Resultados de búsqueda

6 resultados encontrados

  • Blog

    Adjunta de una transformación lineal - [Detalles]

    En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales.

  • Blog

    Transformaciones normales, simétricas y antisimétricas - [Detalles]

    A partir de la noción de adjunción es posible definir ciertos tipos especiales de transformaciones lineales: las transformaciones normales, las simétricas y las antisimétricas. En esta entrada veremos dichos conceptos.

  • Blog

    Transformaciones ortogonales, isometrías y sus propiedades - [Detalles]

    En la siguiente entrada veremos transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

  • Blog

    El teorema de clasificación de transformaciones ortogonales - [Detalles]

    En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.

  • Blog

    El teorema espectral real - [Detalles]

    En esta entrada enunciaremos y demostraremos el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

  • Blog

    El teorema de descomposición polar real - [Detalles]

    En esta entrada veremos una de las consecuencias de el teorema espectral: el teorema de descomposición polar. Veremos que toda matriz $A$ tendrá una expresión de la forma $A = US$ donde $U$ es una matriz ortogonal y $S$ es una matriz simétrica positiva.