Factorización de polinomios, polinomios reducibles y polinomios irreducibles. definición y ejemplos - [Detalles]
Hablamos sobre la factorización de polinomios, mostramos que los binomios lineales (de la forma "x-a") son polinomios irreducibles y vemos varios ejemplos de polinomios reducibles e irreducibles.
División sintética - [Detalles]
Primero vemos un teorema que nos ayudara para entender la división de polinomios, ya que nos dice que dados los polinomios "a(x), b(x)", existen polinomios únicos tal que "a(x)=b(x)*q(x)+r(x)" (los detalles los vemos en el video). Después vemos el algoritmo de la división para polinomios, hacemos un ejemplo usando los pasos del algoritmo de la división y obtenemos los polinomios "q(x), r(x)".
Raíces de polinomios de grados 3 y 4 - [Detalles]
Mostramos formas para encontrar las raíces de los polinomios de grado tres, cuatro y hablaremos sobre polinomios con grados más altos; para encontrar las raíces de estos polinomios de grado tres ocupamos el método Cardano y para polinomios de grado cuatro el método de Ferrari.
Propiedades de la suma y multiplicación de los polinomios - [Detalles]
Vemos como realizar operaciones con polinomios. Definimos la suma de polinomios, el producto de polinomio por un escalar y el producto de polinomios. Damos un ejemplo para cada operación.
Máximo común divisor de polinomios y algortimo de Euclides - [Detalles]
Definimos lo que es un ideal en los polinomios, proporcionamos un ejemplo y una caracterización de los ideales en los polinomios, al igual que en entradas anteriores tomamos ideas principales de temas que se ocupaban en los enteros pero ahora los adaptamos a los polinomios como lo es el máximo común divisor, el algoritmo de Euclides y demostramos la identidad de Bézout.
Aplicar polinomios a transformaciones lineales y matrices - [Detalles]
En esta entrada veremos el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad.
El grado de un polinomio - [Detalles]
Hablamos sobre las propiedades de las operaciones con polinomios, notamos que depende del conjunto de escalares y vemos que la suma y la multiplicación de polinomios cumplen ciertas propiedades, si los coeficientes pertenecen a los Enteros, Racionales, Reales o Complejos. Finalmente vemos que, si los coeficientes están en cualquiera de estos conjuntos, el conjunto de polinomios es un anillo conmutativo.
Multiplicación de números complejos - [Detalles]
Vemos la forma de multiplicar números complejos, usando las reglas anteriormente vistas (las cuales guardan similitudes a la multiplicación de polinomios), podemos llegar a una fórmula para la multiplicación. Hacemos algunos ejemplos para mostrar la multiplicación de números complejos en acción.
División de polinomios - [Detalles]
Definimos la división entre polinomios, dados dos polinomios "a(x), b(x)", decimos que "b(x)" divide a "a(x)" si y solo si "a(x)=b(x)*q(x)" para algún polinomio "q(x)". Vemos algunos ejemplos y también propiedades sobre la divisibilidad.
Raíces de polinomios - [Detalles]
Explicamos en que consiste la división sintética, la cual nos ayuda a dividir polinomios entre polinomios de la forma "x-a". Damos el procedimiento de la división sintética y hacemos dos ejemplos.
Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]
Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.
Desigualdades de polinomios - [Detalles]
Desarrollamos herramientas para poder resolver problemas del orden en el anillo de los polinomios y para que valores se cumplen estas relaciones de orden asimismo se da el teorema de la factorización de polinomios reales.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Monomios y polinomios - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.
La norma en los complejos - [Detalles]
Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.
Teorema sobre polinomios y números complejos - [Detalles]
Vemos y demostramos uno de los teoremas más importantes sobre polinomios: Si un número complejo es solución de un polinomio con coeficientes reales entonces su conjugado también es solución de ese mismo polinomio. Este teorema nos puede ayudar a encontrar soluciones de un polinomio.
Factorización de polinomios. Un ejemplo paso a paso y muchas sugerencias - [Detalles]
Vemos un ejemplo de cómo factorizar un polinomio como producto de polinomios irreducibles. Hacemos uso del criterio de Eisenstein para encontrar las raíces enteras y después obtenemos las demás raíces, en los racionales e incluso en los complejos. Durante el procedimiento damos sugerencias.
Números complejos - [Detalles]
Definimos los números complejos: "a+b*i" ("a", "b" son números reales e "i" es el numero imaginario). Damos la notación que vamos a utilizar para los numero complejo (parte real y parte imaginaria) y definimos el conjunto de los números complejos.
División de números complejos - [Detalles]
Vemos la forma de dividir número complejos, usando la multiplicación anteriormente vista podemos llegar a una fórmula para la división. Hacemos algunos ejemplos para mostrar la división de números complejos en acción.
Potencias de números complejos - [Detalles]
Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación).
Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos - [Detalles]
Analizamos el caso cuando la matriz asociada al sistema tiene valores propios complejos. Encontramos dos soluciones reales dada una solución compleja formada con un valor y un vector propios complejos.
Multiplicación de números complejos en su forma polar - [Detalles]
Usando la forma polar de los números complejos, damos una formula muy sencilla para multiplicar complejos (en su forma polar). Vemos que tiene una representación geométrica muy parecida a una rotación, o una suma de vectores en el plano complejo.
Álgebra homológica - complejos de cadenas - [Detalles]
En este video comenzamos a estudiar álgebra homológica desde un punto de vista puramente algebraico. Definimos complejos de cadenas, subcomplejos, complejos cociente, homología y funciones inducidas.
Construcción de números complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Inmersión de los reales en los complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Divisibilidad de polinomios - [Detalles]
Damos la definición del grado de un polinomio, el cual es el máximo exponente cuyo coeficiente es distinto de cero. Damos algunos ejemplos de polinomios y obtenemos su grado. También vemos dos propiedades sobre el grado de un polinomio.
Polinomios de Taylor (Parte 1) - [Detalles]
Estudio de los polinomios de Taylor: su definición formal y un teorema sobre ser una buena aproximación a una función dada.
Polinomios de Taylor (Parte 2) - [Detalles]
Estudio del residuo de los polinomios de Taylor, la forma de Lagrange y de Cauchy.
El anillo de polinomios con coeficientes reales - [Detalles]
Construimos a los polinomios con coeficientes reales, demostramos que esta construcción cumple con que es un anillo y un dominio entero luego.
Problemas de operaciones en el anillo de polinomios - [Detalles]
Resolvemos problemas sobre las operaciones básicas en el anillo de los polinomios con coeficientes reales.
Problemas de MCD, algortimo de Euclides e irreducibilidad en R[x] - [Detalles]
Resolvemos problemas propuestos que involucran los temas del máximo compun divisor en los polinomios mediante el algortimo de Euclides y la factorización de polinomios ocupando el teorema del factor.
Problemas de continuidad y derivadas de polinomios - [Detalles]
Resolvemos ejercicios de continuidad y de derivada en los polinomios así como de raíces reales.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
Cuestionario de monomios y polinomios - [Detalles]
Este es un cuestionario para repasar el Módulo 6 del texto "Cimientos Matemáticos" donde se abarcan temas como: monomios, polinomios, ley de los signos, productos notables, etc.
Irreducibilidad en R[x] - [Detalles]
Enunciamos el teorema fundamental del álgebra y el teorema de la factorización única de polinomios sobre los complejos asimismo vemos las raíces complejas de un polinomio y su la irreducibilidad de un polinomio real.
Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de sistemas lineales homogéneos con coeficientes constantes cuando los valores propios de la matriz asociada son complejos.
Plano fase para sistemas lineales con valores propios complejos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios complejos, dependiendo del signo de la parte real de los valores propios.
Plano fase para sistemas lineales con valores propios complejos (Ejemplos) - [Detalles]
Resolvemos y dibujamos el plano fase para algunos sistemas cuyos valores propios son complejos.
Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos - [Detalles]
Se continua con el segundo caso del método de valores y vectores propios correspondiente al caso en el que los valores propios de la matriz del sistema son complejos
Teoría cualitativa de los sistemas lineales homogéneos – Valores propios complejos - [Detalles]
Se desarrolla la teoría cualitativa de los sistemas compuestos por dos ecuaciones diferenciales lineales de pimer orden en el caso en el que los valores propios son complejos
Complejos CW - definición - [Detalles]
En este video definiremos complejo CW, un tipo muy particular de espacio que se estudian en topología algebraica. Muchos de los espacios que nos son familiares son complejos CW, por ejemplo, las esferas, los espacios proyectivos y las superficies.
Complejos CW - ejemplos gráficas y esferas - [Detalles]
En este video daremos nuestros primeros ejemplos de complejos CW.
Complejos CW - productos - [Detalles]
En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.
Problemas de operaciones en complejos - [Detalles]
Resolvemos problemas de operaciones básicas de complejos como la suma y producto junto con sus operaciones inversas.
Problemas de norma de complejos y ecuaciones de segundo grado - [Detalles]
Resolvemos ejercicios de la norma en el campo de los complejos también resolvemos problemas de raíces cuadráticas complejas y raíces complejas.
Sistemas de ecuaciones lineales complejos - [Detalles]
Motivamos el estudio de la solución de sistemas de ecuaciones lineales pero ahora con números complejos, nuestra inspiración fueron algunos métodos que ya conocemos por el estudio en los reales tales como el determinante, substitución o igualando coeficientes.
Problemas de sistemas de ecuaciones complejos y forma polar - [Detalles]
Resolvemos una serie de problemas de sistemas de ecuaciones lineales con números complejos, asi también enunciamos la relga de Kramer para la resolución de estos problemas.
Multiplicación en forma polar y fórmula de De Moivre - [Detalles]
Mostramos la interpretación geométrica de lo que reprenta la multiplicación de dos números complejos en su forma polar; también enunciamos la fórmula de De Moivre para ayudarnos a dar solución a problemas en los que se requiere calcular potencias de números complejos.
Raíces de números complejos y raíces de la unidad - [Detalles]
Motivamos el estudio de poder calcular reíces de un número complejo, así vamos obteniendo resultados que nos ayuden a poder calcular las raíces en los complejos llegando al teorema que da solución al estos problemas también lo demostramos al igual que el teorema de las raíces n-ésimas de la unidad.
Exponencial, logaritmo y trigonometría en los complejos - [Detalles]
Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.
1. Introducción a los números complejos - [Detalles]
Repasaremos unos breves antecedentes históricos y unas de las primeras motivaciones que nos llevaron a la concepción, y posteriormente creación, de los números complejos.
1. Introducción a los números complejos - [Detalles]
En esta entrada de blog se presentan problemas que motivan la necesidad del sistema de números complejos, en particular los problemas de solucionar ecuaciones de segundo, tercer y cuarto grado.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.
3. El plano complejo $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan propiedades de los números complejos que surgen naturalmente de una construcción geométrica como lo son el módulo, también se da una interpretación geométrica de las operaciones entre complejos.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.
27. Preliminares de series de números complejos - [Detalles]
Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.
27. Preliminares de series de números complejos - [Detalles]
Dimos la generalización de series a números complejos, vamos a preguntar un par de cosas para repasar los conceptos importantes.
Conjuntos importantes - [Detalles]
En este capitulo de Cimientos Matemáticos revisaremos los conjuntos de números más importantes y los más usuales con los que solemos trabajar, tal es el caso de los naturales y enteros que ya hemos visto en capítulos anteriores, pero ahora añadiendo a los números, racionales, irracionales, reales y hasta los números complejos, que de complejos únicamente es el nombre, ya que veremos que la manera de trabajar con este es muy sencilla.
Espacios vectoriales - [Detalles]
Definimos qué son los espacios vectoriales. Damos muchos ejemplos, entre ellos, espacios de matrices, espacios de funciones y espacios de polinomios.
Problemas de combinaciones lineales, generadores e independientes - [Detalles]
Resolvemos problemas de vectores generadores y linealmente independientes. Damos ejemplos con espacios de vectores, matrices, polinomios y funciones.
Bases ortonormales y descomposición de Fourier - [Detalles]
Definimos la descomposición de Fourier dada una base ortonormal y vemos su relación con la norma. Aplicamos las ideas a polinomios y funciones periódicas.
Definimos el concepto de polinomio en una variable, vemos varios ejemplos, y definimos varios conceptos relacionados.
Operaciones con polinomios - [Detalles]
Hablamos primero sobre los monomios, los cuales consisten en un término, conformado de un coeficiente, una variable y un exponente. Después vemos la definición de polinomio con una variable, la cual es una expresión algebraica conformada varios monomios.
Teorema del Residuo - [Detalles]
Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios.
Ecuación de Legendre - [Detalles]
Resolvemos la ecuación de Legendre alrededor del punto ordinario t=0, y hacemos mención de la relación que guarda esta ecuación con los polinomios que llevan el mismo nombre.
Inmersión de R en R[x], grado y evaluación - [Detalles]
Damos las definiciones principales y más escenciales del tema de polinomios como los son: raíz, grado, potencia de un polinomio; asimismo demostramos las propiedades más fundamentales de estos nuevos conceptos.
Algortimo de la división, teorema del factor y del residuo - [Detalles]
Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.
Problemas de desigualdades de polinomios - [Detalles]
Resolvemos problemas que ocupan el material de las desigualdades polinomiales y damos los pasos para poder resolver estos tipos de problemas.
Ejercicio Polinomios de grado par - [Detalles]
En este video, abordaremos paso a paso el razonamiento detrás de por qué todo polinomio de grado par alcanza su máximo en el conjunto de los números reales.
Expresiones algebraicas - [Detalles]
En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.
Cuestionario de expresiones algebraicas - [Detalles]
Este es un cuestionario para repasar el Módulo 4 del texto "Cimientos Matemáticos" donde se abarcan temas como: lenguaje algebraico, expresiones algebraicas, jerarquía de operaciones, monomios, polinomios, etc.
Matrices similares y su polinomio característico - [Detalles]
En esta entrada exploramos otros aspectos del polinomio característico. Principalmente nos encargamos de comparar los polinomios característicos de matrices similares, así como los de dos productos (recordamos que el producto de matrices no es conmutativo).
Triangularizar y descomposición de Schur - [Detalles]
En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.
Propiedades del módulo de un número complejo - [Detalles]
Damos y demostramos varias propiedades sobre el módulo de los complejos. Veremos que el módulo de un complejo es siempre positivo o igual a cero, y que es cero si y solo si el complejo es cero. También mostramos algunas desigualdades importantes.
Álgebra homológica - homotopías - [Detalles]
En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.
Homología singular - funtorialidad - [Detalles]
En este video mostraremos que funciones continuas entre espacios topológicos inducen funciones de complejos de cadenas singulares y, por lo tanto, funciones entre grupos de homología.
Complejos CW - ejemplos - los espacios proyectivos - [Detalles]
En este video daremos la definición de los espacios proyectivos. Luego describiremos una estructura celular en dichos espacios.
Complejos CW - funciones características y subcomplejos - [Detalles]
En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.
Complejos CW - cocientes - [Detalles]
En este video daremos una estructura celular al cociente de un complejo CW con un subcomplejo.
Complejos CW - cono y suspensión - [Detalles]
En este video definimos el cono y la suspensión de un espacio. Luego mostramos que si el espacio es un complejo CW, entonces su cono y su suspensión también lo son.
Homología celular - la homología singular de un complejo CW - [Detalles]
En este video demostramos algunas propiedades de la homología celular de los complejos CW. Estos resultados serán la base para definir la homología celular.
Proyecto: Mecánica cuántica desde álgebra lineal - [Detalles]
En este proyecto de aplicación extendemos lo aprendido sobre producto interior hacia espacios vectoriales sobre los complejos. Hacemos esto para hablar de la notación bra-ket en física y para introducir ideas básicas de mecánica cuántica.
La conjugación de números complejos - [Detalles]
Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.
Problemas de conjugación compleja - [Detalles]
Resolvemos ejercicios básicos sobre el conjugado de los complejos.
Ecuaciones cuadráticas complejas - [Detalles]
Damos un primer acercamiento al teorema fundamental del álgebra y como repercute este en el campo de los complejos, también mostramos una manera de resolver ecuaciones cuadráticas en el campo complejo que no tienen solución en el campo de los reales, también mostramos que la fórmula general es aplicable sobre C.
Cambio de coordenadas y forma polar de un complejo - [Detalles]
Estudiamos las coordenadas rectangulares y las coordenadas polares de los números complejos, asimismo mostramos que existe una biyección entre estos dos sistemas coordenados.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
Ahora queremos repasar lo que significa que $\mathbb{C}$ sea un campo y que implica, así como reforzar unas cuantas fórmulas para expresar partes real e imaginaria de un número complejo.
3. El plano complejo $\mathbb{C}$ - [Detalles]
Revisitaremos un poco de la parte histórica y notaremos un poco de la importancia de la simbiótica relación entre los números complejos y el plano cartesiano.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
Repasemos un poco acerca de cómo se comportan potencias y raíces en los complejos.
7. Topología de $\mathbb{C}$ - [Detalles]
Vamos a repasar los conceptos básicos de espacio métrico y topología en los complejos, con algunos ejemplos y proposiciones.
8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]
Revisemos un poco del concepto de sucesión en los complejos mediante un ejemplo concreto.
6. Lugares geométricos en $\mathbb{C}$ - [Detalles]
Aplicando nuestros conocimientos de geometría analítica, analizaremos como se describen los lugares geométricos tales como rectas, circunferencias, elipses, etc. pero ahora dando unas nuevas ecuaciones en los complejos.
7. Topologia de $\mathbb{C}$ - [Detalles]
En esta entrada empezamos recordando las nociones de topología en espacios métricos pera luego enfocarnos en el espacio métrico $(\mathbb{C},d)$ y definir todos los conceptos importantes de topología pero ahora en los complejos.
8. Sucesiones en el espacio métrico $(\mathbb{C}, d)$ - [Detalles]
Estudiaremos las sucesiones de números complejos, el cual resulta un objeto fundamental para el estudio del concepto de las aproximaciones, utilizando los conceptos de distancia que definimos en la entrada anterior e introducimos el "límite de una sucesión" y cuando puede o no existir.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presenta cómo calcular raíces n-esimas de números complejos partiendo de la fórmula de De Moivre.
Unidad I: Introducción y preliminares - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]
Responderemos unas preguntas de senos y cosenos complejos, así como senos y cosenos hiperbólicos.
Unidad I: Introducción y preliminares - Examen - [Detalles]
En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.
13. Funciones multivaluadas - [Detalles]
Ya que comenzamos nuestro estudio de las funciones de variable compleja, debemos introducir unas funciones llamadas "funciones multivaluadas" que no necesariamente cumplen con la definición usual de función, pero son de vital importancia cuando se habla de complejos.
15. Continuidad en $\mathbb{C}$ - [Detalles]
Abordaremos formalmente el concepto de continuidad en sentido complejo, debemos estar advertidos de que, a pesar de que la definición no diferirá mucho de la de variable real, el comportamiento en los complejos puede cambiar de formas extrañas, analizaremos propiedades y caracterizaciones de funciones complejas continuas.
22. Funciones trigonométricas e hiperbólicas complejas - [Detalles]
Ya definidas la exponencial y el logaritmo complejos, daremos parao a definir las funciones trigonométricas e hiperbólicas complejas.
Unidad III: Series de números complejos - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Examen - [Detalles]
En este examen se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.
Unidad III: Series de números complejos - Tarea - Soluciones - [Detalles]
Se presentan las soluciones detalladas a la tarea en equipo de la tercera unidad.
Unidad III: Series de números complejos - Examen - Soluciones - [Detalles]
Se presentan las soluciones detalladas al examen de la tercera unidad.
28. Sucesiones y series de funciones - [Detalles]
Desde hace varias entradas habíamos definido sucesiones, y en la anterior series, pero ambas para números complejos, ahora subiremos un escalón, definiendo estos conceptos también para funciones complejas.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
28. Sucesiones y series de funciones - [Detalles]
Ya que vimos sucesiones y series de números complejos, ahora toca ver los mismos conceptos pero para funciones de variable compleja. Veamos un par de preguntas para ver si se entendió bien.
Funciones trascendentes - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones trascendentes que modelan fenómenos complejos de nuestro mundo, la circunferencia unitaria simplifica la trigonometría, y las funciones exponenciales y logarítmicas describen crecimientos y decaimientos.
Formas sesquilineales - [Detalles]
En esta entrada veremos los conceptos de formas sesquilineales y formas hermitianas, ambos conceptos extienden (en algunos sentidos) lo que hemos visto sobre formas bilineales a espacios vectoriales sobre los complejos. Los resultados son casi análogos a los del caso real. Sin embargo, hay algunas diferencias importantes en las que haremos énfasis.
Matrices de formas sesquilineales - [Detalles]
En esta entrada daremos una relación entre formas sesquilineales, formas cuadráticas hermitianas y matrices. Daremos la definición y veremos sus propiedades. Gran parte de la relación que había para el caso real se mantiene al pasar a los complejos. Las demostraciones en la mayoría de los casos son análogas, sin embargo, haremos énfasis en las partes que hacen que el caso real y el complejo sean distintos.
Espacios euclideanos y espacios hermitianos - [Detalles]
En esta entrada haremos un breve recordatorio de los conceptos de producto interior y de espacios euclideanos. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.
Matrices positivas y congruencia de matrices - [Detalles]
En esta entrada veremos como se relacionan las ideas de matrices asociadas a formas bilineales con el producto interior y espacio euclideano, así como sus análogos complejos. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).
El teorema espectral y de descomposición polar complejos - [Detalles]
En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.