Introducción al curso y proposiciones matemáticas - [Detalles]
Hablamos de las nociones de verdadero y falso en matemáticas. Decimos qué son las proposiciones matemáticas. Introducimos tablas de verdad.
Diapositivas sobre los tipos de enunciados en matemáticas - [Detalles]
Mostramos la diferencia entre los diferentes enunciados más recurridos en matemáticas, planteamos algunos ejemplos y la relación que entablan unos tipos de enunciados con otros.
¿Qué son las demostraciones en matemáticas? - [Detalles]
En este video explicamos con una analogia que es una demostración en matemáticas
MiniCOMAL: Cimientos Matemáticos - [Detalles]
Cimientos Matemáticos es un texto escrito de matemáticas pre-universitarias hecho por el Dr. Eric Pauli Pérez Contreras. Cubre varios temas importantes que se deben conocer y manejar apropiadamente para facilitar el estudio de las matemáticas a nivel universitario. En este curso podrás consultar el material elaborado en archivos PDF, así como una multitud de mini-cuestionarios para evaluar tus conocimientos sobre los temas que se tratan en cada capítulo.
¿Qué es una demostración? - [Detalles]
Platicamos sobre las demostraciones, en qué consisten y que herramientas nos pueden ayudar para hacer una demostración. Las matemáticas universales y para siempre.
¿Qué es la matemática? - [Detalles]
Damos varias definiciones de matemáticas y cómo podemos hacer más sencilla su comprensión
Diapositivas de cuantificadores - [Detalles]
Mostramos los símbolos más recurrentes en matemáticas para denotar la existencia, unicidad la totalidad y pertenencia de elementos en un conjunto asi mismo es acompañado por una lista de ejemplos.
Diapositivas sobre proposiciones condicionales - [Detalles]
Enunciamos otro tipo de proposiciones en matemáticas que son las condicionales o implicaciones que nos dan la relación de causa-efecto dentro del enunciaso, el material es acompañado de una lista de ejemplos.
Diapositivas sobre proposiciones bicondicionales - [Detalles]
Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.
Diapositivas sobre demostraciones con cuantificadores - [Detalles]
Explicamos como se demuestran proposiciones matemáticas que cuentan con cuantificadores, cómo demostrar que son verdaderos o que son falsos, las diapositivas van acompañadas de ejemplos.
Diapositivas sobre relaciones de conjuntos - [Detalles]
Definimos un nuevo término que es la relación entre 2 conjuntos y su producto cartesiano, también definimos nuevos conjuntos que se dan al hacer una relación, estos nuevos conjuntos se llaman dominio, codominio y el conjunto imagen, estos conjuntos son de gran importancia pues se verán en gran parte de la carrera y en demás materias (tales como los cálculos), para finalizar mostramos las relaciones más comunes en el estudio de matemáticas y una operación entre relaciones llamada composición,
Diapositivas sobre funciones - [Detalles]
Definimos el término de función el cual es sumamente ocupado en matemáticas, se muestran ejemplos, explicamos las propiedades respecto a los conjuntos dominio y codominio que hacen diferentes a las funciones de las relaciones; también se abarca la igualdad entre 2 funciones y cuando se da.
COMAL: Topología Algebraica I - [Detalles]
Curso de introducción a la topología algebraica. Comenzamos hablando del grupo fundamental. Luego, estudiamos el teorema de Van Kampen. Continuamos con varios temas de espacios cubrientes. Finalmente hablamos del concepto de homología y varios resultados alrededor de él. Material recopilado en Matemáticas a Distancia con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Nota 7. Relaciones y funciones - [Detalles]
En esta nota se habla de lo que es una relación entre conjuntos y se indroducen conceptos como dominio, imagen y codominio de una relación. Las relaciones de conjuntos nos ayudan a comprender y definir lo que es una función entre conjuntos, uno de los conceptos más importantes de las matemáticas. La nota cuenta con varios ejemplos y recursos que nos ayudan a entender estos conceptos.
Ejercicio Desigualdad Medias - [Detalles]
En este video, desglosaremos y demostraremos la famosa desigualdad que relaciona estas dos medias, una herramienta esencial para muchos campos de las matemáticas y la ciencia.
Nota 18. El principio de inducción matemática. - [Detalles]
En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.
Nota 23. Combinaciones. - [Detalles]
En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.
Axioma de elección - [Detalles]
En esta sección abordaremos un axioma relevante no sólo en teoría de conjuntos sino en muchas ramas de las matemáticas. Distintas proposiciones aparentemente sencillas no podrían demostrarse sin su ayuda y algunas de sus consecuencias son tan poderosas que cuesta trabajo aceptarlas. Es por eso que el llamado axioma de elección ha sido controversial desde su formulación a manos de Ernst Zermelo.
En esta nueva sección veremos algunas otras equivalencias del axioma de elección, pero éstas en particular no son tan evidentes e incluso resultan sorprendentes. En muchas ramas de las matemáticas se apela a las formas equivalentes del axioma de elección que veremos en esta sección, es por ello que es importante tratarlas.
Ejercicio Teorema del Sandwich - [Detalles]
¡Sumérgete en una sabrosa rebanada de matemáticas con la inigualable Ley del Sándwich! En este video, nos adentraremos en los ingredientes esenciales de esta fascinante teoría, desplegando paso a paso su demostración. Al igual que un sándwich artesanalmente preparado, esta ley tiene capas y matices que vale la pena explorar en detalle. ¿Podrán dos funciones acotar a una tercera como las rebanadas de pan a un delicioso relleno?
Expresiones algebraicas - [Detalles]
En este capítulo de Cimientos Matemáticos, nos adentraremos en las expresiones algebraicas, donde las letras reemplazan a los números para expresar ideas matemáticas de forma general. Aprenderemos a utilizar este lenguaje simbólico para traducir enunciados del mundo real a ecuaciones y resolver problemas de una manera más eficiente. Dentro del capitulo veremos temas como: jerarquía de operaciones, monomios y polinomios, términos semejantes, solución de ecuaciones de primer grado, etc.
Los números reales - [Detalles]
En este capitulo de Cimientos Matemáticos exploraremos las propiedades de los números reales, como son estas reglas fundamentales que rigen su manipulación en operaciones matemáticas, mientras que el concepto de valor absoluto añade una capa de comprensión al medir la distancia de un número al cero en la línea numérica.
En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.
Funciones algebraicas - [Detalles]
En este capitulo de Cimientos Matemáticos veremos las funciones algebraicas que son fundamentales en matemáticas, abarcando desde las simples funciones lineales, que dibujan rectas, hasta las cuadráticas con sus parábolas características, pasando por las polinomiales, hasta las racionales.
Tipos de enunciados matemáticos - [Detalles]
Introducción En esta entrada platicamos de varios tipos de enunciados con los que te vas a encontrar frecuentemente en trayectoria matemática a nivel universitario. Para entender correctamente las definiciones siguientes, es muy importante que ya estés familiarizado con el concepto de proposición matemática que tratamos con anterioridad. Axiomas En las matemáticas, los axiomas son enunciados […]
Inferencias Matemáticas - [Detalles]
Vemos lo que es una inferencia matemática, sus partes y el significado de inferencias válidas.
Demostraciones matemáticas (El mundo de los Blorg) - [Detalles]
En esta entrada introducimos la idea de una demostración matemática, su significado y una de las primeras estrategias para empezar a demostrar.
Demostración de proposiciones con conectores - [Detalles]
En esta entrada revisamos algunos ejemplos de las demostraciones matemáticas con conectores como la conjución y disyunción.
Demostración de proposiciones con cuantificadores - [Detalles]
En esta entrada, veremos las estrategias para demostraciones matemáticas que incluyen cuantificadores como: "para todo" y "existe".