Resultados de búsqueda: agebra moderna

37 resultados encontrados

  • Curso

    COMAL: Geometría Moderna I - [Detalles]

    Cubrimos el temario oficial de Geometría Moderna I con el uso de notas, videos e interactivos de GeoGebra. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE103320.

  • Curso

    COMAL: Álgebra Moderna I - [Detalles]

    Cubrimos el temario oficial de la materia Álgebra Moderna I. Tenemos notas del curso, videos y cuestionarios para práctica. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522..

  • Blog

    Algebra Moderna I: Operación binaria - [Detalles]

    El objetivo de esta nota es definir el concepto de "operación binaria" dentro del Algebra Moderna. Así mismo, dejar definida la notación del concepto que se adoptará a lo largo de las notas del curso. Y por ultimo se ejemplifican algunas formas de construir este tipo de operaciones.

  • Blog

    Definiciones - [Detalles]

    Introducción al curso de Geometría Moderna I basado en el temario oficial de la Facultad de Ciencias de la UNAM.

  • Curso

    COMAL: Geometría Moderna I - [Detalles]

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Blog

    Álgebra Moderna I: Operación binaria asociativa y conmutativa - [Detalles]

    A continuación se manejan dos tipos de operaciones especificas: las operaciones binarias asociativas y las operaciones conmutativas. Dentro de estos conceptos se espera que el lector pueda reconocer cuando una operación binaria recae dentro de alguno de estos dos tipos mencionados o no. En las notas, se da ejemplo de como reconocer la conmutatividad dentro de un arreglo de Tabla.

  • Blog

    Álgebra Moderna I: Definición de Grupos - [Detalles]

    Dentro de lo que se abordará como tema principal a continuación, es la definición de grupo y se facilitara la compresión de este nuevo concepto a través de varios ejemplos. Un concepto más es el de Grupo abeliano.

  • Blog

    Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo - [Detalles]

    En primera instancia se definirán propiedades básicas de grupos como en cualquier otra estructura algebraica. En la cual, es de importancia mencionar la existencia de un neutro, asociatividad e inverso. Por ultimo, la definición débil de grupo.

  • Blog

    Álgebra Moderna I: Asociatividad Generalizada y Leyes de los Exponentes - [Detalles]

    Dentro de las operaciones básicas de un grupo, podemos encontrar la asociatividad. La cual es tratada dentro de esta sección, además de algunas de sus consecuencias inmediatas y un teorema generalizando.

  • Blog

    Álgebra Moderna I: Subgrupos - [Detalles]

    La proxima estructura que nos interesa estudiar es la de la subcoleccion H de un grupo G, por tanto necesitamos conocer que necesita H para que sea un grupo en si mismo. Así mismo, hay que estudiar propiedades que heredan estas subcolecciones y las caracterizaciones. Por ultimo siempre es bueno revisar que pasa cuando son finitos.

  • Blog

    Álgebra Moderna I: Orden de un elemento y Grupo cíclico - [Detalles]

    ¿Cualquier subconjunto X de un grupo G es un subgrupo? Esta premisa es abordada principalmente, necesitamos ver condiciones necesarias que pedirle a a X. Requiriendo la definición de orden de un elemento hasta llegar al concepto de subgrupo cíclico.

  • Blog

    Álgebra Moderna I: Orden de un grupo - [Detalles]

    Es importante definir ahora el orden de un grupo, formalizando algunos conceptos del tema anterior como el del conjunto generado por un elemento a.

  • Blog

    Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por X - [Detalles]

    El primer teorema a probar dentro de la sección es el de si todo subgrupo de un cíclico, es cíclico también. Posterior a este resultado se busca encontrar al menor subgrupo que contiene a cualquier subconjunto X.

  • Blog

    Álgebra Moderna I: Palabras. - [Detalles]

    Se definirá el concepto de palabra en X, ya que estas permiten dar descripción del subgrupo generado. Así mismo, se establecerá el concepto de orden de un producto.

  • Blog

    Álgebra Moderna I: Permutaciones y Grupo Simétrico - [Detalles]

    En primera instancia tenemos que definir lo que es una permutación de un conjunto X. Posteriormente podremos construir el concepto de Grupo Simétrico y la definición de un r-ciclo.

  • Blog

    Álgebra Moderna I: Permutaciones disjuntas - [Detalles]

    A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.

  • Blog

    Álgebra Moderna I: Factorización Completa - [Detalles]

    Para este punto, tenemos que notar formas diferentes de expresar una permutación a partir del uso de uno ciclos, lo cual nos lleva a definir una factorización completa de una permutación A, con la cualidad de la unicidad.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Blog

    Álgebra Moderna I: Paridad de una permutación - [Detalles]

    A partir de la entrada anterior, se puede definir el signo de una permutación. Lo cual guía a introducir la función signo y probar que es multiplicativa. Posteriormente se descubre al Grupo alternante.

  • Blog

    Álgebra Moderna I: Producto de subconjuntos y Clases Laterales - [Detalles]

    En la primera sección, se establece una definición clara de nuestro producto y se ejemplifica mediante casos específicos. En la segunda parte, se busca abordar la cuestión de cuándo el producto de dos subconjuntos constituye un subgrupo. En la tercera sección, se explora un escenario particular: ¿Qué ocurre cuando uno de los subconjuntos es un conjunto unitario? Es decir, se analiza la multiplicación de un subgrupo de G con un único elemento de G.

  • Blog

    Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de H en G - [Detalles]

    En esta entrada definiremos una relación de equivalencia en un grupo. Nos referimos al grupo de los enteros con la suma (Z,+) en el cual es posible establecer una relación de equivalencia que induce a una partición con exactamente n conjuntos.

  • Blog

    Álgebra Moderna I: Teorema de Lagrange - [Detalles]

    A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H

  • Blog

    Álgebra Moderna I: Caracterización de grupos cíclicos - [Detalles]

    En los grupos cíclicos, existe un subgrupo único para cada divisor del orden del grupo. Este concepto será el enfoque inicial de esta explicación. Posteriormente, emplearemos un resultado de la teoría de números, utilizando la teoría de grupos para describir los grupos cíclicos de manera más detallada. Esta descripción, junto con sus implicaciones en los campos finitos, se basa en los materiales de los libros de Rotman y también se encuentra en el libro de Avella, Mendoza, Sáenz y Souto, que se mencionan en la bibliografía.

  • Blog

    Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]

    En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.

  • Blog

    Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]

    Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.

  • Blog

    Álgebra Moderna I: Grupo Cociente - [Detalles]

    La definición de subgrupos normales surgió de la necesidad de extender las propiedades de los enteros a grupos más generales. En los enteros, definimos una relación de equivalencia (módulo n) que nos permite obtener clases de equivalencia. Estas clases no solo generan una partición, sino que también constituyen un subgrupo de Z. La idea central es generalizar este concepto: buscamos definir una operación en ciertas clases de equivalencia para que también formen un grupo.

  • Blog

    Álgebra Moderna I: Subgrupo Conmutador - [Detalles]

    En esta entrada, el propósito es inicialmente establecer la noción de conmutador entre dos elementos del grupo G. Posteriormente, se pretende definir el conjunto generado por todos los conmutadores en el grupo. Estos pasos se dan con el fin de crear un grupo cociente abeliano, a pesar de que el grupo original G no lo sea.

  • Blog

    Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo - [Detalles]

    En esta sección se analizara un tipo de correspondencia que se puede presentar entre dos grupos, lo cual nos llevara a definir el concepto de Homomorfismo. Por tanto, es necesario analizar sus propiedades y comportamientos bajo composición.

  • Blog

    Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]

    En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.

  • Blog

    Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo - [Detalles]

    En esta entrada, nos enfocaremos en dos conjuntos fundamentales relacionados con los homomorfismos. En primer lugar, consideramos la colección de todos los elementos del dominio que son transformados en el elemento neutro del codominio. A este conjunto lo denominamos el núcleo del homomorfismo ϕ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles la función ϕ y obtener el subconjunto correspondiente en el codominio. A este conjunto lo llamamos la imagen de ϕ. Estos dos subconjuntos desempeñan un papel crucial en el análisis de los homomorfismos.

  • Blog

    Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula - [Detalles]

    El teorema principal a estudiar en esta entrada es el primero de los cuatro teoremas de Isomorfía, el cual nos permite entender cómo están relacionados el dominio, el núcleo y la imagen de un homomorfismo de grupos, de forma similar al teorema de la dimensión en Álgebra lineal, que establece la relación entre el dominio, el núcleo y la imagen de una transformación lineal.

  • Blog

    Álgebra Moderna I: Segundo Teorema de Isomorfía - [Detalles]

    Para esta entrada nos apoyaremos en el diagrama de retícula propuesto anteriormente, con el cual introduciremos el segundo teorema de isomorfía. Posteriormente reforzaremos y daremos una versión mas intuitiva de este teorema.

  • Blog

    Álgebra Moderna I: Tercer Teorema de Isomorfía - [Detalles]

    "Alguna vez te haz preguntado: ¿Qué ocurre con un cociente de cocientes?" Después de una breve introducción al tercer teorema de isomorfía, comenzaremos enunciándolo y probándolo a partir del primer teorema.

  • Blog

    Álgebra Moderna I: Cuarto Teorema de Isomorfía - [Detalles]

    A partir de ilustraciones con retículas, en esta entrada se introduce al cuarto teorema de Isomorfía. El cual nos encargaremos de demostrar a lo largo de la sección y ejemplificar trabajando sobre el grupo diédrico.

  • Blog

    Álgebra Moderna I: Teorema de Cayley - [Detalles]

    A partir de esta unidad veremos como cada uno de los elementos de los grupos (para cualquier grupo) se puede ver como una permutación. Todo grupo se puede pensar como un subgrupo de un grupo de permutaciones. El objetivo principal es converger en el Teorema de Cayley

  • Blog

    Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]

    Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.

  • Blog

    Álgebra Moderna I: Acciones - [Detalles]

    Para esta sección, necesitamos tomar el concepto de acción. Hemos estado usando el verbo actuar para referirnos a esta transformación que sucede al operar un a en G y otro elemento, sea del mismo G o de las clases laterales. La realidad es que ya usar actuar da una idea de lo que estamos queriendo decir. Estamos usando un elemento de un grupo para transformar un elemento de otro.