [Detalles]
Presentamos un par de lugares geométricos importantes, el arco de circunferencia y la circunferencia de Apolonio.
Nociones de trigonometría - [Detalles]
En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.
Longitud de arco en coordenadas polares - [Detalles]
Enseñanza al cálculo de la longitud de arco en coordenadas polares
El cubriente universal - parte 3 - [Detalles]
En este video construimos con todo detalle el cubriente universal de un espacio arco-conexo, localmente arco-conexo y semi localmente simplemente conexo.
Homología singular - la homología y las componentes arco-conexas - [Detalles]
En este video veremos cómo calcular el 0-ésimo grupo de homología singular y su relación con las componentes arco-conexas de nuestro espacio.
En un espacio arco conexo no importa el punto base - [Detalles]
Probamos que si X es un espacio topológico arco conexo entonces pi_n(X,a) es isomorfo a pi_n(X,b) para cualesquiera a y b en X
Circunferencias ortogonales (parte 1) - [Detalles]
Demostramos que es posible trazar rectas tangentes a una circunferencia desde un punto exterior y que es posible trazar una circunferencia ortogonal a otra con un centro dado y que esté fuera de la circunferencia
Ecuación de la circunferencia - [Detalles]
Damos una ecuación para la circunferencia a base de su definición como lugar geométrico. Vemos como a partir de sus componentes, centro y su radio, podemos conocer la ecuación de la circunferencia.
El cuello y la circunferencia - [Detalles]
Descripción: Definimos el cuello y la circunferencia de una gráfica. A modo de ejemplo calculamos dichos parámetros para la gráfica de Petersen. También probamos una cota inferior de la circunferencia en términos del grado mínimo, y una cota superior del cuello en términos del diámetro.
Ángulos interiores - [Detalles]
Definimos los conceptos de ángulo inscrito, ángulo semi-inscrito y ángulo interior en una circunferencia y demostramos que el ángulo semi-inscrito mide la mitad del ángulo central que subtiende el mismo arco
Rectas notables en circunferencias y ángulos inscritos - [Detalles]
Definimos las rectas notables en la circunferencia y los ángulos en la circunferencia, además demostramos algunas de sus propiedades
La línea de Simson y la circunferencia de los nueve puntos - [Detalles]
Definimos la proyección de un punto sobre una recta, demostramos el teorema de la línea de Simson y su recíproco y el teorema de la circunferencia de los nueve puntos
Ángulos en la circunferencia - [Detalles]
Demostramos algunos resultados que nos permiten medir ángulos respecto a una circunferencia y vemos algunas aplicaciones.
Circunferencias homoteticas - [Detalles]
Mostramos que la homotecia de una circunferencia es una circunferencia, dos circunferencias siempre son homotéticas y algunos ejercicios.
Circunferencia de los nueve puntos - [Detalles]
Presentamos la circunferencia de los nueve puntos, determinada por los pies de las alturas, los puntos medios y los puntos de Euler.
Circunferencia de Brocard - [Detalles]
Relacionamos los puntos de Brocard y el primer triángulo de Brocard, mediante la circunferencia de Brocard.
Actividad Geogebra circunferencia - [Detalles]
Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la circunferencia, vemos como la ecuación de esta cónica cambia si movemos el centro de posición o al cambiar su radio.
Longitud de una curva - [Detalles]
Enseñanza sobre el cálculo de la longitud de arco de una función en un intervalo.
El número de hojas de un cubriente y su grupo fundamental - [Detalles]
En este video demostramos que el número de hojas de un cubriente (con espacio base y espacio cubriente arco-conexos) está en correspondencia con el número de clases laterales de la imagen del grupo fundamental del espacio cubriente, en el grupo fundamental del espacio base.
Homología singular - el 0-ésimo grupo de homología - [Detalles]
En este video veremos que el 0-ésimo grupo de homología singular es la suma de copias de los coeficientes, una por cada componente arco-conexa del espacio.
Homología singular - grupo fundamental vs primer grupo de homología: parte 1 - [Detalles]
En este video demostramos algunos lemas preliminares que usaremos para demostrar que el abelianizado del grupo fundamental de X es isomorfo al primer grupo de homología de X, siempre que X sea arco-conexo.
Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]
En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.
Definimos el concepto de ángulo central en una circunferencia
Ángulos exteriores - [Detalles]
Definimos los conceptos de ángulo circunscrito y ángulo exterior en una circunferencia
Más de rectas notables en circunferencias y cuadriláteros cíclicos - [Detalles]
Demostramos algunas propiedades de las rectas notables en la circunferencia
Caracterización de cuadriláteros cíclicos y teorema de Ptolomeo - [Detalles]
Demostramos que por tres puntos no colineales pasa una única circunferencia, demostramos algunas propiedades de los cuadriláteros convexos, el teorema de Ptolomeo y su recíproco
Problemas de cuadriláteros cíclicos y rectas anti-paralelas - [Detalles]
Resolvemos algunos problemas relacionados con la circunferencia, definimos las rectas antiparalelas y demostramos algunos resultados
Potencia en términos de distancia al centro y radio - [Detalles]
Demostramos algunos resultados que involucran la potencia de un punto respecto a una circunferencia
Circunferencias ortogonales (parte 2) - [Detalles]
Comenzamos a establecer las hipótesis para saber si es posible trazar una circunferencia ortogonal a dos circunferencias dadas
Potencia de un punto - [Detalles]
Presentamos los resultados más básicos sobre potencia de un punto respecto a una circunferencia y mostramos algunos ejemplos.
Estudiamos algunas propiedades del punto de Nagel y las de otros objetos relacionados con este punto, como la circunferencia de Spieker.
Cuadrilátero circunscrito - [Detalles]
Estudiamos algunas propiedades del cuadrilátero circunscrito, aquel cuyos lados son tangentes a una circunferencia dentro del cuadrilátero.
Diapositivas sobre cónicas - [Detalles]
Damos inicio a un nuevo tema que es el tema de las cónicas, estas surgen a partir de cortar un cono en diferentes ángulos, las cónicas son: circunferencia, parábola, elipse e hipérbola, damos los elementos que distinguen una de la otra tanto en su forma geométrica pero también con su ecuación general es posible diferenciarlas.
Damos una introducción a las secciones cónicas, las cuales son lugares geométricos descritos por la circunferencia, elipse, parábola, hipérbola. También mencionamos algunos elementos importantes como la generatriz, vértice y el eje. Damos la ecuación que define a las secciones cónicas y como diferenciarlas a partir de su ecuación general.
Lugar Geométrico De Las Cónicas - [Detalles]
Hablamos sobre las secciones cónicas como lugares geométricos, describiendo a la circunferencia como el conjunto de puntos que están a una misma distancia de un punto. La elipse como los puntos cuya suma de distancia a dos focos es fija. La parábola como los puntos que equidistan de un punto y una recta. La hipérbola similar a la elipse, pero en vez de suma resta.
Vemos como trasladar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el trasladado. Usando esta relación damos las ecuaciones de las secciones cónica: circunferencia, elipse, parábola e hipérbola, con el centro trasladado.
Rotación De Ejes Y Figuras - [Detalles]
Vemos como rotar los ejes de nuestro sistema de coordenadas cartesiano en el plano. Damos una relación entre el eje coordenado original y el rotado. Usando esta relación damos las ecuaciones de las secciones cónicas: circunferencia, elipse, parábola e hipérbola.
Ecuaciones de las cónicas - [Detalles]
En este capitulo de Cimientos Matemáticos exploraremos cuatro figuras importantes en este modulo: la circunferencia, la parábola, la elipse y la hipérbola, cada una con su propia identidad matemática. Estas ecuaciones son clave para comprender y modelar fenómenos diversos, enriqueciendo nuestra percepción del mundo.
Funciones trascendentes - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones trascendentes que modelan fenómenos complejos de nuestro mundo, la circunferencia unitaria simplifica la trigonometría, y las funciones exponenciales y logarítmicas describen crecimientos y decaimientos.
Cuestionario de geometría elemental - [Detalles]
Este es un cuestionario para repasar el Módulo 7 del texto "Cimientos Matemáticos" donde se abarcan temas como: la definición de punto, segmento, línea recta, circunferencia, ángulo, tipos de ángulos, tipos de rectas, etc.
Cuestionario de ecuaciones de cónicas - [Detalles]
Este es un cuestionario para repasar el Módulo 12 del texto "Cimientos Matemáticos" donde se abarcan temas como: circunferencia, parábola, elipse, con sus respectivas propiedades cada una, etc.