Divisibilidad algoritmo de la división (versión corregida) - [Detalles]
Mostramos el algoritmo de la división: Un algoritmo mediante el cual podemos obtener el cociente y el residuo de una división, esto también nos sirve para expresar un entero (dividendo) en términos del divisor, cociente y residuo: (dividendo = cociente*divisor + residuo).
Teorema del Factor - [Detalles]
Explicamos el Teorema del Residuo, el cual nos dice que: El residuo de dividir un polinomio "p(x)" entre "x-a" (con "a" un escalar), es "p(a)", es decir que existe "q(x)" tal que: "p(x)=(x-a)*q(x)+r", con el residuo "r=p(a)". Mostramos algunos ejemplos y demostramos el teorema.
44. Teorema del residuo y aplicaciones - [Detalles]
En esta última entrada, definiremos el residuo de una función analítica y veremos el teorema del residuo, mediante el cual nos será posible evaluar integrales reales, tanto impropias como integrales definidas, de una manera sorprendentemente sencilla.
El teorema de Lagrange - [Detalles]
Se enuncia y demuestra el teorema de Lagrange.
Consecuencias del teorema de Lagrange - [Detalles]
Se exploran algunos corolarios y consecuencias del teorema de Lagrange.
Álgebra Moderna I: Teorema de Lagrange - [Detalles]
A continuación, se revisara y demostrará uno de los teoremas mas importantes de la Teoría de Grupos, conocido como el Teorema de Lagrange. El cual nos dice que para un subgrupo H de G, el orden de G es un t veces del orden de H
Multiplicadores de Lagrange - [Detalles]
Enunciamos y demostramos el teorema de multiplicadores de Lagrange para optimizar campos escalares bajo restricciones. Damos ejemplos de uso.
Polinomios de Taylor (Parte 2) - [Detalles]
Estudio del residuo de los polinomios de Taylor, la forma de Lagrange y de Cauchy.
Teorema chino del residuo - [Detalles]
Motivamos la resolución de sistemas lineales de ecuaciones de congruencias y saber si se tienen solución, esto con ayuda del teorema chino del residuo el cual enunciamos y demostramos.
Algortimo de la división, teorema del factor y del residuo - [Detalles]
Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.
44. Teorema del residuo y aplicaciones - [Detalles]
Resolvamos integrales aplicando el Teorema del Residuo.
Problemas de dualidad y base dual - [Detalles]
Resolvemos problemas de dualidad relacionados con encontrar bases primales y duales. Probamos la fórmula de interpolación de Lagrange.
El algoritmo de Euclides: enunciado y demostración. - [Detalles]
Demostramos el algoritmo de Euclides, es un método o procedimiento que nos ayuda en la búsqueda del Máximo Común Divisor de dos números enteros. Vemos que hace uso del algoritmo de la división repetidamente y que hay una relación entre el residuo y el máximo común divisor.
Definición de congruencia - [Detalles]
Definimos la relación de congruencia modulo "m" entre dos enteros "a", "b", cuando "m" divide a "a-b". Damos la notación para representar la relación de congruencia y mostramos que dos enteros que son congruentes modulo "m", tienen el mismo residuo de dividir entre "m".
Propiedades básicas de congruencias - [Detalles]
Demostramos algunas propiedades sobre la congruencia, entre sus propiedades podremos notar que la relación de congruencia se basa en la relación que tienen los números enteros con el residuo obtenido de dividir entre el módulo "m".
Teorema del Residuo - [Detalles]
Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios.
Algortimo de la división en $Z$ - [Detalles]
Motivamos el estudio de la división, introducimos de manera general el término de cociente y de residuo, asimismo demostramos el algoritmo de la división.
Teoremas de Fermat y de Wilson - [Detalles]
Motivamos, enunciamos y demostramos los teoremas de Fermat y de Wilson con problemas del tipo saber si una potencia de un número es congruente con otro o encontrar el residuo de una congruencia,
Problemas de ecuaciones en congruencias y teorema chino del residuo - [Detalles]
Resolvemos una serie de ejercicios de ecuaciones lineales de congruencias.
Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]
Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.
Unidad V: Aplicaciones - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.
Unidad V: Aplicaciones - Examen - [Detalles]
En este examen se evalúan temas de la quinta unidad tales como series de Taylor y de Laurent, tipos de singularidades, teorema del residuo y el principio del módulo máximo.