Introducción a la programación con Java. Elementos teóricos; Análisis de código - [Detalles]
1.5 Análisis de código - Qué significan las fases del análisis de código (léxico, sintáctico y semántico) y pasos a seguir.
Implementación de genéricos en Java, Si se quiere actualizar código anterior a los genéricos - [Detalles]
Si se quiere actualizar código anterior a los genéricos - Cómo mantener la compatibilidad entre código viejo y código nuevo.
Enumeraciones, Ejemplo, código de la aplicación con Números - [Detalles]
Ejemplo, código de la aplicación con Números – código de la aplicación con números del ejemplo pasado.
Interfaz gráfica de usuario (IGU), Implementación de las transiciones en el código - [Detalles]
Implementación de las transiciones en el código - Parte 3/3. Desarrollo de una aplicación completa desde su diseño, aplicando conceptos de pasar una función como parámetro, almacenarla como objeto, utilizar técnicas para diseñar transiciones de estado de los objetos y poder utilizarlo para que nuestra interfaz de usuario funcione correctamente.
Funciones polinomiales y racionales. Análisis geométrico de funciones. - [Detalles]
Estudio de funciones polinomiales y racionales. Análisis geométrico de funciones mediante traslaciones, homotecias y reflexiones.
Recursividad, Recursión doble; Fibonacci. - [Detalles]
Recursión doble, Fibonacci - Significado y cómo se ve la recursión doble. Ejemplo del código.
Recursividad, Recursión doble; Pascal. - [Detalles]
Recursión doble, triángulo de Pascal - Significado y cómo se ve la recursión doble. Ejemplo de código con el triángulo de Pastel.
Recursividad, Recursión doble; torres de Hanoi. - [Detalles]
Recursión doble, Torres de Hannoi - Significado y cómo se ve la recursión doble. Ejemplo de código con las torres de Hannoi.
Correctez, Gráficas de flujo - [Detalles]
Gráficas de flujo - Qué son y cómo utilizarlo para analizar código de alto nivel
Implementación de genéricos en Java, Tipos puros - [Detalles]
Tipos puros - Interactuando con código viejo; qué hacer cuando las versiones del pasado quedan obsoletas; compatibilidad
Interfaces gráficas de usuario en JAVA, ICC Controller, Component, cómo comunicarlos - [Detalles]
ICC Controller, Component, cómo comunicarlos – Cómo se comunica el archivo fxml con nuestro código en java.
Analisis cualitativo de sistemas de ecuaciones lineales - [Detalles]
Discutimos una serie de observaciones con las cuales podemos describir un sistema lineal sin resolverlo directamente. También se demuestra que un sistema lineal tiene una única solución, infinitas soluciones, o ninguna solución.
Diapositivas sobre la forma escalonada y el proceso Gauss-Jordan - [Detalles]
Hablamos sobre lo que es una matriz escalonada y se muestra el procedimiento de reducción de Gauss-Jordan y sobre cómo este proceso repercute para encontrar la solución a un sistema de ecuaciones lineal y sobre de el mostramos el análisis cualitativo del sistema de ecuaciones si tiene solución o si es incosistente, de esa forma también damos la definición de un sistema homogéneo.
Esbozo de construcción de racionales y reales - [Detalles]
Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.
9. Continuidad en un espacio métrico - [Detalles]
Ahora nos enfocaremos en el concepto de continuidad entre espacios métricos de manera general, una noción muy importante que relaciona las propiedades de la métrica definida, sucesiones y varias cosas mas, con el objetivo de poder dar a conocer un tipo de funciones (las continuas) que serán muy importantes en el estudio del análisis complejo.
Introducción: ¿Qué son las Ciencias de la Computación?, Modelos Teóricos - [Detalles]
1.4 Modelos teóricos - Uso de modelos teóricos para estudiar los problemas que se van a resolver y sus soluciones. Se aborda el análisis de algoritmos y teoría de la computación.
Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]
En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.
Ejercicio Intervalos anidados - [Detalles]
En este video exploramos el Teorema de los Intervalos Anidados. Este teorema, una joya en el análisis real, nos habla de la intersección de una sucesión de intervalos cerrados y su misterioso comportamiento.
Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
Principio Arquimediano - Análisis Matemático I - [Detalles]
El Principio Arquimediano. En este video se eununcia y demuestra el Principio Arquimediano, como consecuencia del Axioma del Supremo. Se define la parte entera de un real y se demuestra que los números racionales son densos en los reales.
Correctez en programas recursivos, Correctez de un algoritmo recursivo - [Detalles]
Correctez de un algoritmo recursivo - Cómo realizar el análisis de correctez mediante inducción matemática siguiendo el principio del buen orden.
Excepciones, Tipos de errores - [Detalles]
Tipos de errores - Cómo identificar y diferenciar los tipos de errores. Análisis por jerarquía.