30. Series de potencias y funciones - [Detalles]
Una vez vistas las series de potencias, metámonos a ver como se relacionan con las funciones complejas y que puede pasar si una función está descrita por una serie de potencias.
Potencias de números complejos - [Detalles]
Vemos el teorema de Moivre, el cual nos ayuda a calcular las potencias n-esímas de números complejos, de una forma muy facil (sin embargo, necesitamos la forma polar del complejo). Usamos el teorema de Moivre para calcular como ejemplo la potencia de algunos complejos y vemos como representar en el plano complejo la potencia de un complejo (podemos verlo como una rotación).
Soluciones por series de potencias cerca de un punto ordinario - [Detalles]
Comenzamos la revisión de las ecuaciones de segundo orden con coeficientes variables, y mostramos la existencia de una solución con desarrollo en serie de potencias alrededor de un punto ordinario.
Radio de convergencia de series de potencias cerca de un punto ordinario - [Detalles]
Calculamos el radio de convergencia para una solución por serie de potencias cerca de un punto ordinario para una ecuación diferencial de segundo orden con coeficientes variables.
Soluciones por series de potencias cerca de un punto ordinario (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales de segundo orden con coeficientes variables por series de potencias.
Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos ordinarios - [Detalles]
Se hace un breve repaso de series de potencias para posteriormente desarrollar un método de resolución de ecuaciones diferenciales de segundo orden con coeficientes variables con respecto a puntos ordinarios
Serie de potencias - [Detalles]
Enseñanza a la definición de las series de potencias.
Potencias de un elemento en un grupo - [Detalles]
Se definen las potencias de elementos de un grupo y se explican sus propiedades.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
Recordaremos nociones de la representación en forma polar y repasaremos las nociones y propiedades de las potencias y raíces complejas.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
Repasemos un poco acerca de cómo se comportan potencias y raíces en los complejos.
4. Forma polar y potencias en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se introduce la representación polar de un número complejo y cómo se pueden hacer las operaciones entre complejos en esta representación. Se presenta la fórmula de De Moivre para las potencias de números complejos.
21. Logaritmo complejo y potencias complejas - [Detalles]
Veamos unas preguntitas acerca de la definición del logaritmo complejo y un poco de potencias también.
29. Series de potencias. Introducción y criterios de convergencia. - [Detalles]
En esta entrada definimos lo que es una serie de potencias, un tipo muy particular de series, utilizando las dos entradas anteriores veamos que tanto podemos estudiar acerca de ellas.
31. Funciones elementales como series de potencias - [Detalles]
Para terminar con la unidad, regresaremos a analizar funciones elementales tales como la exponencial, seno, coseno complejos pero vistos por medio de sus series de potencias, así podremos ver desde otro punto de vista su analicidad y sus propiedades.
42. Series de Taylor y series de Laurent - [Detalles]
En esta última unidad, empezaremos por ver que toda función analítica puede ser representada por una serie de potencias bajo ciertas condiciones, esto es el teorema de Taylor, además veremos un tipo más de serie de potencias que es crucial para la representación de funciones analíticas.
29. Series de potencias. Introducción y criterios de convergencia. - [Detalles]
Repasemos un poco criterios que nos permiten afirmar si un nuevo tipo de serie, llamado serie de potencias, converge o no.
30. Series de potencias y funciones - [Detalles]
Repasemos unos cuantos aspectos, un poco más técnicos acerca de las series de potencias, tales como diferenciabilidad.
31. Funciones elementales como series de potencias - [Detalles]
Vamos a repasar un par de trucos para los cuales se necesario aplicar las propiedades de series de potencias, de las funciones de las cuales conocemos sus series.
Bases numéricas, Sistema binario y sus potencias - [Detalles]
Sistema binario y sus potencias – Qué es el sistema binario y sus derivados.
Operaciones con el número $i$ - [Detalles]
Definimos la suma de los términos que tienen al número i. Igualmente vemos cómo multiplicar números reales por términos que tengan el número i y por último vemos las potencias del número i.
Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos singulares - [Detalles]
Se describe el método de Frobenius para resolver ecuaciones diferenciales de segundo orden con coeficientes variables con respecto a puntos singulares
Integrales trigonométricas: Producto de potencias de senos y cosenos - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones senos y cosenos
Integrales trigonométricas: Producto de potencias de tan(x) y sec(x) - [Detalles]
Enseñanza a la integración donde el integrando contiene productos de funciones tan(x) y sec(x).
Multiplicación en forma polar y fórmula de De Moivre - [Detalles]
Mostramos la interpretación geométrica de lo que reprenta la multiplicación de dos números complejos en su forma polar; también enunciamos la fórmula de De Moivre para ayudarnos a dar solución a problemas en los que se requiere calcular potencias de números complejos.
Problemas de fórmula de De Moivre y raíces n-ésimas - [Detalles]
Resolvemos problemas que ocupan el teorema de De Moivre para potencias de un número complejo y el cálculo de la raíz de un número complejo.
5. Potencias racionales y raíces en $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presenta cómo calcular raíces n-esimas de números complejos partiendo de la fórmula de De Moivre.
21. Logaritmo complejo y potencias complejas - [Detalles]
Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".
Álgebra Moderna I: Propiedades de los Homomorfismos - [Detalles]
En esta entrada, nos enfocaremos en proporcionar algunas propiedades adicionales de los homomorfismos. Específicamente, examinaremos cómo los homomorfismos interactúan con las potencias de los elementos del grupo. Posteriormente, exploraremos la relación entre el orden de un elemento en el grupo original y el orden de su imagen bajo un homomorfismo.
Monomios y polinomios - [Detalles]
En este capítulo de Cimientos Matemáticos, exploraremos los monomios y polinomios, piezas clave del álgebra. Abordaremos las leyes de los exponentes, esenciales para simplificar potencias, los productos notables, que son un atajo para agilizar calcular, y también veremos la multiplicación de monomios y polinomios, al igual que sus las operaciones básicas.
Aplicar polinomios a transformaciones lineales y matrices - [Detalles]
En esta entrada veremos el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad.