Metodos numéricos de integración: Regla del punto medio y del trapecio - [Detalles]
Enseñanza al metodo numérico de integración por regla del punto medioa y regla del trapecio.
Propiedades de una medida de probabilidad - [Detalles]
Desarrollamos la propiedad de complementación y el principio de inclusión-exclusión que cumple una medida de probabilidad.
Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]
Aplicamos teoría de determinantes en sistemas de ecuaciones. Calculamos el rango a partir de subdeterminantes. Vemos la regla de Cramer y ejemplos.
Metodos numéricos de integración: Regla de Simpson - [Detalles]
Enseñanza al metodo numérico de integración por regla de Simpson.
Regla de la cadena - [Detalles]
Demostración de la derivada de composición de funciones y la regla de la cadena.
Regla de L’’Hôpital - [Detalles]
Estudio de los límites a través de la derivada: regla de L’’Hôpital.
Ejercicio Regla de la Cadena - [Detalles]
En este video, nos sumergimos en ejemplos prácticos y teoría detrás de la técnica esencial de la regla de la Cadena, facilitando la derivación de funciones compuestas.
Ejercicio Derivación - [Detalles]
En este video, aplicamos las reglas de derivación a un problema sencillo, permitiéndote ver en acción herramientas como la regla del producto, la regla de la cadena y más.
Regla de la cadena para campos vectoriales - [Detalles]
Enunciamos y demostramos la regla de la cadena para campos vectoriales, es decir, de varias variables. Damos ejemplos de su uso.
Producto de matrices y composición de sus transformaciones - [Detalles]
Definimos al producto de matrices como la matriz asociada a su composición como transformaciones. Probamso la regla del producto y propiedades básicas.
Establecemos la regla para definir cuando una función es suprayectiva, a través de gráficas y ejemplos representamos el concepto de Inyectividad, damos una característica que todas las gráficas de una función inyectiva deben cumplir.
Determinantes de matrices $3 imes 3$: dos métodos diferentes - [Detalles]
Describimos dos métodos para calcular el determinante de la matriz de 3x3. El método por cofactores y otro método por la regla de Sarrus (el cual es un método para matrices de 3x3).
Diapositivas sobre determinantes - [Detalles]
Definimos el determinante de una matriz con esta definición mostramos como se calcula para dimensiones de 3 (regla de Sarrus y cofactores) y para dimensiones mayores a 3, para dimensiones menores es muy fácil realizar el cálculo. Enunciamos las propiedades que cumple el determinante y entre estas proposiciones la condición del determinante para mostrar si una matriz es invertible. Finalmente demostramos una proposición sobre unas matrices especiales que son las triangulares y como estas matrices sin importar su dimensión ni si son triangularrs superiores o inferiores su determinante da una fórmula sencilla que es el producto de las entradas de la diagonal.
Determinantes de matrices 3x3 Dos métodos Diferentes - [Detalles]
Describimos dos métodos para calcular el determinante de la matriz de 3x3. El método por cofactores y otro método por la regla de Sarrus (el cual es un método para matrices de 3x3).
Producto cruz ( producto vectorial) - [Detalles]
Definimos el producto cruz, el cual es una operación entre dos vectores que da como resultado otro vector (a diferencia del producto punto que resulta en un escalar). Mostramos como calcularlo por medio de un tipo de determinante y sus propiedades: Anticonmutativo, Distributivo, Saca escalares y que es perpendicular a cada uno de sus factores. También mencionamos la regla de la mano derecha y como está relacionado con el área y el ángulo entre los dos factores.
Mini-cuestionario: Determinantes en sistemas de ecuaciones lineales y regla de Cramer - [Detalles]
Mini-cuestionario para verificar el entendimiento de cómo los determinantes ayudan a resolver sistemas de ecuaciones.
En este capitulo de Cimientos Matemáticos veremos como las funciones son reglas matemáticas que asignan cada entrada de un conjunto (dominio) a una salida única en otro (contradominio). El dominio incluye todas las entradas posibles, mientras que el contradominio abarca las salidas. La gráfica de una función visualiza esta relación, y la regla de correspondencia define cómo se asocian dominio y contradominio.
Funciones, Parte 1 - [Detalles]
En este video se discute el concepto intuitivo de función, junto con otros conceptos asociados como dominio, codominio, regla de correspondencia y composición. Después se introduce la definición formal de función y se compara con la definición intuitiva. Finalmente se discuten algunos ejemplos.
Ejemplos: determinar el dominio de una función - [Detalles]
En este video hacemos un par de ejemplos en los que se determina el dominio de una función, es decir, el dominio máximo de números reales, que es posible para una regla de correspondencia dada.
Implementación de genéricos en Java, Contaminación del montículo - [Detalles]
Contaminación del montículo - Regla Gólem. Qué hacer cuando se contamina el montículo.