Motivación de integral y sumas superiores e inferiores - [Detalles]
Motivación de la integral y sumas
Esbozo de construcción de racionales y reales - [Detalles]
Mostramos un pequeño esbozo sobre la motivación y construcción de los números racionales (primeramente) con ayuda de los números enteros ya construidos, después ocupamos que el campo de los racionales no siempre tiene solución siendo esta la motivación para la construcción de los números reales a partir de sucesiones de Cauchy. Manejamos que son un esbozo pues la idea de construir Q es muy similar cuando construimos Z pero la contrucción de R se da con más claridad en cursos de cálculo y análisis matemático.
Introducción a las ecuaciones diferenciales ordinarias: motivación y ejemplos (Parte 1) - [Detalles]
Revisamos un par de ejemplos sencillos donde las ecuaciones diferenciales hacen su aparición, motivando su estudio.
Introducción a las ecuaciones diferenciales ordinarias: motivación y ejemplos (Parte 2) - [Detalles]
Revisamos un par de ejemplos sencillos donde las ecuaciones diferenciales hacen su aparición, motivando su estudio.
El enunciado del teorema de van Kampen - [Detalles]
En este video damos una breve motivación para el enunciado del teorema de van Kampen. El video lo terminamos con el enunciado formal de dicho teorema. En un video posterior daremos la demostración. Espero que lo disfruten.
Permutaciones - un primer ejemplo - [Detalles]
Pequeña motivación del concepto de permutación que definiremos formalmente en el siguiente video.
Recordando a los enteros módulo n - [Detalles]
Se da la primera motivación para definir grupos cociente al recordar la definición de los enteros módulo n.
21. Logaritmo complejo y potencias complejas - [Detalles]
Con la motivación de definir una función inversa para la exponencial, analizaremos como podemos hacerlo de una manera que no haya problemas, introduciremos el logaritmo complejo y a la postre podremos dar una definición formal de "elevar un número complejo a otro".
Teorema de recursión - [Detalles]
En esta entrada veremos el concepto de calculo de longitud, así como la motivación y prueba del teorema de recursión, el cual nos ayudara a definir la suma en el conjunto de los numeros naturales.