Resultados de búsqueda: residuo de cauchy

50 resultados encontrados

  • Video

    Divisibilidad algoritmo de la división (versión corregida) - [Detalles]

    Mostramos el algoritmo de la división: Un algoritmo mediante el cual podemos obtener el cociente y el residuo de una división, esto también nos sirve para expresar un entero (dividendo) en términos del divisor, cociente y residuo: (dividendo = cociente*divisor + residuo). 

  • Video

    Teorema del Factor - [Detalles]

    Explicamos el Teorema del Residuo, el cual nos dice que: El residuo de dividir un polinomio "p(x)" entre "x-a" (con "a" un escalar), es "p(a)", es decir que existe "q(x)" tal que: "p(x)=(x-a)*q(x)+r", con el residuo "r=p(a)". Mostramos algunos ejemplos y demostramos el teorema. 

  • Blog

    44. Teorema del residuo y aplicaciones - [Detalles]

    En esta última entrada, definiremos el residuo de una función analítica y veremos el teorema del residuo, mediante el cual nos será posible evaluar integrales reales, tanto impropias como integrales definidas, de una manera sorprendentemente sencilla.

  • Video

    Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]

    ¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.

  • Blog

    Teorema chino del residuo - [Detalles]

    Motivamos la resolución de sistemas lineales de ecuaciones de congruencias y saber si se tienen solución, esto con ayuda del teorema chino del residuo el cual enunciamos y demostramos.

  • Blog

    Algortimo de la división, teorema del factor y del residuo - [Detalles]

    Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.

  • Cuestionario

    44. Teorema del residuo y aplicaciones - [Detalles]

    Resolvamos integrales aplicando el Teorema del Residuo.

  • Blog

    Teorema chino del residuo - [Detalles]

    En este apartado se demuestra el teorema chino del residuo, el cual sirve para resolver sistemas de congruencias lineales, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python implementando el teorema para resolver sistemas de congruencias lineales e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Polinomios de Taylor (Parte 2) - [Detalles]

    Estudio del residuo de los polinomios de Taylor, la forma de Lagrange y de Cauchy.

  • Blog

    Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Definimos formas bilineales positivas y positivas definidas. Luego vemos qué es un producto interior y una norma. Probamos la desigualdad de Cauchy-Schwarz

  • Blog

    Sucesiones de Cauchy - [Detalles]

    Definición y ejemplo de sucesiones de Cauchy y su relación con las sucesiones convergentes

  • Blog

    Ecuación de Cauchy-Euler - [Detalles]

    Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler

  • Cuestionario

    Mini-cuestionario: Producto interior y desigualdad de Cauchy-Schwarz - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las nociones básicas de producto interior y de la desigualdad de Cauchy-Schwarz

  • Video

    Teorema de Cauchy - [Detalles]

    Se define la noción de p-grupo y se demuestra el Teorema de Cauchy.

  • Video

    Consecuencias del teorema de Cauchy - [Detalles]

    Se muestran algunas aplicaciones y consecuencias del teorema de Cauchy: ser p-grupo es equivalente a tener orden una potencia de p, todo p-grupo no trivial tiene centro no trivial, todo grupo de orden el cuadrado de un primo es abeliano, los subgrupos maximales de un p-grupo son normales y de índice p.

  • Blog

    17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]

    En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.

  • Blog

    18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]

    Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.

  • Blog

    19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]

    En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.

  • Blog

    36. Teorema integral de Cauchy - [Detalles]

    El Teorema Integral de Cauchy es un teorema importantísimo en el estudio de la variable compleja, veremos sus diferentes versiones y demostraciones.

  • Blog

    37. Consecuencias del teorema integral de Cauchy - [Detalles]

    En esta entrada veremos unas cuantas consecuencias del Teorema Integral de Cauchy, tales como el Teorema de Liouville, el Teorema Fundamental del Álgebra, el Teorema de Morera y más.

  • Blog

    38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]

    Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.

  • Cuestionario

    37. Consecuencias del Teorema Integral de Cauchy - [Detalles]

    Veamos unos ejercicios sencillos para asentar bases de los teoremas importantes que se siguen del Teorema Integral de Cauchy

  • Cuestionario

    38. Teorema Integral de Cauchy, versión homotópica. - [Detalles]

    Repasaremos los conceptos de homología y homotopía y la reformulación del Teorema de Cauchy para estos aspectos.

  • Video

    El algoritmo de Euclides: enunciado y demostración. - [Detalles]

    Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor. 

  • Video

    Definición de congruencia - [Detalles]

    Definimos la relación de congruencia modulo "m" entre dos enteros "a", "b", cuando "m" divide a "a-b". Damos la notación para representar la relación de congruencia y mostramos que dos enteros que son congruentes modulo "m", tienen el mismo residuo de dividir entre "m". 

  • Video

    Propiedades básicas de congruencias - [Detalles]

    Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".  

  • Video

    Teorema del Residuo - [Detalles]

    Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios. 

  • Blog

    Algortimo de la división en $Z$ - [Detalles]

    Motivamos el estudio de la división, introducimos de manera general el término de cociente y de residuo, asimismo demostramos el algoritmo de la división.

  • Blog

    Teoremas de Fermat y de Wilson - [Detalles]

    Motivamos, enunciamos y demostramos los teoremas de Fermat y de Wilson con problemas del tipo saber si una potencia de un número es congruente con otro o encontrar el residuo de una congruencia,

  • Blog

    Problemas de ecuaciones en congruencias y teorema chino del residuo - [Detalles]

    Resolvemos una serie de ejercicios de ecuaciones lineales de congruencias.

  • Blog

    Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]

    Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.

  • Evaluación

    Unidad V: Aplicaciones - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.

  • Evaluación

    Unidad V: Aplicaciones - Examen - [Detalles]

    En este examen se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.

  • Blog

    Sistemas de congruencias lineales (parte 1) - [Detalles]

    En este apartado se aborda el tema de sistemas de congruencias lineales de una variable (en la parte 2 la generalización) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de una variable y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas de congruencias lineales (parte 2) - [Detalles]

    En este apartado se aborda el tema de sistemas de congruencias lineales de 2 o más variables (de una variable en la parte 1) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de n variables y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Problemas de desigualdades vectoriales - [Detalles]

    Resolvemos problemas de desigualdades usando desigualdades vectoriales. Vemos aplicaciones de las desigualdades de Cauchy-Schwarz y de Minkowski.

  • Video

    Producto punto - [Detalles]

    Definimos el producto punto para el espacio vectorial R^n, igualmente damos un ejemplo del producto punto de dos vectores en R^2 y demostramos sus propiedades: Conmutatividad, Distributividad, Definido positivo y saca escalares. También mostramos la desigualdad de Cauchy y como mide el ángulo entre dos vectores. 

  • Blog

    Esbozo de construcción de racionales y reales - [Detalles]

    Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.

  • Cuestionario

    17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]

    Veamos una primera entrada de las ecuaciones C-R.

  • Cuestionario

    18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]

    Ahora chequemos más propiedades de las ecuaciones C-R.

  • Cuestionario

    19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]

    Repasaremos un par de propiedades que se derivan de las ecuaciones de C-R.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Evaluación

    Unidad IV: Integración compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.

  • Cuestionario

    36. Teorema Integral de Cauchy - [Detalles]

    Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.

  • Cuestionario

    39. Teoremas de Weierstrass - [Detalles]

    Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.

  • Interactivo

    La forma vectorial de la ley de cosenos - GeoGebra - [Detalles]

    Interactivo en GeoGebra relacionados a los temas "Leyes de cosenos" y Producto punto". Utilizando la ley de cosenos, se expresa el coseno de un ángulo en términos de la norma y el producto punto, lo que permite demostrar la desigualdad de Cauchy-Schwarz.

  • Blog

    Teorema de Cauchy - [Detalles]

    None

  • Blog

    Sucesiones de Cauchy - [Detalles]

    None

  • Blog

    Una sucesión de Cauchy a partir de contracciones - [Detalles]

    None