Neutro multiplicativo y unidades de un anillo - [Detalles]
Retomamos la definición de anillo. Damos la definición formal de neutro multiplicativo y de unidad. Tomando los ejemplos de anillos anteriormente vistos mostramos cuál es su neutro multiplicativo y sus unidades.
Propiedades de determinantes - [Detalles]
Enunciamos y demostramos propiedades de determinantes. Vemos que el determinante es homogeneo, multiplicativo y que no cambia al transponer.
Convertir de Coordenadas Cartesianas a Coordenadas Polares - [Detalles]
Similar al video anterior (pero al inverso). Explicamos como pasar de coordenadas cartesianas a coordenadas polares, de un punto.
Construcción de los enteros y su suma - [Detalles]
Construimos el conjunto de los números enteros a partir de los números naturales, definimos a un número entero como una clase de equivalencia, definimos su operación suma y su inverso; también demostramos algunas propiedades básicas de la operación suma en los enteros.
Unicidad del elemento neutro y de inversos - [Detalles]
Se demuestra que en un grupo, el elemento neutro es único, y para cada elemento, su inverso también es único.
Nota 26. Propiedades de $\mathbb{R}^n$ - [Detalles]
En la siguiente nota veremos algunas propiedades de $\mathbb{R}^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb{R}$ por cualquier vector de $\mathbb{R}^n$ nos da el neutro aditivo del espacio vectorial, y que la multiplicación de cualquier escalar por el neutro aditivo de $\mathbb{R}^n$, es el mismo neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, denotado por $\tilde{v}$ es de hecho $(-1)v$.
Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo - [Detalles]
En primera instancia se definirán propiedades básicas de grupos como en cualquier otra estructura algebraica. En la cual, es de importancia mencionar la existencia de un neutro, asociatividad e inverso. Por ultimo, la definición débil de grupo.