Diapositivas sobre el principio de inducción - [Detalles]
Se muestra el proceso para realizar una demostración por inducción matemática sobre el conjunto de los números naturales, se explica el paso basi y el paso inductivo (cómo se construye la hipótesis de inducción) y unos ejemplos de como realizar este tipo de demostraciones.
Diapositivas de inducción matemática (videos alternativos) - [Detalles]
Damos continuidad al tema pasado, definimos lo que es un subconjunto inductivo, enunciamos el principio de inducción matemática y el principio de inducción generalizado y se presentan más ejemplos sobre inducción matemática.
Diapositivas sobre ejemplos de inducción - [Detalles]
Demostramos de 2 maneras distintas el teorema de la suma de Gauss y mostramos la manera compacta de externar una suma.
Introducción al curso y números naturales - [Detalles]
Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.
La construcción de las naturales - [Detalles]
Definimos lo que es un conjunto inductivo, demostramos propiedades de este tipo de conjuntos y que el conjunto de los números naturales satisface los axiomas de Peano.
Problemas de la construcción de los naturales - [Detalles]
Descripción pendiente
Principios de inducción y teoremas de recursión - [Detalles]
Demostramos el princicipio de inducción y el teorema de recursión débil, por otro lado enunciamos el teorema de recursión fuerte y el principio de buen orden.
Problemas de principio de inducción - [Detalles]
Descripción pendiente
Definición de la suma y sus propiedades básicas - [Detalles]
Definimos la suma en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Definición del producto y sus propiedades básicas - [Detalles]
Definimos el producto en el conjunto de los números naturales y demostramos las propiedades básicas de esta operación en N.
Problemas de suma y producto de naturales - [Detalles]
Descripción pendiente
Otras definiciones recursivas en los naturales (exponenciación y factorial) - [Detalles]
Definimos el factorial y la exponenciación en los números naturales asimismo probamos unas leyes de los exponentes.
Problemas de otras definiciones recursivas - [Detalles]
Descripción pendiente
Conjuntos transitivos - [Detalles]
Definimos lo que es un conjunto transitivo y demostramos que todos los naturales y el conjunto de naturales son transitivos.
El tamaño de $N$ y de cada natural - [Detalles]
Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.
Problemas de conjuntos transitivos y cardinalidad de los naturales - [Detalles]
Descripción pendiente
La relación de orden en $\mathbb{N}$ - [Detalles]
Definimos el orden en los números naturales y se demuestra primero que es parcial y después que éste es total.
El principio del buen orden - [Detalles]
Probamos la equivalencia entre el principio del buen orden y el principio de indicción así como el conjunto de los naturales satisface ser un conjunto bien ordenado.
Problemas del orden en $\mathbb{N}$ - [Detalles]
Descripción pendiente
Compatibilidad del orden con las operaciones de los naturales - [Detalles]
Proporcionamos una definición de orden equivalente relacionada a la operación suma en el conjunto de los números naturales.
Problemas de compatibilidad del orden de los naturales con sus operaciones - [Detalles]
Descripción pendiente
Problemas de construcción, suma y producto de enteros - [Detalles]
Descripción pendiente
Nota 16. Los números naturales. - [Detalles]
En esta nota construimos los números naturales mediante el uso de conjuntos y la función sucesor, derivado de esto vemos los axiomas de Peano, entre ellos se encuentra el llamado "principio de inducción" el cual se utiliza mucho en pruebas relacionadas a números naturales; por ultimo definimos dos operaciones en este conjunto: la suma y el producto.
Nota 17. El orden en los números naturales. - [Detalles]
En esta nota desarrollaremos formalmente el concepto de cuándo una magnitud es más grande que otra, es decir daremos un orden al conjunto de números naturales, veremos varías propiedades que nos dicen como este orden se comporta respecto a lo que ya sabemos de los números naturales.
Nota 18. El principio de inducción matemática. - [Detalles]
En esta nota usaremos el quinto axioma de Peano para hacer un tipo de prueba muy usada en matemáticas cuando se quiere constatar que un subconjunto de los números naturales es de hecho igual que los números naturales; vemos varios ejemplos de como usar correctamente el principio de inducción y por último vemos otros dos principios muy importantes de los naturales: el segundo principio de inducción y el principio del buen orden.
Mini-cuestionario: Preliminares inducción - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario es una introducción a la inducción matemática.
Mini-cuestionario: Principio de inducción - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase el principio de inducción.
Mini-cuestionario: Preliminares de recursión - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario es una introducción al principio de recursión.
Mini-cuestionario: Suma de naturales - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase la definición recursiva de la suma de naturales.
Mini-cuestionario: Producto de naturales - [Detalles]
Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno repase la definición recursiva de producto en los números naturales.