Nota 19. Conjuntos equipotentes y cardinalidad - [Detalles]
En esta nota hablamos de la cardinalidad de un conjunto, es decir, su tamaño o número de elementos que contiene, vemos como el tamaño de dos conjuntos se puede comparar mediante funciones. Por último probamos el principio de la suma, el cual nos dice la cardinalidad de la unión de dos conjuntos finitos y ajenos, con este resultado veremos en general la cardinalidad de la unión de dos conjuntos finitos.
Bases y dimensión de espacios vectoriales - [Detalles]
Definimos espacios vectoriales de dimensión finita. Vemos que es correcto definir dim V como el tamaño de un conjunto generador linealmente independiente.
La matriz de coeficientes de un sistema de ecuaciones - [Detalles]
Explicamos y definimos una matriz de tamaño NxM (arreglos rectangulares de números). Damos la representación matricial de un sistema lineal, la cual es una matriz conformada por los coeficientes del sistema (matriz de coeficientes). Definimos la matriz aumentada y explicamos como usarla para resolver sistemas lineales.
El tamaño de $N$ y de cada natural - [Detalles]
Caracterizamos a los conjuntos finitos e infinitos y demostramos que el conjunto de los números naturales es el infinito más pequeño.
Nota 23. Combinaciones. - [Detalles]
En esta nota veremos el concepto de combinaciones, que considera todos los subconjuntos de un tamaño dado de un conjunto finito, esta idea es ampliamente usada en matemáticas, particularmente en probabilidad, y relacionada también íntimamente en cómo elevar un binomio a un exponente natural.
Introducción: ¿Qué son las Ciencias de la Computación?, Complejidad - [Detalles]
1.3 Complejidad - Continuación de los conceptos clave de la materia, significado de la complejidad y sus características (tiempo, espacio, tamaño y dificultad) para su ejecución.
Teoría de Gráficas - Cuestionario 1 - [Detalles]
Antes de contestar este cuestionario se recomienda ver los videos 1, 2 y 3 del curso. Los conceptos que requieres saber son: ¿Qué es una gráfica? ¿Qué significa que dos gráficas sean isomorfas? Orden y Tamaño de una gráfica. Algunas familias especiales: gráfica completa K_n; ciclo C_n; trayectoria P_n; estrella S_n. Conceptos no totalmente formales: Gráfica conexa, árboles, gráficas planares. La gráfica complemento. La gráfica complemento de una gráfica dada. Operaciones: union disjunta; suma de Zykov; quitar un vértice o una arista. Subgráficas, subgráficas inducidas, y subgráficas generadoras.