Resultados de búsqueda: proposiciones condicionales

63 resultados encontrados

  • Cuestionario

    Mini-cuestionario: Demostación de condicionales y dobles condicionales - [Detalles]

    Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las demostraciones de proposiciones con condicionales y dobles condicionales.

  • Cuestionario

    Mini-cuestionario: Condicionales y dobles condicionales - [Detalles]

    Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique el uso de condicionales y dobles condicionales.

  • Diapositivas

    Diapositivas sobre proposiciones bicondicionales - [Detalles]

    Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.

  • Video

    Estructuras de control, Condicionales en JAVA - [Detalles]

    Condicionales en JAVA - ¿Cuáles son las estructuras de control condicionales? sintaxis y cómo usarlas.

  • Diapositivas

    Diapositivas sobre proposiciones condicionales - [Detalles]

    Enunciamos otro tipo de proposiciones en matemáticas que son las condicionales o implicaciones que nos dan la relación de causa-efecto dentro del enunciaso, el material es acompañado de una lista de ejemplos.

  • Blog

    Condicionales y dobles condicionales - [Detalles]

    En esta entrada introducimos los conceptos de implicación y doble implicación, así como la tautología.

  • Blog

    Demostración de condicionales y dobles condicionales - [Detalles]

    En esta entrada vemos ejemplos de demostraciones con doble implicación, algunas convenciones de su redacción y técnicas de demostración.

  • Cuestionario

    Mini-cuestionario: Negaciones de conectores, cuantificadores y condicionales - [Detalles]

    Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique la negación de conectores, cuantificadores y condicionales.

  • Interactivo

    Proposiciones 1 a 26 del libro I de los Elementos de Euclides (propiedades de los triángulos) - [Detalles]

    Aquí el alumno podrá navegar por apartados donde se encuentran las proposiciones 1 a 26 del libro I de los Elementos de Euclides. Estas proposiciones en general son sobre las propiedades de los triángulos y en particular las proposiciones 4,8 y 26 son los criterios de congruencia de los triángulos. Todas demostradas con ayuda de figuras interactivas.

  • Interactivo

    Proposiciones 33 a 48 del libro I de los Elementos de Euclides (paralelogramos y relaciones de área) - [Detalles]

    Aquí el alumno podrá navegar por apartados donde se encuentran las proposiciones 33 a 48 del libro I de los Elementos de Euclides. Estas proposiciones en general son sobre las propiedades de los paralelogramos, triángulos y cuadrados, haciendo referencia especial a las relaciones de área. En particular las proposiciones 47 y 48 son el teorema de Pitágoras y su recíproco. Todas demostradas con ayuda de figuras interactivas.

  • Video

    Logica proposicional - Proposiciones condicionales - [Detalles]

    Se estudia el conector condicional. Definimos la implicación contrapositiva y la conversa. Se finaliza con un teorema que demuestra algunas equivalencias entre formas proposicionales.

  • Diapositivas

    Dispositivas de conectores: conjunción y disyunción - [Detalles]

    Definimos la conjunción y la disyunción sobre una proposición, también mostramos que este tipo de proposiciones están formadas por 2 proposiciones (así formando una gracias a estos conectores) se muestra sobre como este tipo de proposiciones son verdaderas o falsas.

  • Interactivo

    Proposiciones 27 a 32 del libro I de los Elementos de Euclides (teoría de las paralelas) - [Detalles]

    Aquí el alumno podrá navegar por apartados donde se encuentran las proposiciones 27 a 32 del libro I de los Elementos de Euclides. Estas proposiciones en general son sobre la teoría de las paralelas y demuestran que la suma de los ángulos interiores de un triángulo es igual a dos ángulos rectos. Todas demostradas con ayuda de figuras interactivas.

  • Blog

    Teorema de Bayes - [Detalles]

    Demostramos el teorema de Bayes, el cual relaciona distintas probabilidades condicionales y permite el cálculo de probabilidades de eventos que no son tan inmediatas.

  • Blog

    Problemas de condicionales y cuantificadores - [Detalles]

    Resolvemos ejercicios con los conectores lógicos de implicación y doble implicación, así como con cuantificadores existenciales y universales.

  • Video

    Estructuras de control, Ciclos en JAVA - [Detalles]

    Ciclos en Java – estructuras de control condicionales; ciclos. Sintaxis y cómo usarlas.

  • Video

    Qué es una proposición matemática - [Detalles]

    Definimos las proposiciones lógicas, dando ejemplos de proposiciones lógicas que podemos entender con el lenguaje cotidiano.

  • Diapositivas

    Diapositivas sobre traducciones entre proposiciones - [Detalles]

    Proporcionamos una serie de ejemplos de enunciados que ocupan los cuantificadores en sus proposiciones para mostrar como se hace una correcta traducción de estos enunciados para optimizar el entendimiento del enunciado.

  • Blog

    Introducción al curso y proposiciones matemáticas - [Detalles]

    Hablamos de las nociones de verdadero y falso en matemáticas. Decimos qué son las proposiciones matemáticas. Introducimos tablas de verdad.

  • Blog

    Problemas de proposiciones y conectores - [Detalles]

    Hacemos algunos ejercicios con proposiciones y tres conectores lógicos: la negación, la disyunción y la conjunción. Y damos su razonamiento.

  • Cuestionario

    Mini-cuestionario: Verdadero, falso y proposiciones - [Detalles]

    Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase el tema de verdadero, falso y proposiciones.

  • Cuestionario

    Mini-cuestionario: Demostración de proposiciones con conectores - [Detalles]

    Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las demostraciones de proposiciones con conectores.

  • Video

    Negaciones - [Detalles]

    Usamos las tablas de verdad para definir la negación lógica de una proposición, damos ejemplos de la negación para proposiciones lógicas que podemos entender con el lenguaje cotidiano.

  • Video

    Conjunción y Disyunción - [Detalles]

    Usamos las tablas de verdad para definir la conjunción y disyunción para dos proposiciones lógicas.

  • Video

    Propiedades de la negación, conjunción y disyunción de proposiciones. - [Detalles]

    Se da la definición de formas proposicionales equivalentes. Mediante tablas de verdad se demuestran las leyes o propiedades de conmutatividad, asociatividad, distributivita y las Leyes de De Morgan

  • Video

    Lógica Proposicional - Proposiciones Bicondicionales - [Detalles]

    Se estudia el conector bicondicional, se muestran ejemplos y se demuestra un teorema con varias equivalencias de formas proposicionales.

  • Diapositivas

    Diapositivas sobre proposiciones - [Detalles]

    Definimos lo que es una proposición y la negación de una proposición acompañado de varios ejemplos para fijas los conceptos básicos de las diapositivas presentadas.

  • Diapositivas

    Diapositivas sobre demostraciones con cuantificadores - [Detalles]

    Explicamos como se demuestran proposiciones matemáticas que cuentan con cuantificadores, cómo demostrar que son verdaderos o que son falsos, las diapositivas van acompañadas de ejemplos.

  • Diapositivas

    Diapositivas sobre conjuntos - [Detalles]

    Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.

  • Diapositivas

    Diapositivas sobre demostraciones de conjuntos - [Detalles]

    Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.

  • Diapositivas

    Diapositivas sobre determinantes - [Detalles]

    Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.

  • Video

    Orden en los números enteros - [Detalles]

    Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales. 

  • Cuestionario

    7. Topología de $\mathbb{C}$ - [Detalles]

    Vamos a repasar los conceptos básicos de espacio métrico y topología en los complejos, con algunos ejemplos y proposiciones.

  • Video

    La Inducción matemática - [Detalles]

    La inducción matemática es una herramienta fundamental para poder demostrar proposiciones que tienen que ver con los números naturales. En este video discutimos cuál es su estructura y como se implementa.

  • Video

    Ejercicio de Tablas de verdad - [Detalles]

    En este video justificamos la equivalencia de proposiciones utilizando las tablas de verdad y como operan con conectores lógicos.

  • Blog

    Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]

    Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.

  • Blog

    Axioma de elección - [Detalles]

    En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.

  • Cuestionario

    Cuestionario de conjuntos y logica - [Detalles]

    Este es un cuestionario para repasar el Módulo 13 del texto "Cimientos Matemáticos" donde se abarcan temas como: conjuntos, elementos de conjuntos, cardinalidad, símbolos de pertenencia, subconjunto, operaciones con conjuntos, lógica de proposiciones, etc.

  • Blog

    Propiedades de la negación, conjunción y disyunción - [Detalles]

    Revisamos las propiedades de tres conectores: la negación, la disyunción y la conjunción. Hablamos de cuándo son dos proposiciones equivalentes.

  • Blog

    Negaciones de proposiciones con conectores y cuantificadores - [Detalles]

    Vemos cómo se niegan los cuantificadores lógicos. Repasamos la negación con conectores lógicos.

  • Blog

    Demostración de proposiciones con conectores - [Detalles]

    En esta entrada revisamos algunos ejemplos de las demostraciones matemáticas con conectores como la conjución y disyunción.

  • Blog

    Demostración de proposiciones con cuantificadores - [Detalles]

    En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".

  • Video

    Breviario de Lógica y Conjuntos - [Detalles]

    En este video se comentan algunos aspectos de lógica y conjuntos, que serán de uso muy frecuente en el curso. En especial se comenta sobre los conectivos lógicos y los conjuntos solución de proposiciones sobre números reales.

  • Video

    Números naturales e induccion - [Detalles]

    En este video veremos a los números naturales como un subconjunto del campo de los números reales. Justificaremos el Principio de Inducción Matemática, que es una herramienta muy poderosa para demostrar proposiciones de tipo universal acerca de los números naturales.

  • Blog

    Principio de inducción matemática - [Detalles]

    En este apartado se abordan los temas de inducción matemática, inducción fuerte y recursividad, con demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Número y suma de divisores - [Detalles]

    En este apartado se abordan las funciones sigma y tau, las cuales están relacionadas con los divisores de un número entero, esto acompañado de demostraciones de proposiciones y corolarios, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la suma y el número de divisores de un entero, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Números perfectos, primos de Mersenne y primos de Fermat - [Detalles]

    En este apartado se presentan tres clases de números enteros: los números perfectos, los números primos de Mersenne y los números primos de Fermat, esto acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un número pertenece a alguna de las tres clases de números previamente mencionadas, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Función phi de Euler - [Detalles]

    En este apartado se aborda la función phi (o "d") de Euler, la cual calcula el número de primos relativos menores a un número entero n, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función phi de euler, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Función mu y fórmula de inversión de Möbius - [Detalles]

    En este apartado se aborda la función mu (o "W") de Möbius, y la fórmula de inversión de Möbius, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función mu de Möbius y para hacer la inversión de Möbius, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Recordatorio de clases de equivalencia - [Detalles]

    En este apartado se presenta un repaso del tema "clases de equivalencia", que abarca los conceptos de relaciones de equivalencia, particiones y particiones inducidas. Contiene demostraciones de teoremas y proposiciones, definiciones y problemas resueltos. Este es un tema extra correspondiente a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas completos de residuos - [Detalles]

    En este apartado se abordan los temas de sistemas representantes y sistemas completos de residuos, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un conjunto es un sistema completo de residuos con respecto a n, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Congruencias y propiedades básicas - [Detalles]

    En este apartado se aborda el tema de relación de congruencia con sus propiedades y operaciones, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Resolución de congruencias lineales - [Detalles]

    En este apartado se aborda el tema de congruencias lineales y su relación con las ecuaciones diofantinas lineales, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver congruencias lineales y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas de congruencias lineales (parte 1) - [Detalles]

    En este apartado se aborda el tema de sistemas de congruencias lineales de una variable (en la parte 2 la generalización) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de una variable y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas de congruencias lineales (parte 2) - [Detalles]

    En este apartado se aborda el tema de sistemas de congruencias lineales de 2 o más variables (de una variable en la parte 1) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de n variables y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Introducción a congruencias cuadráticas - [Detalles]

    En este apartado se introduce el tema de congruencias cuadráticas cuando el módulo es un número primo o un número compuesto, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver una congruencia cuadrática en módulos primos y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Interactivo

    Congruencia de triángulos - [Detalles]

    Interactivo relacionado al tema "Congruencia de triángulos". Aquí el estudiante podrá navegar por apartados donde se postulan los tres criterios de congruencia y a partir de estos se demuestran 4 proposiciones, una de ellas sobre congruencia de triángulos y las restantes sobre la igualdad de lados o ángulos. Todo acompañado de figuras interactivas que guían las demostraciones.

  • Interactivo

    Área de un triángulo - [Detalles]

    Interactivo relacionado al tema "Área de un triángulo". Aquí el estudiante podrá navegar por apartados donde se define la altura y pie de altura de un triángulo y se demuestra la fórmula para calcular el área de un triángulo rectángulo y posteriormente de cualquier triángulo. Además, se demuestran dos proposiciones relacionadas a la razón del área entre dos triángulos. Todo acompañado de figuras interactivas que guían las demostraciones.

  • Interactivo

    Teorema de Thales - [Detalles]

    Interactivo donde se demuestra el teorema de Thales que consta de cuatro proposiciones: primer y segundo teorema de Thales y sus recíprocos correspondientes. El estudiante podrá acceder a cada proposición navegando por los apartados del link. Incluye figuras interactivas que guían las demostraciones.

  • Interactivo

    Cuadriláteros cíclicos y ángulos en la circunferencia - [Detalles]

    Interactivo relacionado al tema: "Circunferencia y Cuadriláteros cíclicos". Aquí el estudiante podrá navegar por apartados donde se encuentran las definiciones de un cuadrilátero cíclico y de los tipos de ángulos en una circunferencia: central, inscrito, semi-inscrito y ex-inscrito. También contiene demostraciones de teoremas y proposiciones relacionadas al tema como lo son el teorema de Ptolomeo y el teorema de la línea de Simson con sus correspondientes recíprocos. Todas las demostraciones y definiciones son apoyadas de figuras interactivas.

  • Blog

    Definiciones - Libro I de los Elementos de Euclides - [Detalles]

    Aquí se encuentran las 23 definiciones del libro I de los elementos de Euclides. Definiciones indispensables para entender los postulados y proposiciones del libro.

  • Interactivo

    Postulados - Libro I de los Elementos de Euclides - [Detalles]

    Aquí se encuentran los 5 postulados que representan las bases para las demostraciones de las proposiciones del libro.

  • Cuestionario

    Mini-cuestionario: Demostración de proposiciones con cuantificadores - [Detalles]

    Correspondiente a la introducción del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno practique las demostraciones con cuantificadores.