El producto en los enteros - [Detalles]
Definimos la operación producto y demostramos algunas propiedades básicas de esta operación en los enteros, también demostramos la propiedad distributiva para la suma y el producto, también vemos que en los enteros no tiene divisores de cero.
Principio de inducción - [Detalles]
Introducimos el principio de inducción matemática, el cual es un método de demostración para alguna propiedad o proposición P(n), es decir que la propiedad o proposición está relacionada a un número natural. Damos un ejemplo de cómo demostrar usando el principio de inducción, demostrando el caso base y luego el paso inductivo.
Actividad Geogebra elipse - [Detalles]
Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la elipse; al mover la posición de los focos cambia la figura de la elpse así como su ecuación canónica, además que nos muestra la propiedad que cumplen los puntos que pertenecen con la propiedad de pertenecer a la elipse.
La norma en los complejos - [Detalles]
Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.
Los Elementos de Euclides: Teorema 32 - [Detalles]
En este video cubrimos el Teorema 32 de Los Elementos de Euclides, el cual trata la propiedad que en todo triángulo la suma de los ángulos interiores es igual a 180° (es decir dos rectos); y la propiedad que en todo triángulo la medida de un ángulo exterior del triángulo es igual a la suma de los dos ángulos interiores no adyacentes a él.
Principio de inducción - [Detalles]
Describimos el método de demostración llamado: Principio de Inducción Matemática (PIM). Explicamos como podemos usar la inducción para demostrar que una propiedad "P(n)" se cumple para todos los naturales.
Propiedades del combinatorio - [Detalles]
Vemos un teorema que contiene cuatro propiedades sobre la fórmula de conteo de la combinatoria: el coeficiente binomial o combinatorio. Demostramos dos propiedades, una propiedad nos dice que, el coeficiente binomial es igual si escogemos n-k elementos o k elementos.
Teorema del Residuo - [Detalles]
Dado un polinomio "p(x)", leemos "p(a)" como, "p(x)" evaluado en "a". Definimos la raíz de un polinomio cuando un escalar "a" evaluado en el polinomio es cero: "p(a)=0". Mostramos algunos ejemplos y demostramos una propiedad sobre las raíces de los polinomios.
Criterio de Eisenstein para verificar que un Polinomio es irreducible - [Detalles]
Presentamos el criterio de Eisenstein, el cual es un teorema que nos dice: Dado un polinomio con coeficientes en los enteros, si existe un numero primo que cumpla cierta propiedad (la cual detallamos en el video), entonces el polinomio es irreducible. Usando este criterio podemos saber si un polinomio es reducible sobre los enteros.
Propiedades de una medida de probabilidad - [Detalles]
Desarrollamos la propiedad de complementación y el principio de inclusión-exclusión que cumple una medida de probabilidad.
Teorema de continuidad de la probabilidad - [Detalles]
Demostramos la propiedad de continuidad de la probabilidad, un resultado teórico que será útil en otras demostraciones.
Actividad Geogebra hipérbola - [Detalles]
Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la hipérbola, nos muestra como al cambiar de posición alguno de sus focos, asimismo nos muestra como cambia su ecuación y nos muestra de forma visual como éstos cumplen con la propiedad de la hipérbola.
Gráfica de una función - [Detalles]
Definimos formalmente la gráfica de una función de una variable (como un subconjunto de puntos que cumplen una propiedad). Vemos dos ejemplos con funciones usuales.
Graficar funciones de dos variables - [Detalles]
Definimos formalmente la gráfica de una función de dos variables (como un subconjunto de puntos que cumplen una propiedad). Es análogo al caso anteriormente visto, pero el subconjunto de puntos ahora está en el espacio cartesiano.
En este video comenzamos un pequeño detour por la teoría de grupos. Definiremos lo que es un grupo libre y enunciaremos su propiedad universal.
En este video continuamos nuestro pequeño detour por la teoría de grupos. Definiremos el producto libre de grupos y su propiedad universal.
La propiedad de levantamiento de homotopías para cubrientes - [Detalles]
En este video demostramos una de las propiedades más importantes de los espacio cubrientes: el teorema de levantamiento de homotopías. En videos posteriores veremos algunas consecuencias de este enunciado.
Construcción de números complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Inmersión de los reales en los complejos - [Detalles]
Motivamos la construcción de los complejos y como suplen la necesidad de resolver el problema de raíces de números negativos con el número i. La construcción es muy parecida a las dadas en álgebra superior II como parejas ordenadas, también definimos su propiedad suma y producto, con estas operaciones demostramos que los complejos son un campo.
Subgrupo conmutador - [Detalles]
Se define el conmutador de dos elementos y se define el subgrupo conmutador, se demuestra que el cociente módulo el conmutador es abeliano y es mínimo con esa propiedad.
13. Funciones multivaluadas - [Detalles]
Ahora queremos estudiar estas funciones llamadas multivaluadas, que no son exactamente como las funciones cotidianas, ver ejemplos y alguna propiedad.
Álgebra Moderna I: Permutaciones disjuntas - [Detalles]
A continuación se discute el concepto de ciclos disjuntos y la propiedad de conmutatividad en las permutaciones disjuntas. Así mismo, las permutaciones pueden ser vistas como un producto de ciclos disjuntos.
Los Elementos de Euclides: Teorema 19 - [Detalles]
En este video cubrimos el Teorema 19 de Los Elementos de Euclides. Aquí se realiza la demostración de la propiedad de los triángulos que afirma que a mayor ángulo se opone mayor lado.
Los Elementos de Euclides: Teorema 30 - [Detalles]
En este video cubrimos el Teorema 30 de Los Elementos de Euclides, aquí se demuestra que si las paralelas a una misma recta son paralelas entre sí. (También se conoce como la propiedad transitiva del paralelismo de rectas)
Los Elementos de Euclides: Teorema 43 - [Detalles]
En este video cubrimos el Teorema 43 de Los Elementos de Euclides. Aquí trabajamos con una propiedad de los complementos de los paralelogramos.