La relación entre paridad y signo - [Detalles]
Demostramos que una permutación es par si y sólo si su signo es iguala 1. Equivalentemente, vemos que una permutación es impar si y sólo si su signo es igual a -1. Esto muestra que la noción de paridad y la de signo son equivalentes.
Paridad y signo de una permutación - [Detalles]
Paridad de una permutación y el signo de una permutación. Además damos algunos ejemplos ilustrativos.
Multiplicatividad del signo. Parte 1 - [Detalles]
Demostramos un par de lemas que serán útiles para, en el próximo video, demostrar que el signo del producto de dos permutaciones es igual al producto de los signos.
Multiplicatividad del signo. Parte 2 - [Detalles]
Demostramos que el signo de una composición de permutaciones es el producto de los signos de los factores.
S3 y el signo de sus elementos - [Detalles]
Se analiza el signo de los elementos de S3.
Álgebra Moderna I: Paridad de una permutación - [Detalles]
A partir de la entrada anterior, se puede definir el signo de una permutación. Lo cual guía a introducir la función signo y probar que es multiplicativa. Posteriormente se descubre al Grupo alternante.
Implementación con bits, Enteros con signo - [Detalles]
Enteros con signo – Representación de datos numéricos; los números negativos en la computadora.
Plano fase para sistemas lineales con valores propios reales distintos no nulos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios reales distintos no nulos, dependiendo del signo de los valores propios.
Plano fase para sistemas lineales con valores propios complejos - [Detalles]
Analizamos el plano fase para sistemas lineales con valores propios complejos, dependiendo del signo de la parte real de los valores propios.
Intervalos de crecimiento - [Detalles]
En este video se muestra la relación entre el signo de la derivada y la tendencia creciente/decreciente de una función. Al final se establece el criterio de la primera derivada para máximos y mínimos locales.