Triángulo de Pascal - [Detalles]
Vemos cómo utilizar el triángulo de Pascal y explicamos como deducir sus coeficientes. También comparamos las propiedades del combinatorio con los coeficientes en el triángulo de Pascal. Todo esto nos ayuda para calcular la n-ésima potencia de un binomio.
Teorema de Pascal - [Detalles]
El interactivo contiene la demostración del teorema de Pascal el cual dice que si los vértices de un hexágono están sobre una circunferencia y los tres pares de lados opuestos se intersectan, entonces los tres puntos de intersección están alineados, la línea que une a estos puntos se llama "línea de Pascal". Para demostrarlo se ayuda del teorema de Menelao y de figuras interactivas.
Teorema de Pascal - [Detalles]
Demostramos el teorema de Pascal
Diapositivas sobre el teorema del binomio - [Detalles]
Enunciamos el teorema del binomio de Newton y el triángulo de Pascal, como estas 2 temas involucran combinatoria, se demuestra el teorema del binomio y se muestran ejemplos con el triángulo de Pascal y su relación con el número combinatorio. Finalmente se dejan una lista de ejercicios para practicar estos temas.
Nota 24. El triángulo de Pascal y el binomio de Newton. - [Detalles]
En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal, y probar cómo elevar un binomio a la n-ésima potencia, mediante la conocida fórmula del binomio de Newton. Con esta nota termina la segunda unidad del curso.
Recursividad, Recursión doble; Pascal. - [Detalles]
Recursión doble, triángulo de Pascal - Significado y cómo se ve la recursión doble. Ejemplo de código con el triángulo de Pastel.
En este espacio, el alumno podrá explorar la vida del matemático y filósofo Blaise Pascal. Descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.
Damos una demostración alternativa del Teorema del Binomio. También explicamos la relación del binomio con la combinatoria y el triángulo de Pascal.
Algunas propiedades de las circunferencias - [Detalles]
Este interactivo está relacionado a los temas "Potencia de un punto" y "Segmentos dirigidos". Aquí el estudiante podrá navegar a través de apartados que contienen las definiciones de qué es un segmento dirigido, potencia de un punto, eje radical y circunferencias coaxiales. Además se incluyen las demostraciones de algunos resultados relacionados que son: el teorema de la Fórmula de Euler, teorema de Pascal y el teorema de Brianchon.
Charles Julien Brianchon - [Detalles]
En este espacio, el alumno podrá explorar la vida del matemático Blaise Pascal y descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.