Adjunta de una transformación lineal - [Detalles]
En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales.
Transformaciones normales, simétricas y antisimétricas - [Detalles]
A partir de la noción de adjunción es posible definir ciertos tipos especiales de transformaciones lineales: las transformaciones normales, las simétricas y las antisimétricas. En esta entrada veremos dichos conceptos.
Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]
En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.
El teorema de clasificación de transformaciones ortogonales - [Detalles]
En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.
El teorema espectral real - [Detalles]
En esta entrada enunciaremos y demostraremos el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.
El teorema de descomposición polar real - [Detalles]
En esta entrada veremos una de las consecuencias de el teorema espectral: el teorema de descomposición polar. Veremos que toda matriz $A$ tendrá una expresión de la forma $A = US$ donde $U$ es una matriz ortogonal y $S$ es una matriz simétrica positiva.
Adjunciones complejas y transformaciones unitarias - [Detalles]
En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.
El teorema espectral y de descomposición polar complejos - [Detalles]
En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.