El Plano Complejo, Módulo y Argumento de un Número Complejo - [Detalles]
Mostramos como se asocia un numero complejo a un punto. Usando esto podemos dar la definición del plano complejo (Análogo al plano cartesiano). Donde cada punto del plano representa un numero complejo. Damos la forma polar de un numero complejo y la representación de su modulo y argumento en el plano complejo.
Forma polar de un número complejo - [Detalles]
Vemos como escribir un numero complejo en su forma polar (mediante su modulo y su argumento). Para esto hacemos uso de las razones trigonométricas y vemos su representación en el plano complejo.
Triángulos en perspectiva - [Detalles]
Estudiamos algunos teoremas relacionados con triángulos en perspectiva, el principal de ellos, el teorema de Desargues.
Homología singular - definición de homología singular - [Detalles]
En este video por fin definiremos la homología singular de un grupo X. Estos objetos (grupos abelianos o R-módulos) serán nuestro principal objeto de estudio en lo que resta de esta lista de reproducción.
Grupo alternante (3) - [Detalles]
Se demuestra el teorema principal de la sección: An es simple para todo n>=5. Para ello se prueban lemas preliminares.
Álgebra Moderna I: Definición de Grupos - [Detalles]
Dentro de lo que se abordará como tema principal a continuación, es la definición de grupo y se facilitara la compresión de este nuevo concepto a través de varios ejemplos. Un concepto más es el de Grupo abeliano.
Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]
El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.
Álgebra Moderna I: Teorema de Cayley - [Detalles]
A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley
Historia de las Ciencias de la Computación; Fechas y lenguajes - [Detalles]
1.2 Fechas y Lenguajes - Fechas históricas y lenguajes de programación. Desde los años de 1950 hasta la década de los 90's con la aparición de Java, lenguaje principal de este curso.
El teorema de clasificación de transformaciones ortogonales - [Detalles]
En esta entrada buscamos entender mejor el grupo de transformaciones ortogonales. El resultado principal que probaremos nos dirá exactamente cómo son todas las posibles transformaciones ortogonales en un espacio euclideano (que podemos pensar que es $\mathbb{R}^n$). Para llegar a este punto, comenzaremos con algunos resultados auxiliares y luego con un lema que nos ayudará a entender a las transformaciones ortogonales en dimensión 2. Aprovecharemos este lema para probar el resultado para cualquier dimensión.
Funciones, Parte 2 - [Detalles]
En este video se discute exhaustivamente la naturaleza de la raíz cuadrada positiva de números reales no negativos, como función. El énfasis principal es mostrar que todo número real positivo tiene una raíz cuadrada positiva, haciendo uso del axioma del supremo.