Los teoremas de Fermat y de Euler - [Detalles]
Vemos el pequeño teorema de Fermat y el Teorema de Euler. Primero demostramos el teorema de Euler, el cual nos da una relación de la función de Euler con una congruencia modulo "m", y usando este resultado demostramos el pequeño teorema de Fermat.
Homología celular - característica de Euler - [Detalles]
En este video definimos la característica de Euler de un complejo CW finito. Luego, demostramos que la característica de Euler es un invariante homotópico.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Ecuación diferencial de Euler - [Detalles]
Resolvemos de manera general la ecuación diferencial de Euler para cualquier intervalo que no contenga al punto singular t=0
Ecuación diferencial de Euler (Ejemplo) - [Detalles]
Resolvemos una ecuación diferencial de Euler en particular
El número de Euler - [Detalles]
Estudio del número de Euler motivado mediante interés compuesto
Ecuación de Cauchy-Euler - [Detalles]
Se aplican los resultados obtenidos para resolver una ecuación diferencial de segundo orden con coeficientes variables conocida como ecuación de Cauchy-Euler
Interactivo: Recta de Euler - [Detalles]
En este interactivo se demuestra que el ortocentro, el centroide y el circuncentro son colineales, la recta que los une es la denominada "Recta de Euler". Contiene figuras interactivas que guían la demostración.
Interactivo: Fórmula de Euler (en geometría) - [Detalles]
El interactivo contiene la demostración de la fórmula de Euler en geometría, la cual relaciona la distancia del circuncentro al incentro con sus correspondientes radios. Se incluyen figuras interactivas que guían la demostración.
Nota histórica: Leonhard Euler - [Detalles]
En este espacio, el alumno podrá explorar la vida del matemático Leonhard Euler. Descubrirá sus valiosas contribuciones al desarrollo de diversas ramas de las matemáticas. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
La recta de Euler - [Detalles]
Demostramos algunas propiedades del circuncentro, centroide, incentro y ortocentro
Ejercicios de segmentos dirigidos - [Detalles]
Generalizamos la fórmula de Chasles para n puntos, demostramos el teorema de Euler y algunos resultados al respecto
Desigualdades geométricas - [Detalles]
Mostraremos algunas desigualdades geométricas, entre ellas la desigualdad de Erdos Mordell y la desiuldad de Euler, también veremos ejemplos.
Triángulo medial y recta de Euler - [Detalles]
Estudiamos propiedades del triángulo medial que nos permitirán deducir que el ortocentro, el centroide y el circuncentro son colineales.
Circunferencia de los nueve puntos - [Detalles]
Presentamos la circunferencia de los nueve puntos, determinada por los pies de las alturas, los puntos medios y los puntos de Euler.
Exponencial, logaritmo y trigonometría en los complejos - [Detalles]
Definimos las función exponencial, logaritmo y trigonométricas en los números complejos, asimismo se demuestran ciertas propiedades de estas funciones aaí como también la identidad de Euler.
Grupos cíclicos - parte 2 - [Detalles]
Se dan más propiedades de los grupos cíclicos y su relación con la función phi de Euler, se da una caracterización de los grupos cíclicos finitos.
Paseos Eulerianos y el origen de la Teoría de Gráficas - [Detalles]
Es este video definimos multigráfica, paseo Euleriano y multigráfica Euleriana. También hablamos de la historia de los siete puentes de Köninsberg, que se reconoce como el origen dela Teoría de Gráficas y probamos un resultado de Euler, de 1736, que nos da un criterio para determinar si una multigráfica es o no es Euleriana.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Interactivo: Algunas propiedades de las circunferencias - [Detalles]
Este interactivo está relacionado a los temas "Potencia de un punto" y "Segmentos dirigidos". Aquí el estudiante podrá navegar a través de apartados que contienen las definiciones de qué es un segmentos dirigido, potencia de un punto, eje radical y circunferencias coaxiales. Además se incluyen las demostraciones de algunos resultados relacionados que son: el teorema de la Fórmula de Euler, teorema de Pascal y el teorema de Brianchon.
Interactivo: Geometría del triángulo - [Detalles]
En este interactivo el estudiante podrá navegar por apartados donde se definen el triángulo medial y órtico y se demuestran los siguientes teoremas importantes relacionados a la geometría del triángulo: la recta de Euler, la circunferencia de los nueve puntos, el teorema de Ceva y su recíproco, el teorema de Menelao y su recíproco, el teorema de la bisectriz, el teorema de Pappus, el teorema de Desargues y su recíproco, un teorema sobre el circunradio del triángulo medial y un teorema sobre la concurrencia de las bisectrices internas y externas. Todo acompañado de figuras interactivas que guían las demostraciones.