Se definen las acciones de grupo y los G-conjuntos, se prueba que las acciones están en correspondencia biyectiva con los homomorfismos del grupo en el grupo simétrico, se muestran ejemplos, se definen las órbitas y los estabilizadores.
Lema de Burnside: demostración alternativa - [Detalles]
Se enuncia y demuestra el Lema de Burnside (una demostración alternativa de otra que se dio en otro video que no aparece en el sitio).
Teorema de Cauchy - [Detalles]
Se define la noción de p-grupo y se demuestra el Teorema de Cauchy.
Consecuencias del teorema de Cauchy - [Detalles]
Se muestran algunas aplicaciones y consecuencias del teorema de Cauchy: ser p-grupo es equivalente a tener orden una potencia de p, todo p-grupo no trivial tiene centro no trivial, todo grupo de orden el cuadrado de un primo es abeliano, los subgrupos maximales de un p-grupo son normales y de índice p.
Los teoremas de Sylow - [Detalles]
Se enuncian y demuestran los teoremas de Sylow.
Consecuencias de los teoremas de Sylow - [Detalles]
Se presentan algunas aplicaciones y consecuencias de los teoremas de Sylow que involucran a los p-subgrupos de Sylow.
Producto directo de grupos - [Detalles]
Se da la definición del producto directo de grupos y se demuestran algunas propiedades.
Producto directo de grupos - parte 2 - [Detalles]
Se continúa el estudio del producto directo, se enuncia y demuestra el teorema de factorización.
Producto directo de grupos - parte 3 - [Detalles]
Se demuestra que el producto de subgrupos normales es subgrupo normal del producto y que el cociente es isomorfo a un producto de cocientes.