Álgebra Moderna I: Una modificación al Teorema de Cayley - [Detalles]
Ya observamos la importancia del Teorema de Cayley, ya que nos permite visualizar a un grupo G como un subgrupo del grupo de permutaciones. En esta entrada relacionaremos al grupo G con un grupo simétrico mas pequeño que Sn . Utilizaremos los elementos de G no para mover sus propios elementos, si no, para mover clases laterales.
Actividad 3 Geogebra coordenadas polares - [Detalles]
En este nuevo intercativo presentamos al plano polar, el cual hace lo mismo que en las a nteriores: mover el grado de inclinación y poder dar una longitud de radio pero nos muestra que hay coordenadas polares con valor de longitud de radio negativo el cual es una simetría respecto al origen.
Actividad Geogebra elipse - [Detalles]
Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la elipse; al mover la posición de los focos cambia la figura de la elpse así como su ecuación canónica, además que nos muestra la propiedad que cumplen los puntos que pertenecen con la propiedad de pertenecer a la elipse.
Actividad Geogebra parábola - [Detalles]
Mostramos con ayuda del programa geogebra como al cambiar los parámetros de los elementos básicos que consitutyen a la parábola, nos muestra como la parábola cambia al mover la recta directriz o el foco también como se modifica su ecuación, además de mostrarnos visualmente (y algebraicamente) que los puntos que forman a la parábola son efectivamente equidistantes de la directriz y del foco.
El soporte de una permutación - [Detalles]
Definimos el concepto de fijar y mover elementos para una permutación. También definimos el soporte de una permutación. Finalmente damos algunos ejemplos que ilustran las definiciones.